
The Future of Security
Standards

John Kelsey, NIST, Dec 2016

1

Overview

• My background
• Security standards are different
• How to fail
• Designing better security standards
• Building public confidence in standards
• Wrapup

2

My background

• NIST cryptographer
• Worked on several NIST standards

• SP800-90A, B, C
• X9.82 Parts 2 and 3
• VVSG 1.0, 2.0
• FIPS202 (SHA3)
• SP 800-185 (cSHAKE)

• And one more, before coming to NIST
• syslog-sign

3

Security standards are like other standards...

• Usually go through consensus-based standards processes
• Same organizations as non-security or non-security-relevant

standards
ISO IETF
X9 IEEE
NIST etc.

• Similar issues with intellectual property, limited review, slow progress,
etc.

4

...but also NOT like other standards

• Ways security standards can fail that don’t apply to other standards
• Failures are invisible
• More options, backward compatibility, etc. can weaken standard
• Consensus standards processes don’t always play well with security
• Adversarial participants in the process

• Problems with security standards that others don’t face
• Security adds cost and hassle
• Often imposed on users instead of demanded by users.
• Public confidence in standards is critical
• Powerful entities often want weaker security

5

Why are security standards hard?

6

Security failures are usually invisible

• Security failures are invisible
• Product works fine
• Interoperates with other products fine
• Only problem: all your secrets are leaking to the guy in the van outside.

• Failures become visible all at once
• High-profile attack or widely publicized academic attack...
• ...then they’re repaired in crisis mode

• Example: 802.11 WEP, pretty much any other security failure

7

Security adds cost and hassle

• Most standards are responding to something users want
• Wireless internet
• Standard port types that work across vendors
• Showing video on the web

• Security standards are often imposed on users or organizations
• Minimum password requirements
• PCI standards for companies handling credit card data
• FISMA standards imposed on government agencies
• Result: pushback on requirements, doing the minimum required

• Example: VVPAT requirements in VVSG 2.0

8

More options = worse security (usually)

• Common to have one or two main options everyone actually uses, but then
lots of options in the standard

• “Everyone’s a winner”
• Every company has their own stuff that’s in the standard

• This is terrible for security
• The more options, the more likely one is weak
• If I can force you into supporting the weak option, I get to attack you—even though

the usual stuff everyone does is secure.

• Example: Heartbleed in OpenSSL
• Heartbeat was an almost-never-used option
• Implementation error turned it into a huge security hole in millions of computers

9

Backward compatibility hurts security

• Common to update standards and leave support for anything in
previous versions...

• ...even when the update is intended to improve security.
• This is usually fine for functionality—the old stuff just doesn’t include

the new features.
• It’s a disaster for security

• Downgrade attacks!
• Some people choose the cheapest (weak, old) option

• Examples: TLS attacks on export-controlled ciphersuites (Logjam)

10

Backfilling to existing practice

• In new standards, common to try to backfill the new standard to fit
what people are doing in the field

• Justified by cost of changeover
• Companies with stuff in the field often on standards committee

• Problem: New stuff gets built with same bad security model as old.
• This makes it very difficult to improve security with new standard.

• Example: 3DES and SHA1 in TLS and new NIST standards
• Example: SWEET32 (attacking use of 3DES because of its small block)

11

Algorithm agility—the wrong way

• Standards groups often justify having lots of different crypto options
for the sake of algorithm agility.

• ”Everyone is a winner”

• Common situation: One mandatory-to-implement algorithm, ten
seldom-used, poorly-analyzed one.

• If the mandatory algorithm is broken, you can’t turn it off!

• Real algorithm agility means you can turn any algorithm off without
breaking things.

• Ideal situation: Two strong, mandatory-to-implement algorithms.
• If one is broken, you CAN turn it off!

12

Standardization process vs security

13

Closed standards process

• Many standards processes don’t allow outsiders to comment
• This excludes many people who might give useful reviews

• Academics
• Grad students
• New researchers wanting to make a name

• Commonly standards cost a lot of money!
• Result: only people on standards committee can see documents

• Attacks don’t get found for many years

14

Procedural issues with standards

• Design by committee
• Usually not a great idea
• Really really bad for security and especially crypto
• Need one coherent security model in mind

• Long process with many participants
• Opportunity for bad things to get slipped in or good things to get broken
• Editing committee may change over time—easy for important knowledge to

get lost.
• Insularity

• Ignoring external feedback
• The “Not Invented Here” syndrome

15

Adversarial participants

• Normal standards processes have some adversarial elements
• Competitors trying to spike each other’s stuff
• People trying to slip IP into standard so they can collect royalties

• Security standards have much uglier potential adversaries, who may
want to...

• generically weaken security
• delay use of security that would make their jobs harder
• install a specific backdoor for their own access

16

Who might want to weaken a security
standard?

