
Analyzing and fixing the
QACCE security of QUIC

Yoshikazu Hanatani
(joint work with Hideki Sakurada,

Kazuki Yoneyama, and Maki Yoshida)

Background

• TLS over TCP is most widely used transport security
protocol, but its handshake has high latency.

• As an alternative, the QUIC protocol has been
developed by Google, and some of the ideas have
been incorporated to the TLS 1.3 draft.

• QUIC has been analyzed in some previous work:
[Fischlin, Günther ’14] [Lychev et al. ’15]
[Iseki, Fujisaki ’15]

This work

• Analyzes security of QUIC using the ProVerif
automatic protocol verifier.

• The security model and the formalization of QUIC
are based on [Lychev et al. ’15].

• Founds errors in the results of [Lychev et al. ’15].

QUIC

Transport security protocol developed by Google.
• For simplicity, omits server authentication and

allows only restricted sets of ciphersuites
• For achieving low latency,

• Uses UDP and omits TCP handshake.
• Allows for a server DH value to be used in multiple

sessions (for 0-RTT handshake) updated later for
forward secrecy.

[Lychev et al., 2015]

Server’s signed DH public value
（used in multiple sessions）

Client’s DH fresh
public value

Keys shared by DH are
used in encryptions in
phase (2) and (3)

Server’s fresh DH
public value

The updated keys are
used in phase (4) for
perfect forward security

Analysis in [Lychev et al. ’15]

• Defines a security model (the QACCE model) for
protocols like QUIC that allow for both (initial)
non-PFS and PFS encryption.

• Defines the QACCE security for such protocols.
• Proves that QUIC satisfy the QACCE security.
• Shows that QUIC is vulnerable to some DoS attacks

(outside the scope of QACCE security).

QACCE = Quick ACCE
ACCE = The Authenticated and Confidential Channel Establishment [Jager et al., 2012]

The QACCE security model

A

𝜋𝜋c,𝑖𝑖
𝑞𝑞

𝜋𝜋s,𝑗𝑗
𝑟𝑟

Oracle for the q-th instance
of client Ci

Oracle for the r-th instance
of server Sj

query
Attacker

reply

The attacker controls the sessions through queries to
the oracles.

Queries in the QACCE model

• connect(𝜋𝜋c,𝑖𝑖
𝑞𝑞 , 𝜋𝜋s,𝑗𝑗

𝑟𝑟): Gets the connection request message
from client oracle 𝜋𝜋c,𝑖𝑖

𝑞𝑞 to server oracle 𝜋𝜋s,𝑗𝑗
𝑟𝑟 .

• send(𝜋𝜋p,𝑖𝑖
𝑞𝑞 , m): Sends m to oracle 𝜋𝜋p,𝑖𝑖

𝑞𝑞 , and gets the reply.

• encrypt(𝜋𝜋p,𝑖𝑖
𝑞𝑞 , m, H, init), decrypt(𝜋𝜋p,𝑖𝑖

𝑞𝑞 , C, H, init): Makes
oracle 𝜋𝜋p,𝑖𝑖

𝑞𝑞 encrypt / decrypt message using authenticated
encryption with header H and keys shared by the (initial if
init=1) key agreement phase.
➡ models encryption / decryption in (initial) data exchange

• revealk(𝜋𝜋p,𝑖𝑖
𝑞𝑞), revealik(𝜋𝜋p,𝑖𝑖

𝑞𝑞), corrupt(𝜋𝜋p,𝑖𝑖
𝑞𝑞): Makes oracle to

reveal keys and long-term secret.

[Lychev et al., 2015]

QUIC in the QACCE model

Modeled by encrypt and decrypt queries:
Server and client encrypt / decrypt
message (with an attacker-chosen
authentication header).

Modeled by connect and send queries:
Server and client (oracles) output
messages, following protocol spec.

The QACCE security

Defines security against a number of attacks
• Server impersonation attack: succeeds if a client

shares a key with someone that has no matching
conversation.

• Channel corruption attack: succeeds if data,
conveyed by messages in (initial) data exchange
phase, are read or inserted.

• IP Spoofing attack: succeeds if a forged message is
accepted by a server (assuming that the attacker
does not see messages in this session.)

