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My background

• NIST cryptographer
• Worked on several NIST standards

• SP800-90A, B, C
• X9.82 Parts 2 and 3
• VVSG 1.0, 2.0
• FIPS202 (SHA3)
• SP 800-185 (cSHAKE)

• And one more, before coming to NIST
• syslog-sign
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Security standards are like other standards...

• Usually go through consensus-based standards processes
• Same organizations as non-security or non-security-relevant 

standards
ISO IETF
X9 IEEE
NIST etc.

• Similar issues with intellectual property, limited review, slow progress, 
etc.  
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...but also NOT like other standards

• Ways security standards can fail that don’t apply to other standards
• Failures are invisible
• More options, backward compatibility, etc. can weaken standard
• Consensus standards processes don’t always play well with security
• Adversarial participants in the process

• Problems with security standards that others don’t face
• Security adds cost and hassle
• Often imposed on users instead of demanded by users.
• Public confidence in standards is critical
• Powerful entities often want weaker security
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Why are security standards hard?
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Security failures are usually invisible

• Security failures are invisible 
• Product works fine
• Interoperates with other products fine
• Only problem: all your secrets are leaking to the guy in the van outside.

• Failures become visible all at once
• High-profile attack or widely publicized academic attack...
• ...then they’re repaired in crisis mode

• Example: 802.11 WEP, pretty much any other security failure
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Security adds cost and hassle

• Most standards are responding to something users want
• Wireless internet
• Standard port types that work across vendors
• Showing video on the web

• Security standards are often imposed on users or organizations
• Minimum password requirements
• PCI standards for companies handling credit card data
• FISMA standards imposed on government agencies
• Result: pushback on requirements, doing the minimum required

• Example: VVPAT requirements in VVSG 2.0
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More options = worse security (usually)

• Common to have one or two main options everyone actually uses, but then 
lots of options in the standard

• “Everyone’s a winner”
• Every company has their own stuff that’s in the standard

• This is terrible for security
• The more options, the more likely one is weak
• If I can force you into supporting the weak option, I get to attack you—even though 

the usual stuff everyone does is secure.

• Example: Heartbleed in OpenSSL
• Heartbeat was an almost-never-used option
• Implementation error turned it into a huge security hole in millions of computers
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Backward compatibility hurts security

• Common to update standards and leave support for anything in 
previous versions...

• ...even when the update is intended to improve security.
• This is usually fine for functionality—the old stuff just doesn’t include 

the new features.
• It’s a disaster for security

• Downgrade attacks!
• Some people choose the cheapest (weak, old) option

• Examples: TLS attacks on export-controlled ciphersuites (Logjam)
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Backfilling to existing practice

• In new standards, common to try to backfill the new standard to fit 
what people are doing in the field

• Justified by cost of changeover
• Companies with stuff in the field often on standards committee

• Problem: New  stuff gets built with same bad security model as old.
• This makes it very difficult to improve security with new standard.

• Example: 3DES and SHA1 in TLS and new NIST standards
• Example: SWEET32 (attacking use of 3DES because of its small block)
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Algorithm agility—the wrong way

• Standards groups often justify having lots of different crypto options 
for the sake of algorithm agility.  

• ”Everyone is a winner”

• Common situation: One mandatory-to-implement algorithm, ten 
seldom-used, poorly-analyzed one.

• If the mandatory algorithm is broken, you can’t turn it off!

• Real algorithm agility means you can turn any algorithm off without 
breaking things.

• Ideal situation: Two strong, mandatory-to-implement algorithms.  
• If one is broken, you CAN turn it off!
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Standardization process vs security
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Closed standards process

• Many standards processes don’t allow outsiders to comment
• This excludes many people who might give useful reviews

• Academics
• Grad students
• New researchers wanting to make a name

• Commonly standards cost a lot of money!
• Result: only people on standards committee can see documents

• Attacks don’t get found for many years
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Procedural issues with standards

• Design by committee
• Usually not a great idea
• Really really bad for security and especially crypto
• Need one coherent security model in mind

• Long process with many participants
• Opportunity for bad things to get slipped in or good things to get broken
• Editing committee may change over time—easy for important knowledge to 

get lost.
• Insularity

• Ignoring external feedback
• The “Not Invented Here” syndrome
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Adversarial participants 

• Normal standards processes have some adversarial elements
• Competitors trying to spike each other’s stuff
• People trying to slip IP into standard so they can collect royalties

• Security standards have much uglier potential adversaries, who may 
want to...