• Intelligence agencies (foreign and domestic)
• Law enforcement agencies (many different countries)
• Companies that use exploits in their business
• Companies whose business model is threatened by security
• Even criminals

• Example: Dual EC DRBG in SP 800-90 and X9.82

17

What’s needed for future security standards?

1. Getting the technical details right
2. Gaining public confidence

18

Getting the right expertise

• Very important to get the science/math/technology right in the
design

• This requires expertise which isn’t always available in standards
committee

• ...also requires time from high-value people.
• Example: SHA3 competition, CAESAR competition

• Making a good selection from outside designs requires expertise
• Building something new requires even more expertise

19

Getting expert feedback on technical details

• Standards often involve technical details from a variety of fields
• Example: SP 800-90

• Symmetric crypto
• Asymmetric crypto (not anymore)
• Statistics
• Information theory

• Important to get feedback from experts in all those fields
• Not so easy to get experts to read a whole standard!
• Alternatives

• Summaries of narrow technical issues that need review
• Academic papers and presentations

20

How meaningful are your review comments?
• Any security standard needs review by people with the right expertise

• NOT just the designers!
• Limited expertise available in standards organization/committee

• Solutions: Public comment period, internal comments by other
participants in standards group

• Question: How do you know how much depth of review you’ve
gotten?

• Lots of nitpicky comments << a few careful analyses
• Is there someone whose job is to do a thorough review?

• Do they know it’s their job?
• Do they have enough time and resources to do it?

21

How will it be used? [Implementations]

• How will this standard be used in practice?
• What errors will implementers make?
• What errors will users of standard make?
• Error-prone?

• How hard is it to mess up implementation or use?
• Misuse resilience

• How much security do they retain if they mess something up?

• Examples: DSA and random numbers, GCM and nonce reuse

22

How will it be used? (2) [Enforcement]

• How will standard be enforced and applied?
• Testing labs?

• Can labs test all the critical security requirements?
• Do they have expertise and incentives to do so?

• Auditors?
• How will auditors know whether your standard is being followed or

implemented correctly?

• Example: SP 800-90B, GCM

23

What’s needed for future security standards?

1. Getting the technical details right
2. Gaining public confidence

24

Confidence is critical for success

• Failures of security are invisible...
• ...so conspiracy theories and FUD (Fear, Uncertainty, Doubt) can run

wild.
• Lack of confidence means security standards aren’t adopted widely—

leads to
• Balkanization (everyone does their own thing)
• Snake-oil (don’t trust the standard, trust my million-bit-key cryptosystem)
• No security (people don’t use anything because they’re scared)

• Example: Use of Intel RNG

25

Where did your constants come from?

• Lots of crypto standards have some constants
• S-boxes
• Bit permutations
• Matrices
• Initial values

• Need to be transparent about where these came from
• ..and need to show they weren’t chosen to weaken standard.
• Rigidity means choosing constants in such a way that designer had

few (or maybe only one) plausible choices for them.
• Example: NIST elliptic curves

26

Participation by the Community

• More community participation -> more trust

• Competitions are great for this
• Demanding to run
• Probably only so many can be going at a time

• For any standard, public engagement is a must
• Talks/Papers
• Public comment periods
• Workshops
• Methods to enable feedback

27

Transparency of Process

• Standards are more trustworthy if the process used to generate them
is transparent.

• Full disclosure of who worked on standard and any conflicts
• Public participation

• Workshops, public comment periods

• Transparent handling of public comments
• Publish comments and responses

• Make reasoning for decisions as open as possible

28

Wrapup

29

Wrapup

• Standards are hard, security standards are especially hard.
• Many normal parts of standards process play badly with security.
• Adversarial in ways other standards aren’t.

• Security standards require specialized expertise
• Hard to get good reviews
• Hard to even know how much depth reviewers considered

• Both design and process of standard need to get technology right
AND encourage public confidence

• Rigidity, simplicity of design, transparency of process all important

30

Questions?

31

	The Future of Security Standards
	Overview
	My background
	Security standards are like other standards...
	...but also NOT like other standards
	Why are security standards hard?
	Security failures are usually invisible
	Security adds cost and hassle
	More options = worse security (usually)
	Backward compatibility hurts security
	Backfilling to existing practice
	Algorithm agility—the wrong way
	Standardization process vs security
	Closed standards process
	Procedural issues with standards
	Adversarial participants
	Who might want to weaken a security standard?
	What’s needed for future security standards?
	Getting the right expertise
	Getting expert feedback on technical details
	How meaningful are your review comments?
	How will it be used? [Implementations]
	How will it be used? (2) [Enforcement]
	What’s needed for future security standards?
	Confidence is critical for success
	Where did your constants come from?
	Participation by the Community
	Transparency of Process
	Wrapup
	Wrapup
	Questions?