The ProVerif Tool

• Automatic cryptographic protocol verifier mainly
developed by B. Blanche (INRIA).

• Verifies various security properties including
• Weak secrecy (reachability)
• Strong secrecy (indistinguishability)
• Correspondence (authenticity)

• Assuming crypto primitives have perfect security
(“Dolev-Yao”).

• Outputs “true” or “false” and an attack, if any.

The ProVerif Tool (cont.)
fun pk(skey): pkey.
fun encrypt(bitstring, pkey): bitstring.
reduc forall x: bitstring, y: skey;

decrypt(encrypt(x,pk(y)),y) = x.
…

let client(pkS: spkey, skA: skey, skB: skey) =
in(c, (xA: host, hostX: host));
if xA = A || xA = B then
let skxA = if xA = A then skA else skB in
let pkxA = pk(skxA) in
event beginBparam(xA, hostX);
out(c, (xA, hostX));
…

let server(pkS: spkey, skA: skey, skB: skey) =
…

query x: host, y: host;
inj-event(endBparam(x,y))
==> inj-event(beginBparam(x,y)).

…

Assumptions on
Crypto Primitives
and Attacker

Protocol
Descriptions

Security
Requirements

ProVerif

…
new skA creating skA_28379 at {1}
out(c, pk(skA_28379)) at {3}
insert keys(A,pk(skA_28379)) at {4}
new skB creating skB_28378 at {5}
out(c, pk(skB_28378)) at {7}
…

RESULT
inj-event(endBparam(x,y))
==> inj-event(beginBparam(x,y))
is false.

Analysis Results
(and attack, if insecure)

Description of QUIC in ProVerif

• Oracles (clients and servers)
are written as sequences of
commands such as inputs
and outputs (over network).

• Additionally, Events are
issued when some queries
are successfully processed,
for specifying security.

let client(pk_s: bitstring, IP_c: bitstring, …)=
(* Initial Key Agreement *)
new cid: bitstring;
let m1 = (IP_c, IP_s, port_c, port_s, cid, …) in
out(c, m1);
in(cp, m2: bitstring);
…
(* Initial Data Exchange *)
(! Oenc((role_server, m1, m2, m3), ...)) |
(! Odec((role_server, m1, m2, m3), ...)) |
…

let Oenc(matching_conversation: bitstring, ...)=
in(c, (msg: bitstring, H: bitstring));
let (cid: bitstring, sqn: bitstring) = H in
let C = E(key, (iv, sqn), msg, H) in
event encrypt(sess, ph, sender_role, C, H);
out(c, (H, C)).

QACCE security in ProVerif

• Described as six assertions (“query”), which refer to
events in protocol descriptions.

• E.g., to assert that messages cannot be inserted,
query S: bitstring, cid: bitstring, ph: bitstring, sender_role: bitstring,

C: bitstring, H: bitstring;
event(decrypt(S, cid, ph, sender_role, C, H)) ==>
event(encrypt(cid, ph, sender_role, C, H))
|| event(revealed(cid, ph, sender_role))
|| event(corrupted(S)).

“if a decryption query on ciphertext C succeeds, then
an encryption query yielding C must be issued in the session,
or the session secret is revealed,
or the server is corrupted.”

Analysis results

ProVerif finds attacks against QACCE security on Lychev et
al’s formalization of QUIC:
• Server-impersonation: a man-in-the middle attacker

replaces message (“stk”) with the one in the previous
session and make client shares a key with a server having
no matching conversation.

• Channel-corruption attack: an attacker can insert a (key-
agreement) message in the initial data exchange phase.

• IP spoofing attack: an attacker can make server accept a
message (“stk”) in the previous session as a message in
the current session.

