Side Channel Analysis of the SHA-3 Finalists

Michael Zohner, Michael Kasper, and Marc Stöttinger

{michael.zohner|michael.kasper|marc.stoettinger}@cased.de

h_da

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

22/03/2012 | Third SHA-3 Candidate Conference | M. Zohner | 1

Side Channel Analysis - Power Analysis

 Power Analysis is based on the dependency of the power consumption on the processed data

22/03/2012 | Third SHA-3 Candidate Conference | M. Zohner | 2

Fraunhofer

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCI

Differential Power Analysis (DPA)

Device processes m \oplus key

 $HW(4 \oplus key) < HW(6 \oplus key) < HW(2 \oplus key)$

=> key = 5

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Profiling Based Attacks

• First phase: profile the power consumption on a fully controllable device

Second phase: compare profiles to power consumption of attacked device

h_da Hochschule Darmstad UNIVERSITY OF APPLIED

Side Channel Attacks on MAC Functions

HOCHSCHULE DARMSTADT

Side Channel Attacks on MAC Functions

22/03/2012 | Third SHA-3 Candidate Conference | M. Zohner | 6

fer h_da

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Side Channel Attacks on MAC Functions

22/03/2012 | Third SHA-3 Candidate Conference | M. Zohner | 7

Fraunhofer

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

h_da

Side Channel Attacks against the SHA-3 Finalists

	Benoît et al. (DPA)
BLAKE	MAC Forgery
Grøstl	MAC Forgery
JH	-
Keccak	-
Skein	-

Background for this Work

- We use the same power consumption model as Benoît et al., namely the Hamming weight model
- We analyzed:
 - Grøstl-MAC (Envelope MAC)
 - JH-HMAC
 - Keccak-MAC (built in MAC function)
 - Skein-MAC (built in MAC function)
- The attacks were verified on:
 - ATMega 256-1 microcontroller (8 bit register)
 - AVR Cortex M3 (32 bit register)

ARMSTADT APPLIED SCIENCES ÖKOT

Analysis of Grøstl

- Grøstl-MAC computes a MAC by hashing (K || M || K)
- The attack, suggested by Benoît et al., can be altered to fit Grøstl-MAC
- A successful DPA is able to recover the processed key, since the last key K is processed with variable data

Analysis of JH

- Two state values are needed for inner and outer hash function call
- For each state value, two operations have to be exploited

22/03/2012 | Third SHA-3 Candidate Conference | M. Zohner | 11

CHSCHULE DARMSTADT IVERSITY OF APPLIED SCIENCES

h da

- Keccak-MAC hashes (K || M)
- First exploit the XOR between the bitrate and the message

The Sponge Construction based on a permutation f

22/03/2012 | Third SHA-3 Candidate Conference | M. Zohner | 12

h_da er sit

- Secondly exploit the XOR of the columns during θ until all values are known
- If the key is only few bits long, a key recovery is possible

- Secondly exploit the XOR of the columns during θ until all values are known
- If the key is only few bits long, a key recovery is possible

h_da HOCHSCHULE DARMSTADT

- Secondly exploit the XOR of the columns during θ until all values are known
- If the key is only few bits long, a key recovery is possible

- Secondly exploit the XOR of the columns during θ until all values are known
- If the key is only few bits long, a key recovery is possible

Skonomischer Exzellenz

- Secondly exploit the XOR of the columns during θ until all values are known
- If the key is only few bits long, a key recovery is possible

Analysis of Skein

- Target the modular addition between the state value and the message
- Recover the key by dividing each 64 bit addition in eight 8 bit additions and attack them independently

Split the 64 bit modular addition into 8 bit blocks and attack them independently

Fraunhofer

Side Channel Attacks against the SHA-3 Finalists

	Benoît et al. (DPA)	This work (DPA)
BLAKE	MAC Forgery	-
Grøstl	MAC Forgery	Key Recovery
JH	-	MAC Forgery
Keccak	-	MAC Forgery (Key Recovery)
Skein	-	MAC Forgery

Analysis of Grøstl

• Use algebraic side-channel analysis to recover the hashed message

STADT LIED SCIENCES SCIENCES SCIENCES SCIENCES SCIENCES SCIENCES SCIENCES

1) Determine Hamming weight (1)

• Support Vector Machines (SVM) are used for binary classification

22/03/2012 | Third SHA-3 Candidate Conference | M. Zohner | 21

h_da HOCHSCHULE DARMSTAD

1) Determine Hamming weight (2)

Profiling Hamming weights using Support Vector Machines

22/03/2012 | Third SHA-3 Candidate Conference | M. Zohner | 22

h_da

2) Solve Equations

- The variables in the equation system are composed of:
 - HW of the input
 - HW of the S-box input
 - HW of the S-box output
 - HW of the MixBytes output
- Inserting the HW of these variables for the first two rounds (200 HW) allows solving the system

Side Channel Attacks against the SHA-3 Finalists

	Benoît et al. (DPA)	This work (DPA)	This work (Profiling)
BLAKE	MAC Forgery	-	-
Grøstl	MAC Forgery	Key Recovery	Message Recovery
JH	-	MAC Forgery	-
Keccak	-	MAC Forgery (Key Recovery)	-
Skein	-	MAC Forgery	-

Remarks

- The side channel analysis was performed for the Hamming weight leakage model, an analysis using a more complex model, such as the Hamming distance model, is more difficult
- Ranking the finalists in terms of side channel resistance is not possible since different implementations have different characteristics
- A feasibility study of the algebraic side channel attack for all finalists still remains

Questions

22/03/2012 | Third SHA-3 Candidate Conference | M. Zohner | 26