• generically weaken security
• delay use of security that would make their jobs harder
• install a specific backdoor for their own access
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Who might want to weaken a security 
standard?

• Intelligence agencies (foreign and domestic)
• Law enforcement agencies (many different countries)
• Companies that use exploits in their business
• Companies whose business model is threatened by security
• Even criminals

• Example: Dual EC DRBG in SP 800-90 and X9.82
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What’s needed for future security standards?

1. Getting the technical details right
2. Gaining public confidence

18



Getting the right expertise

• Very important to get the science/math/technology right in the 
design

• This requires expertise which isn’t always available in standards 
committee

• ...also requires time from high-value people.
• Example: SHA3 competition, CAESAR competition

• Making a good selection from outside designs requires expertise
• Building something new requires even more expertise
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Getting expert feedback on technical details

• Standards often involve technical details from a variety of fields
• Example: SP 800-90

• Symmetric crypto
• Asymmetric crypto (not anymore)
• Statistics
• Information theory

• Important to get feedback from experts in all those fields
• Not so easy to get experts to read a whole standard!
• Alternatives 

• Summaries of narrow technical issues that need review
• Academic papers and presentations
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How meaningful are your review comments?
• Any security standard needs review by people with the right expertise

• NOT just the designers!
• Limited expertise available in standards organization/committee

• Solutions: Public comment period, internal comments by other 
participants in standards group

• Question:  How do you know how much depth of review you’ve 
gotten?

• Lots of nitpicky comments << a few careful analyses
• Is there someone whose job is to do a thorough review?  

• Do they know it’s their job?
• Do they have enough time and resources to do it?  

21



How will it be used?   [Implementations]

• How will this standard be used in practice?
• What errors will implementers make?
• What errors will users of standard make?
• Error-prone?

• How hard is it to mess up implementation or use?
• Misuse resilience

• How much security do they retain if they mess something up?

• Examples: DSA and random numbers, GCM and nonce reuse
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How will it be used? (2) [Enforcement]

• How will standard be enforced and applied?
• Testing labs?

• Can labs test all the critical security requirements?
• Do they have expertise and incentives to do so?

• Auditors?
• How will auditors know whether your standard is being followed or 

implemented correctly?

• Example: SP 800-90B, GCM
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What’s needed for future security standards?

1. Getting the technical details right
2. Gaining public confidence
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Confidence is critical for success

• Failures of security are invisible...
• ...so conspiracy theories and FUD (Fear, Uncertainty, Doubt) can run 

wild.
• Lack of confidence means security standards aren’t adopted widely—

leads to
• Balkanization (everyone does their own thing)
• Snake-oil (don’t trust the standard, trust my million-bit-key cryptosystem)
• No security (people don’t use anything because they’re scared)

• Example: Use of Intel RNG
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Where did your constants come from?

• Lots of crypto standards have some constants 
• S-boxes
• Bit permutations
• Matrices
• Initial values

• Need to be transparent about where these came from
• ..and need to show they weren’t chosen to weaken standard.
• Rigidity means choosing constants in such a way that designer had 

few (or maybe only one) plausible choices for them.
• Example: NIST elliptic curves 
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Participation by the Community

• More community participation -> more trust

• Competitions are great for this
• Demanding to run
• Probably only so many can be going at a time

• For any standard, public engagement is a must
• Talks/Papers
• Public comment periods
• Workshops
• Methods to enable feedback
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Transparency of Process

• Standards are more trustworthy if the process used to generate them 
is transparent.

• Full disclosure of who worked on standard and any conflicts
• Public participation 

• Workshops, public comment periods

• Transparent handling of public comments
• Publish comments and responses

• Make reasoning for decisions as open as possible
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Wrapup
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Wrapup

• Standards are hard, security standards are especially hard.
• Many normal parts of standards process play badly with security.
• Adversarial in ways other standards aren’t.

• Security standards require specialized expertise
• Hard to get good reviews
• Hard to even know how much depth reviewers considered

• Both design and process of standard need to get technology right 
AND encourage public confidence

• Rigidity, simplicity of design, transparency of process all important
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Questions?
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