KECCAK An update

Guido Bertoni¹ Joan Daemen¹ Michaël Peeters² Gilles Van Assche¹

¹STMicroelectronics

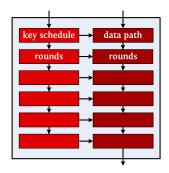
²NXP Semiconductors

Third SHA-3 candidate conference, Washington DC March 22-23, 2012

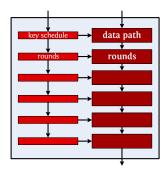
Outline

- 1 КЕССАК uses a wide permutation
- 2 KECCAK's safety margins
- 3 КЕССАК's cryptanalysis strengths
- 4 KECCAK's offering
- 5 Conclusions

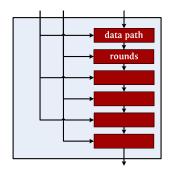
Outline

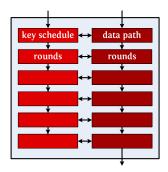

1 KECCAK uses a wide permutation

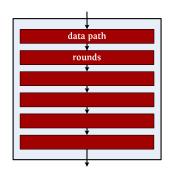
- 2 KECCAK's safety margins
- 3 KECCAK's cryptanalysis strengths
- 4 КЕССАК's offering
- 5 Conclusions


No diffusion from data path to key (and tweak) schedule

Iocal collisions


- Sometimes lightweight key schedule
- Let's remove these artificial barriers...
- That's a permutation!


- No diffusion from data path to key (and tweak) schedule
 local collisions
- Sometimes lightweight key schedule
- Let's remove these artificial barriers...
- That's a permutation!


- No diffusion from data path to key (and tweak) schedule
 local collisions
- Sometimes lightweight key schedule
- Let's remove these artificial barriers...
- That's a permutation!

- No diffusion from data path to key (and tweak) schedule
 - Iocal collisions
- Sometimes lightweight key schedule
- Let's remove these artificial barriers...
- That's a permutation!

- No diffusion from data path to key (and tweak) schedule
 local collisions
- Sometimes lightweight key schedule
- Let's remove these artificial barriers...
- That's a permutation!

But it makes KECCAK big!?!

Myth: КЕССАК requires a lot of working memory

A 1600-bit wide permutation indeed!

Fact: KECCAK fits in less than 280 bytes of RAM

- KECCAK is among the most compact [XBX]
 - On ARM: fastest = least RAM
- No additional storage required for message or feedforward
- Lightweight hash function proposals are all sponges! [Quark, Photon, Spongent]

Data path width of SHA-3 finalists

	D	RAM	Comments
Blake-256	512	1920	lightweight
Blake-512	1024	3904	key schedule
Grøstl-256	512	2048	two permutations
Grøstl-512	1024	5088	in parallel
ЈН	1024	2624	
Кессак	1600	1856	
Skein	512	2888	lightweight key schedule

RAM usage (in bits) from [XBX]+[Feichtner], min. across platforms

An aside: zero-sum distinguishers

	Zero-sum	
	set size	Exploited property
Blake-256's rounds	2 ⁵¹²	keyed permutation
Blake-512's rounds	2 ¹⁰²⁴	keyed permutation
Grøstl's P or Q ₅₁₂	2 ⁵⁰⁹	non-maximal degree in the middle
Grøstl's P or Q ₁₀₂₄	2 ¹⁰²⁴	permutation
JH's E ₈	2 ¹⁰²⁴	permutation
Кессак <i>-f</i> [1600]	2 ¹⁵⁷⁵	non-maximal degree in the middle
Threefish-512	2 ⁵¹²	keyed permutation

distinguisher on Keccak-*f*[1600]

... yet ... largest size among finalists

Outline

KECCAK uses a wide permutation

2 KECCAK's safety margins

3 КЕССАК's cryptanalysis strengths

4 **КЕССАК's offering**

5 Conclusions

A distinguisher for Keccak-f breaks Keccak?

Myth: KECCAK needs the permutation to admit no distinguisher

Consequence of expressing the hermetic sponge strategy

Νο distinguisher on Keccaκ-f!

Flat sponge claim on Keccak

Fact: Hermetic strategy provides safety margin w.r.t. flat claim

A distinguisher for Keccak-f breaks Keccak?

Myth: KECCAK needs the permutation to admit no distinguisher

Flat sponge claim on Keccak

No attack below complexity $2^{c/2}$ (if not easier on random oracle)

Covers all attacks, not only (second) preimage and collision

Fact: Hermetic strategy provides safety margin w.r.t. flat claim

A distinguisher for Keccak-f breaks Keccak?

