OMAC: One-Key CBC MAC

Tetsu Iwata Kaoru Kurosawa

Department of Computer and Information Sciences,
Ibaraki University
4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
{iwata, kurosawa}@cis.ibaraki.ac.]jp

December 20, 2002

Abstract

In this paper, we present One-key CBC MAC (OMAC) and prove
its security for arbitrary length messages. OMAC takes only one key,
K (k bits) of a block cipher E. Previously, XCBC requires three keys,
(k 4+ 2n) bits in total, and TMAC requires two keys, (k + n) bits in
total, where n denotes the block length of E.

1 Introduction

1.1 Background

The CBC MAC [6, 7] is a well-known method to generate a message authen-
tication code (MAC) based on a block cipher. Bellare, Kilian, and Rogaway
proved the security of the CBC MAC for fixed message length mn, where n
is the block length of the underlying block cipher F [1]. However, it is well
known that the CBC MAC is not secure unless the message length is fixed.

Therefore, several variants of CBC MAC have been proposed for variable
length messages.

First Encrypted MAC (EMAC) was proposed. It is obtained by encrypt-
ing the CBC MAC value by F again with a new key Kj. That is,

EMAC]{l 7](2 (M) — E](2 (CBC]{l (M)) s

where M is a message and K is the key of the CBC MAC and CBCg, (M) is
the CBC MAC value of M. EMAC was originally developed for the RACE

http:kurosawa}��is.ibaraki.a�.jp

project [2]. Petrank and Rackoff then proved that EMAC is secure if the
message length is a multiple of n, that is, if the domain is ({0 1}™)* [11]
(Vaudenay showed another proof by using decorrelation theory [14, 15]).
Note that, however, EMAC requires two key schedulings of the underlying
block cipher FE.

Next Black and Rogaway proposed XCBC which requires only one key
scheduling of the underlying block cipher F [3]. XCBC takes three keys:
one block cipher key Ky, and two n-bit keys Ky and Ks.

o If M € ({0 1})* then XCBC computes exactly the same as the CBC
MAC, except for XORing an n-bit key K, before encrypting the last
block.

o If M ¢ ({0 1})* then 10" padding (i n—1—|M| mod n) is appended
to M and XCBC computes exactly the same as the CBC MAC for
the padded message, except for XORing another n-bit key K3 before
encrypting the last block.

See Fig. 1.

Figure 1: Ilustration of XCBC.

A drawback of XCBC is, however, that it requires three keys, (k + 2n)
bits in total.

Finally Kurosawa and Iwata proposed Two-key CBC MAC (TMAC)
[10]. TMAC takes two keys, (k + n) bits in total: a block cipher key K;
and an n-bit key Ky. TMAC is obtained from XCBC by replacing (K3,K 3)
with (K -u,K3), where u is some constant in GF(2").

1.2 Our Contribution

In this paper, we present One-key CBC MAC (OMAC) and prove its security
for arbitrary length messages. OMAC takes only one key, K of a block cipher
FE. The key length, k& bits, is the minimum because the underlying block

Table 1: Comparison of key length.
XCBC [3] | TMAC [10] | OMAC (This paper)
key length | (k+ 2n) bits | (k+ n) bits k bits

cipher must have a k-bit key K anyway. See Table 1 for comparison with
XCBC and TMAC. OMAC is obtained from XCBC by replacing (K3,K 3)
with (L -u,L -u™!) for some constant u in GF(2"), where L is given by

L E]{(On) .

L-uand L-u~! can be computed efficiently from L by one shift and one
conditional XOR. OMAC is described as follows (see Fig. 2).

o If M € ({0 1})™, then OMAC computes exactly the same as the CBC
MAC, except for XORing L - u before encrypting the last block.

o If M ¢ ({0 1})*, then 10° padding (i n—1—|M| mod n) is appended
to M and OMAC computes exactly the same as the CBC MAC for
the padded message, except for XORing L -u~! before encrypting the
last block.

b h

Figure 2: Illustratlon of OMAC. Note that L Ex(07).

Note that in TMAC, K5 is a part of the key while in OMAC, L is not a
part of the key and is generated from K.

