Skein More than just a hash function

Third SHA-3 Candidate Conference 23 March 2012 Washington DC

Skein is Skein-512

- Confusion is common, partially our fault
- Skein has two special-purpose siblings:
 - Skein-256 for extreme memory constraints
 - Skein-1024 for the ultra-high security margin

But for SHA-3, Skein is Skein-512
 — One hash function for all output sizes

Skein Architecture

- Mix function is 64-bit ARX
- Permutation: relocation of eight 64-bit words
- Threefish: tweakable block cipher
 - Mix + Permutation
 - Simple key schedule
 - 72 rounds, subkey injection every four rounds
 - Tweakable-cipher design key to speed, security
- Skein chains Threefish with UBI chaining mode
 - Tweakable mode based on MMO
 - Provable properties
 - Every hashed block is unique
- Variable size output means flexible to use!
 - One function for any size output

The Skein/Threefish Mix

Four Threefish Rounds

Skein and UBI chaining

Fastest in Software

- 5.5 cycles/byte on 64-bit reference platform
- 17.4 cycles/byte on 32-bit reference platform

- 4.7 cycles/byte on Itanium
- 15.2 cycles/byte on ARM Cortex A8 (ARMv7)
 New numbers, best finalist on ARMv7 (iOS, Samsung, etc.)

Fast and Compact in Hardware

- Fast
 - Skein-512 at 32 Gbit/s in 32 nm in 58 k gates
 - (57 Gbit/s if processing two messages in parallel)
- To maximize hardware performance:
 - Use a fast adder, rely on simple control structure, and exploit Threefish's opportunities for pipelining
 - Do not trust your EDA tool to generate an efficient implementation
- Compact design:
 - Small FPGA implementation (At et al.)
 - 132 slices and two memory blocks on Virtex-6 FPGA
 - Threefish block cipher "for free" (support ALL symmetric crypto primitives in a single hw system)

Secure

- Conservative design
 - 2x security margin
 - UBI defends against attacks
- Builds on well-understood primitives
- Easy to understand and analyze
 - Only changes have been better constants
- Formal security arguments for the mode
 - Mathematical proof that a weakness in Skein implies a weakness in Threefish
 - We know how to analyze block ciphers

Secure — Best Attacks

- Rotation (Khovratovich et al.) attacks fixed with new constant
- Differential attack against 34 rounds of Threefish (Aumasson et al.)
- Biclique attack, pseudo-preimages on Skein512 at 37 rounds with 2^{511.2} steps (Khovratovich et al.)

• We believe Skein/Threefish is ready to use

Design Maximizes Diffusion

Hash Function	Full Diffusion After	Diffusion Factor
Skein	10 rounds (of 72)	7.2
SHA-1	30 steps (of 80)	2.7
SHA-256	14 steps (of 64)	4.6
SHA-512	18 steps (of 80)	4.4

Full diffusion is number of rounds to propagate a single-bit change to all bits

Flexible

- Hash functions are the utility functions of crypto
- Skein has formalizations of many common uses:
- Any output size
 - Simplifies a lot of applications from networks to OAEP
- Extra features:
 - One-pass (zero per-message overhead) MAC
 - KDF, PRNG, stream cipher
 - Tree hash and tree MAC
 - Unlimited throughput through parallelism
 - Random-access hash and MAC

Free Block Cipher

- Threefish is the block cipher at the heart of Skein
 - Free: the security of Skein assumes the security of Threefish
- Wide block
 - Solves the birthday bound problems we have with 128-bit block ciphers
- Tweakable: extra flexibility
 - Tweaks + wide block is good for storage and networks
- Provides a fallback for AES

Implementation

- One implementation for any output size!
- Existing implementations in
 - Python, C, C++, C#, Spark, Atmel AVR, x86, x64,
 ARM, Java, Ada, Cryptol, FPGA, ASIC and more
 - Parallel tree hashing in Java
- Implementation in Spark adds a formal automated correctness-of-implementation proof

Skein: Fast, Secure, Flexible

- Fastest in software, fast in hardware
- Wider security margin than existing primitives
- Skein is designed for the many ways people use hash functions now
- We don't know what *future* applications hash functions will have, so the best standard is a flexible one