
Jonathan Katz

Analysis of a Proposed Hash-
Based Signature Standard



Motivation and background

• Recent interest in standardization of “post-
quantum” public-key primitives

• For signature schemes, several proposals 
based on cryptographic hash functions

• We study the concrete security of two versions 
of an Internet Draft by McGrew and Curcio
– …in the random-oracle model



McGrew-Curcio proposals
(10,000-ft view)

1-time signature 
scheme [LDWM]

Merkle tree

(stateful) many-time 
signature scheme



McGrew-Curcio proposals
(10,000-ft view)

pk1 pk2 pkN-1 pkN

pk*



Key observation

• The scheme is composed of multiple instances 
of the 1-time scheme
⇒ Concrete security of the scheme (even in a 
single-user setting) depends on concrete security of 
the 1-time scheme in the multi-user setting



Multi-user security

• [Bellare, Boldyreva, Micali], 
[Galbraith, Malone-Lee, Smart]

• Attacker given N (independent) public keys
– Succeeds if it can forge a signature with respect to 

any of them

• If attacker can succeed with probability ≤ ε
when attacking one scheme, can succeed with 
probability ≤ N·ε when attacking N schemes
– Is a tighter reduction possible?



Our results

• An initial version of the McGrew-Curcio draft 
(v02, 2014) has only a “loose” reduction
– Because the 1-time scheme used has only a loose 

reduction in the multi-user setting

• An updated version of the McGrew-Curcio
draft (v04, 2016) has a tight reduction
– Even in the multi-user setting



The LDWM 1-time scheme (v02)



Lamport’s scheme

x1,0

y1,0

x1,1

y1,1

x2,0

y2,0

x2,1

y2,1

xn,0

yn,0

xn,1

yn,1

Sign(01…1) = x1,0, x2,1, …, xn,1



Improvement I

x1

y1

x2

y2

xn

yn

Sign(01…1) = x2, xn

x’1

y’1

x’m

y’m

Sign(01…1 checksum(01…1))

Signature length n + log n



Improvement II

x1

y1 yn y’1 y’m

xn x’1 x’m

e

Public key/signatures compressed by log e;
signing/verification time increases by O(e)



“Trivial” improvements

• Sign H(M) rather than M
• Set pk = H(y1…ym) instead of y1…ym



Security analysis?

• Let q be the number of H-queries made by the 
attacker, and t be the output length of H

• Forging a signature given pk1, …, pkN
– Find M, M’ with H(M) = H(M’)

• Success probability O(q2/2t)

– Compute y*
1=He(x*

1), …, y*
Q=He(x*

Q) and find j, i1, 
…, im such that pkj = H(y*

i1, …, y*
im)

• Success probability O(qN/2t)

– Find x* such that He(x*)=yij for some i, j
• Success probability O(qN/2t)

Loose security in the 
multi-user setting!

Would like to avoid 
birthday attack, also



Note…

• Security of the many-time scheme (even in 
the single-user setting) cannot be better than 
multi-user security of the 1-time scheme



The LDWM 1-time scheme (v04)



Key ideas

• Use domain separation so every invocation of 
H is on a distinct domain [Leighton, Micali]
⇒ Each H-query of the attacker can be “charged” to 
at most one step of key generation/signing

• Per-key identifier/diversification factor to 
ensure domain separation for different keys
⇒ Each H-query of the attacker can be “charged” to 
≤ 1 step of key generation for at most one public key

• Use “salted” hash to prevent birthday attack



Domain separation

x1

y1

x2

y2

xm

ym

1 2 m



Identifier/diversification factor

• When keys are generated by multiple users
– Identifiers can be based on users’ identities
– Can also incorporate random values unlikely to 

repeat across (honest) users

• When multiple keys are generated by one user
– Identifier can be based on identity
– Diversification factor can be based on sequence 

numbers to ensure distinctness



Security theorem

• As long as identifiers/diversification factors 
are distinct across all keys, attacker’s success 
probability is at most 3q/2t

– Regardless of the number of keys!

• Proof by case analysis and probabilistic 
arguments treating H as a random oracle



The many-time scheme (v04)



Key generation (high level)

• Generate N keys for the 1-time scheme
– Using a distinct diversification factor each time

• Construct a Merkle tree over those N keys
– Ensuring domain separation at each node
– Ensures that each H-query of the attacker can be 

“charged” to at most one node of the tree



Security theorem

• Attacker’s success probability is at most 3q/2t

– Holds for multi-user setting as well



Summary

• Signature scheme in an initial version of the 
McGrew-Curcio draft does not admit a tight 
security reduction
– Since the underlying 1-time signature does not 

admit a tight reduction in the multi-user setting

• Modified scheme in a later version of the draft 
does admit a tight security reduction to the 
underlying hash function
– Even in the multi-user setting



Questions?


	Analysis of a Proposed Hash-Based Signature Standard
	Motivation and background
	McGrew-Curcio proposals�(10,000-ft view)
	McGrew-Curcio proposals�(10,000-ft view)
	Key observation
	Multi-user security
	Our results
	The LDWM 1-time scheme (v02)
	Lamport’s scheme
	Improvement I
	Improvement II
	“Trivial” improvements
	Security analysis?
	Note…
	The LDWM 1-time scheme (v04)
	Key ideas
	Domain separation
	Identifier/diversification factor
	Security theorem
	The many-time scheme (v04)
	Key generation (high level)
	Security theorem
	Summary
	Questions?