This saving of the key length makes the security proof of OMAC much
harder than that of TMAC substantially as shown below. In Fig. 2, suppose
that M[1] 0". Then the output of the first Fx is L. The same L appears
again at the last block always. In general, such reuse of L would get one
into trouble in the security proof. Indeed, the security proof of OMAC is
substantially harder than the those of XCBC and TMAC due to this reuse
of L.

(In OCB mode [13] and PMAC [5], L. Ex(0") is also used as a key of a
universal hash function. However, L appears as an output of some internal
block cipher only with negligible probability.)

Nevertheless we prove that OMAC is as secure as XCBC, where the
security analysis is in the concrete-security paradigm [1]. Further OMAC
has all other nice properties which XCBC (and TMAC) has. That is, the
domain of OMAC is {0 1}*, it requires one key scheduling of the underlying
block cipher E and max{1l [|M]|/n]} block cipher invocations.

1.3 Other Related Work

Jaulmes, Joux and Valette proposed RMAC [9] which is an extension of
EMAC. RMAC encrypts the CBC MAC value with Ky @ R, where R is an
n-bit random string and it is a part of the tag. That is,

RMACK, x,(M)= (Erer(CBCk, (M)),R)

They showed that the security of RMAC is beyond the birthday paradox
limit.

2 Preliminaries

2.1 Notation

For a set A, z &£ A means that 2 is chosen from A uniformly at random.
If a,b € {0 1}* are equal-length strings then a ¢ b is their bitwise XOR. If
a,b € {0 1}* are strings then aob denote their concatenation. For simplicity,
we sometimes write ab for a o b if there is no confusion.

For an n-bit string ¢ a,—1 ---ajag € {0 1}", leta < 1= a,_2---ajag0
denote the n-bit string which is a left shift of @ by 1 bit, while a > 1=
0a,_1 ---azay denote the n-bit string which is a right shift of a by 1 bit.

If @ € {0 1}* is a string then |a| denotes its length in bits. For any bit
string @ € {0 1}* such that |a| < n, we let

al0™=lel=1if Ja| < m,
a if la] n.

pad,, (a)= { (1)

Define ||al|, ~ max{l [|a|/n]}, where the empty string counts as one
block. In pseudocode, we write “Partition M into M[1]---M[m]” as short-
hand for “Let m ||[M]|,, and let M[1] M[m] be bit strings such that
M[1]---M[m]= M and |M[i]] nforl<i<m.

2.2 CBC MAC

The block cipher F is a function F : Kg x {0 1} — {0 1}", where each
F(K,-)= Fk(-)is a permutation on {0 1}", Kg is the set of possible keys
and n is the block length.

The CBC MAC [,7] is the simplest and most well-known algorithm to
make a MAC from a block cipher E. Let M MJ[l]o M[2]o---0 M[m]
be a message string, where |M[1]| |[M[2]| ~--- |M[m]| n. Then
CBCg (M), the CBC MAC of M under key K, is defined as Y [m], where

Yli)= Ex(Mli]& Y[i-1))

for ¢ =1 ;m and Y[0] 0™ Bellare, Kilian and Rogaway proved the
security of the CBC MAC for fixed message length mn-bits [1].

2.3 The Field with 2" Points

The field with 2" points is denoted GF(2"). We interchangeably think of a
point @ in GF(2") in any of the following ways:

1. as an abstract point in a field;
2. as an n-bit string a,_; -+ -ayag € {0 1}

3. as a formal polynomial a(u)= Ap_1u”" 1 + -4 aju+ ag with binary
coefficients.

To add two points in GF(2"), take their bitwise XOR. We denote this
operation by a & b.

Multiplication. To multiply two points, fix some irreducible polynomial
f(u) having binary coefficients and degree n. To be concrete, choose the
lexicographically first polynomial among the irreducible degree n polyno-
mials having a minimum number of coefficients. We list some indicated
polynomials.

flw)= Wrut+uwr+u+1 for n 4,
flw)= W "+l u+1 for n 128, and
flw)= P %4 4241 forn=25.

To multiply two points ¢ € GF(2") and b € GF(2"), regard a and b as
polynomials a(u)= a,_1u"™ ! + -+ au+ag and b(u)= b,_ju" "1+ .-+

byu + by, form their product c¢(u) where one adds and multiplies coefficients
in GF(2), and take the remainder when dividing ¢(u) by f(u).