Myth: KECCAK needs the permutation to admit no distinguisher

Flat sponge claim on KECCAK

Fact: Hermetic strategy provides safety margin w.r.t. flat claim

- No distinguisher on KECCAK-*f*, except for zero-sums (2¹⁵⁷⁵)
 - Hermetic for DC/LC, symmetries, constrained I/O, etc.
- **■** To invalidate claim, the distinguisher on KECCAK-*f* must be:
 - applicable on the Keccak sponge function
 - \blacksquare < 2⁸⁰⁰ for any instance of Keccak
 - \blacksquare < 2^{*n*} for any *n*-bit SHA-3 candidate

Safety margin in the choice of capacity

Flat sponge claim on Keccak

No attack below complexity $2^{c/2}$ (if not easier on random oracle)

Covers all attacks, not only (second) preimage and collision

"Кессак-256" = Кессак
$$[c=512]$$

- Can output 512 bits and provide 2²⁵⁶ collision resistance
- Is sufficient for all security strength levels of [NIST SP 800-57]
 - Blake-512 and Grøstl-512 needed for generic 256-bit security [Andreeva, Mennink, Preneel, Škrobot]

"Keccak-512" = Keccak[c = 1024]

- Could output 1024 bits and provide 2⁵¹² collision resistance
- Only if 2⁵¹² (second) preimage resistance is wanted

Safety margin in the number of rounds

KECCAκ-f has 24 rounds

Sufficient #rounds for security claim on KECCAK: 13 rounds Estimation from [KECCAK reference]

Currently known results keep us confident about this estimation

What if performance is scaled to security margin?


Safety margin in the number of rounds

- KECCAκ-f has 24 rounds
- Sufficient #rounds for security claim on KECCAK: 13 rounds Estimation from [KECCAK reference]

Currently known results keep us confident about this estimation

What if performance is scaled to security margin?

Outline

2 KECCAK's safety margins

3 КЕССАК's cryptanalysis strengths

4 КЕССАК's offering

5 Conclusions

Third-party cryptanalysis of Keccak

Distinguishers on Keccak-f[1600]

-				
Rounds	Work			
3	low	CICO problem [Aumasson, Khovratovich, 2009]		
4	low	cube testers [Aumasson, Khovratovich, 2009]		
8	2 ⁴⁹¹	unaligned rebound [Duc, Guo, Peyrin, Wei, FSE 2012]		
24	2 ¹⁵⁷⁴	zero-sum [Duan, Lai, ePrint 2011] [Boura, Canteaut,		
		De Cannière, FSE 2011]		

Academic-complexity attacks on Keccak

- 6-8 rounds: second preimage [Bernstein, 2010]
 - slightly faster than exhaustive search, but huge memory

Third-party cryptanalysis of Keccak

Practical-complexity attacks on KECCAK

Rounds		
2	preimages and collisions [Morawiecki, CC]	
2	collisions [Duc, Guo, Peyrin, Wei, FSE 2012 and CC]	
3	40-bit preimage [Morawiecki, Srebrny, 2010]	
3	near collisions [Naya-Plasencia, Röck, Meier, Indocrypt 2011]	
4	key recovery [Lathrop, 2009]	
4	distinguishers [Naya-Plasencia, Röck, Meier, Indocrypt 2011]	
4	collisions [Dinur, Dunkelman, Shamir, FSE 2012 and CC]	
5	near-collisions [Dinur, Dunkelman, Shamir, FSE 2012]	

CC = Crunchy Crypto Collision and Preimage Contest

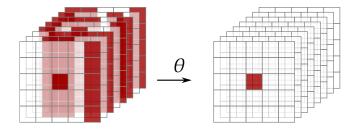
Observations from third-party cryptanalysis (1/2)

Effect of **alignment** on differential/linear propagation

- **Strong**: low uncertainty in prop. along block boundaries
- Weak: high uncertainty in prop. along block boundaries
- Strong alignment puts barriers in the round function
- Weak alignment in Κεςςακ-f
 - strives to remove all such barriers
 - limits feasibility of rebound

Weak alignment, illustrated

Basis for the possible output patterns of a single active row


Observations from third-party cryptanalysis (2/2)

• Effect of the **inverse** of the mixing layer θ

- θ^{-1} is very dense
- Limits the construction of high-probability trails over more than a few rounds

KECCAK's cryptanalysis strengths

Inverse of θ , illustrated

Single active bit at θ output \downarrow About half of the bits active at θ input


Differential and linear cryptanalysis

Lower bound for the weight of differential or linear trails?