Due to the (strong) definition of matching
conversation in definition of QACCE security

Due to the too strong definition of IP-
spoofing in definition of QACCE security

ProVerif output

new x_s' creating x_s'_2911430 at {64} in copy a_2911399, a_2911403,
a_2911402, a_2911401, a_2911414

event(server_k_set(...)) at {74} in copy a_2911399, a_2911403, a_2911402,
a_2911401, a_2911414

out(c, ...) at {75} in copy a_2911399, a_2911403, a_2911402, a_2911401,
a_2911414

insert conversations(...) at {76} in copy a_2911399, a_2911403, a_2911402,
a_2911401, a_2911414

in(c, ...) at {145} in copy a_2911399, a_2911398, a_2911413

event(client_k_set(...)) at {152} in copy a_2911399, a_2911398, a_2911413

The event client_k_set(...) is executed.
A trace has been found.
RESULT event(client_k_set(conv,sess,S)) ==> event(server_k_set(conv,sess))
|| event(revealed(sess,phase_initial_data_exchange,role_server)) ||
event(corrupted(S)) is false.

…

This (very long) part describes
the attack found by ProVerif

An attack found by ProVerif

Decryption query succeeds without obtaining a ciphertext m6 by
encryption query, because same keys are used in (2) and (3).
➡ Key agreement message is inserted as data exchange message.

Attacker blocks m5.
Client is still waiting.

Attacker captures m6 and
sends it as a decryption query
decrypt(𝜋𝜋p,𝑖𝑖

𝑞𝑞 , m6, H, init).

Is QUIC really insecure?

Attacker blocks m5.
Client is still waiting.

Attacker captures m6 and
sends it as a decryption query
decrypt(𝜋𝜋p,𝑖𝑖

𝑞𝑞 , m6, H, init).

No.
• In Lychev et al’s formalization, client decrypts a ciphertext

using the header H chosen by attacker in decryption query.
• In real QUIC, client uses the header specified by the protocol.

In particular, the header contains the sequence number.

We should fix this problem by checking the header H in the
decryption query in the definition of the QACCE model.

After fixing this, ProVerif outputs simply as follows:
RESULT event(client_k_set(conv,sess,S)) ==> event(server_k_set(conv,sess)) ||
event(revealed(sess,phase_initial_data_exchange,role_server)) || event(corrupted(S)) is true.

Summary of the analysis

• 400 lines of ProVerif script, including protocol, security
requirements, and crypto primitives definitions.

• Time required by analysis:
Security Before fix the model After fix the model

Server impersonation 7[min] 55[sec] 8[min] 39[sec]

Channel-corruption (message insertion) 7[min] 11[sec] 6[min] 20[sec]

Channel-corruption (secrecy) 63[min] 32[sec] 65[min] 57[sec]

IP spoofing 7[min] 58[sec] 6[min] 7[sec]

(Security against channel-corruption attack is divided into
security against message insertion and secrecy)

Conclusion

• We analyzed the QACCE security of QUIC by using ProVerif.
• ProVerif found a number of attacks on QUIC.
➡ Lychev et al.’s proof of QACCE security of QUIC contains

some errors.
• These attacks are due to inappropriate formalization of

QUIC and definition of QACCE model and do no real harm
in reality.

• But show that hand-written proofs may contain errors
(even by an expert and in paper accepted in top
conference.)

Source-address token (stk)

• Client’s IP address encrypted using the key known
only by a server.

• Used for avoiding IP-spoofing attack.
• On receiving an initial connection request, the

server makes stk and sends to the client.
• A client sends stk to the server in the c_hello

message, and the server checks if
the source IP address = the IP address in stk.

• An stk can be used in a later session, in which the
c_i_hello and s_reject message are omitted.

[Lychev et al., 2015]

QUIC in the QACCE model

Modeled by encrypt and decrypt queries:
Server and client encrypt / decrypt
message (with an attacker-chosen
authentication header).

Modeled by connect and send queries:
Server and client outputs messages,
following the protocol specification.

	Analyzing and fixing the QACCE security of QUIC
	Background
	This work
	QUIC
	スライド番号 5
	Analysis in [Lychev et al. ’15]
	The QACCE security model
	Queries in the QACCE model
	QUIC in the QACCE model
	The QACCE security
	The ProVerif Tool
	The ProVerif Tool (cont.)
	Description of QUIC in ProVerif
	QACCE security in ProVerif
	Analysis results
	ProVerif output
	An attack found by ProVerif
	Is QUIC really insecure?
	Summary of the analysis
	Conclusion
	スライド番号 21
	Source-address token (stk)
	QUIC in the QACCE model