Note that it is particularly easy to multiply a point a € {0 1}" by u.
We show a method for n =1 28, where f(u)= u?®*4+u +u?+u+1. Then
multiplying « a7 ---ajag by u yields a product aj7u'?® + ajgul? 4
-4+ aju® 4+ apu. Thus, if ajor 0, then a-u a< 1. If ajor 1, then
we must add u!?® to a< 1. Since u!?2 +u 4+ w2 4+u+1 0 we have
ul?® oy +ui+u+ 1, so adding u'?® means to xor by 0'2°10000111. In
summary, when n =1 28,

a< 1 if @127 =0, (2)
(a< 1)@ 0'2°10000111 otherwise.

Division. Also, note that it is easy to divide a point @ € {0 1}" by u,
meaning that one multiplies a by the multiplicative inverse of u in the field:
a-u~'. We show a method for n =1 28. Then multiplying ¢ ajs7---ajag
by u™! yields a product aj97u'?® 4+ aj96u'?® + - - -4 agu+ a; + agu™'. Thus,
if ag =0, then a-u=t a> 1. If ag =1, then we must add u™! to a> 1.
Since u!2 +u +u24+u+1 0 we have ul? u +u+l+ul, so adding
u ! uw'? 44 +u+ 1 means to xor by 10'2°1000011. In summary, when
n 128,

1 a> 1 if ag =0 s (3)
(a> 1) & 10'2°1000011 otherwise.

3 Basic Construction

In this section, we show a basic construction of OMAC-family.
OMAC-family is defined by a block cipher £': K 0 1}" 0 1}",
an n-bit constant Cst, a universal hash function H : {0 1} X 0 1}7,
and two distinct constants Cst; Csty € X, where X is the finite domain of
H.
H, Cst; and Csty; must satisfy the following conditions while Cst is
arbitrary. We write Hy,(-) for H(L,).

1. Foranyy € {0 1}", the number of L € {0 1}" such that Hy(Csty)= y
is at most €, - 2" for some sufficiently small ¢;.

2. Forany y € {0 1}", the number of L € {0 1}" such that Hy(Csty)= y
is at most €5 - 2" for some sufficiently small €.

3. For any y € {0 1}", the number of L € {0 1}" such that Hp(Csty) &
Hp(Csty)= y is at most e - 2" for some sufficiently small es.

4. For any y € {0 1}", the number of L € {0 1}" such that Hp(Csty) &
L yis at most € -2" for some sufficiently small € .

5. For any y € {0 1}", the number of L € {0 1}" such that Hp(Csty) &
L yis at most € -2" for some sufficiently small € .

6. For any y € {0 1}", the number of L € {0 1}" such that Hp(Csty) &
Hp(Csty) ® L yis at most € - 2" for some sufficiently small € .

Remark. Property 1 and 2 says that Hp(Csty) and Hy(Csty) are almost
uniformly distributed. Property 3 is satisfied by AXU (almost XOR univer-
sal) hash functions [12]. Property 4, 5, are new requirements introduced
here.

The algorithm of OMAC-family is described in Fig. 3 and illustrated in
Fig. 4, where pad,, (-) is defined in (1).

The key space K of OMAC-family is K Kpg. It takes a key K € Kg
and a message M € {0 1}*, and returns a string in {0 1}".

4 Proposed Specification

In this section, we show our proposed specification of OMAC-family. Our
choice is; Cst =0 ", Hy(z)= L -z, Cst; uwand Csty u™!, where “”
denotes multiplication over GF(27). It is easy to see that the conditions in
Sec. 3 are satisfied for ¢, =2 7" for 1 =1 6.

Equivalently, . Ex(0"), Hr(Cst1)= L -uand Hp(Csty)= L-u™l,
where L-u and L -u™! can be computed efficiently from L by one shift and
one conditional XOR, respectively, as shown in (2) and (3).

We call this algorithm OMAC specifically. OMAC is defined in Fig. 5
and illustrated in Fig. 2.

5 Security of OMAC

5.1 Security Definitions

Let Perm(n) denote the set of all permutations on {0 1}”. We say that P
is a random permutation if P is randomly chosen from Perm(n).