- ARX: no relevant bounds
- AES-based: strong and simply provable bounds, but
 - Not for truncated differentials and rebound attack
- Weak alignment: computer-assisted proofs are possible
 - Tight bound for 3 rounds of Keccaκ-f[1600]
 - Lower bound for 6 rounds of Keccaκ-f[1600]

Rounds	Best known diff. weight		
1	2		
2	8		
3	32	[Duc et al.]	
4	134	[Keccak team]	
5	510	[Naya-Plasencia et al.]	
6	1360	[Keccak team]	

Outline

- 2 KECCAK's safety margins
- 3 KECCAK's cryptanalysis strengths

4 КЕССАК's offering

5 Conclusions

Modes of use

KECCAK is a sponge function

- Hashing, stream encryption, MAC computation, full domain hashing, randomized hashing ...
- Variable-output length makes it suitable for tree hashing [ePrint 2009/210]
- KECCAK is a duplex object
 - Reseedable pseudo-random bit generator
 - Authenticated encryption
- Unprecedented simplicity & flexibility
 - Exchange rate for capacity, and vice versa
 - Joint security of multiple instances [SAC 2011]

End-to-end approach

Remember, security is like a chain...

- Security of the mode
- Security of the primitive
- Security of the implementation (in a keyed mode)
 - Resistance against cache-timing attacks
 - Resistance against power/electromagnetic analysis
 - At a reasonable cost!

Diversity, diversity, diversity

Choice of basic building blocks

- MD5, SHA-1 and SHA-2: ARX
- AES: byte-oriented, MDS mixing layer, 8-bit S-box
- ΚΕCCAK is bit-oriented and weakly aligned
- Choice of basic primitive
 - MD5, SHA-1 and SHA-2: block cipher based
 - AES: block cipher
 - KECCAK uses an iterated permutation
- Choice of mode of use
 - MD5, SHA-1 and SHA-2: Merkle-Damgård, Davies-Meyer, MD-strengthening, HMAC, MGF1, ...
 - AES: CBC, counter, C-MAC, GCM, CCM, ...
 - KECCAK uses the sponge and duplex constructions

Outline

- 1 KECCAK uses a wide permutation
- 2 KECCAK's safety margins
- 3 КЕССАК's cryptanalysis strengths
- 4 KECCAK's offering

КЕССАК has strong (and sometimes unique) features

Design and security

Thick safety margin

- Third-party cryptanalysis and bounds on differential trails
- Matryoshka principle: cryptanalysis from small to large

Provable security against generic attacks

Diversity w.r.t. AES and SHA-1/-2 (ARX)

Flexibility inherent in the sponge and duplex constructions

- Simple security claim, disentangled from output length
- Arbitrary output length (for, e.g., MGF, stream cipher)
- Single permutation for all output lengths
- Performance-security (rate-capacity) trade-offs
- No output transformation (e.g., efficient duplexing)

Implementation

- Good software performance
- Excellent suitability on hardware with speed/area trade-offs
- Secure implementations much cheaper than other designs

Our references

- Differential propagation in KECCAK, FSE 2012
- KECCAK implementation overview (version 3.1 or later)
- KECCAKTOOLS (version 3.2 or later)
- On alignment in КЕССАК, Ecrypt II Hash Workshop 2011
- The Keccak reference (version 3.0 or later)
- The KECCAK SHA-3 submission, 2011
- Building power analysis resistant implementations of KECCAK, SHA-3 2010
- Note on zero-sum distinguishers of KECCAK-f, NIST hash forum 2010
- Note on КЕССАК parameters and usage, NIST hash forum 2010
- Note on side-channel attacks and their counterm..., NIST hash forum 2009
- The road from PANAMA to KECCAK via RADIOGATÚN, Dagstuhl 2009

http://keccak.noekeon.org/

Our references

- Duplexing the sponge: authenticated enc. and other applications, SAC 2011
- On the security of the keyed sponge construction, SKEW 2011
- Cryptographic sponge functions (version 0.1 or later)
- Sponge-based pseudo-random number generators, CHES 2010
- Sufficient conditions for sound tree and seq. hashing modes, ePrint 2009
- On the indifferentiability of the sponge construction, Eurocrypt 2008
- Sponge functions, comment to NIST and Ecrypt Hash Workshop 2007

http://sponge.noekeon.org/