Algorithm OMAC-family - (M)
L+ E]((Cst)
Y[0] 0"
Partition M into M[1]---M|[m]
fori+ 1tom—1do
X[i] « M[i]®Y[i— 1]
VIi] & Bxe(X[1)
X[m] + pad,, (M[m]) & Y[m — 1]
if |M[m]| n then X[m]+ X[m]® Hr(Csty)
else X[m] «+ X[m]|® Hp(Csty)
T «+ Ex(X[m])
return T’

Figure 3: Definition of OMAC-family.

| | | |
——HL(CSt) HL(CSt)
k-r| rk-r| K-E k-r| rk-Hr| K-HE]
T

Figure 4: Illustration of OMAC-family.

Algorithm OMACk (M)
L+ Ex(07)
Y[0] 0"
Partition M into M[1]---M|[m]
fori+ 1tom—1do
X[i] « M[i]®Y[i— 1]
V[i] & Bre(X[7)
X[m] + pad,(M[m]) & Y[m — 1]
if [M[m]| n then X[m]++ X[m]& L -u
else X[m] < X[m]® L-u™!
T «+ Ex(X[m])
return T’

Figure 5: Definition of OMAC.

The security of a block cipher E can be quantified as Adv}" (¢, q), the
maximum advantage that an adversary A can obtain when trying to distin-
guish Fx(-) (with a randomly chosen key K) from a random permutation
P(-), when allowed computation time ¢ and ¢ queries to an oracle (which is
either Fi (-) or P(-)). This advantage is defined as follows.

AdvP(A) T Pr(K & K APKO =1) = Pr(P & Perm(n) : AP0 =1

AdvRP (1, q) 4 ax {aavhP(A)}

We say that a block cipher E is secure if AdviP (¢, ¢) is sufficiently small.

Similarly, a MAC algorithm is a map F': K 0 1}* 0 1}7, whre
Kr is a set of keys and we write Fi (-) for F/(K,). We say that an adversary
AP0 forges if A outputs (M, Fi(M)) where A never queried M to its
oracle Fi (-). Then we define

AdviPRe(A) Lp r(K & kg AFRC) forges)

AQVES(t g 1) “m ax {AdvE*e(A))

where the maximum is over all adversaries who run in time at most ¢, make
at most ¢ queries, and each query is at most p-bits. We say that a MAC
algorithm is secure if Advp?(¢, ¢ p) is sufficiently small.

Let Rand(*,n) denote the set of all functions from {0 1}* to {0 1}".
This set is given a probability measure by asserting that a random element
R of Rand(*,n) associates to each string M € {0 1}* a random string

R(M) € {0 1}™. Then we define
Pr(K & Kp: AFK0) =1)
—Pr(R & Rand(%,n) : AR =1)‘
vipr def vipr
Advaf(t,q p) =m ax {Advaf(A)}

where the maximum is over all adversaries who run in time at most ¢, make
at most ¢ queries, and each query is at most p-bits. We say that a MAC
algorithm is pseudorandom if Advgprf (t,q p) is sufficiently small.

Without loss of generality, adversaries are assumed to never ask a query

outside the domain of the oracle, and to never repeat a query.

5.2 Theorem Statements

We first prove that OMAC is pseudorandom if the underlying block cipher
is a random permutation P (information-theoretic result).

Lemma 5.1 (Main Lemma) Suppose that a random permutation P €
Perm(n) is used in OMAC as the underlying block cipher. Let A be an
adversary which asks at most q queries, and each query is at most nm-bits

(m is the mazimum number of blocks in each query). Assume m 27 /4.
Then

Pr(P & Perm(n) : AOMACFO) =)
(5m? + 1)¢* (4)

—Pr(R & Rand(x,n) : AR =1)) T

A proof is given in the next section.

We next show that OMAC is pseudorandom if the underlying block
cipher F is secure. It is standard to pass to this complexity-theoretic result
from Lemma 5.1. For example, see [1, Section 3.2] for the proof technique.

Corollary 5.1 Let F: K »0{1}" 0 1}" be the underlying§lock cipher
used in OMAC. Then

(5m* +1)q°

SO haP ()

iprf
Adv(Rjac (g nm)
where t' t+O(mq) and ¢ mq.

Finally we show that OMAC is secure as a MAC algorithm from Corol-
lary 5.1 in the usual way. For example, see [1, Proposition 2.7] for the proof
technique.

Theorem 5.1 Let F:Kp 0 1¥{ 0 1} be the underlyirng-block cipher
used in OMAC. Then

(5m* + 1)g* +
27’L

1
Adviiiac (t, g nm) + AdviP(t'q")

where t' t+O(mq) and ¢ mq.

5.3 Proof of Main Lemma

For a random permutation P € Perm(n) and a random n-bit string Rnd €

{0 1}, define

Qi(z) " P(z) @ Rnd Qs () *" P(z @ Rnd) & Rnd

Qs(x) def P(x®Rnd B L-u) Q () def Pz ®@Rnd @ L -u™h) (5)
Q (z) def Pz & L -u) and Q (z) def Pz L-ut)

10

-— Rnd -— Rnd

Q (v) Q (v) Q (v) Qa() Qs(w) Qs()
Figure 6: Illustrations of Q1, Q2 @3, Q ,Q and @ . Note that L P(Cst).

where L~ P(Cst) and Cst =0 ". See Fig. for illustrations. We first

show that Q1(-), Q2(-), @s(-), @ (+), @ (-), @ (-) are indistinguishable from
a pair of six independent random permutations Pyi(-), Pa(-), Ps(-), P (-),

P()s P ()

Lemma 5.2 Let A be an adversary which asks at most ¢ queries in total.
Then

Pr(P il Perm(n); Rnd E {0 137 : A2 ()Qel) 1)
3¢*

— Pr(P P & Perm(n) : AP Be() =1) on

A proof is given in Appendix A.

Next we define MOMAC (Modified OMAC). It uses six independent
random permutations Py, Py, Ps, P, P, P € Perm(n). The algorithm
MOMACHp, ... p,(+) is described in Fig. and illustrated in Fig. 8 and Fig. 9.

We prove that MOMAC is pseudorandom.

Lemma 5.3 Let A be an adversary which asks at most ¢ queries, and each
query is at most nm-bits. Assume m 2" /4. Then

Pr(P P £ Perm(n) : AMOMACE, (1) —)
2 2
- Pr(R £ Rand(x,n) : ARG —1) (277127—:1)(]

A proof is given in Appendix B.
The next lemma shows that OMACp(-) and MOMACPE, . p,(-) are in-
distinguishable.

11

Algorithm MOMACpk, p, p, p, PP, (M)
Partition M into M[1]---M[m]
if m > 2 then
X[1] + M[1]
YII] & PXT))
for i+ 2tom—1do
X[i] + M[i]®Y[i—1]
V[i] « Py (X[)
X[m] < pad,, (M[m]) & Y[m — 1]
if [M[m]| n then T « P3(X[m])
else 7'+ P (X[m])
if m =1 then
X[m] + pad, (M[m])
if [M[m]| n then T « P (X[m])
else 7'+ P (X[m])

return 7

Figure 7: Definition of MOMAC.

L5t 1386

Figure 8: Illustration of MOMAC for |M]|

)

Figure 9: Illustration of MOMAC for |M|< n.

12

Lemma 5.4 Let A be an adversary which asks at most ¢ queries, and each
query is at most nm-bits. Assume m 2" /4. Then

Pr(P & Perm(n) : APMACFU) =)

3 2.2
- Pr(P P & Perm(n) : AMOMACE, p (1) —) ﬂ;nq
Proof. Suppose that there exists an adversary A such that
Pr(P & Perm(n) : AOMACP() =1)
3 2.2
-Pr(Pp, P & Perm(n) : AMOMACE £ () =1 ﬂ;nq

By using A, we show a construction of an adversary B4 such that:

e B4 asks at most mg queries, and

e Pr(P & Perm(n) : BAl(') Qo0) =1)

3m2q2

-Pr(Pp, P & Perm(n) : Bil(') Fel) g) TR

which contradicts Lemma 5.2.
Let O (+) O (-) be By’s oracles. The construction of By is given in
Fig. 10.

Algorithm szl O

When A asks its r-th query M():
T() « MOMACo, o, (M™)
return 7(")

When A halts and outputs b:
output b

QU = W N —

Figure 10: Algorithm B 4. Note that for 1 ¢ 6, O; is either P, or @),

When A asks M) then B4 computes T() =M OMACo, o, (M)
as if the underlying random permutations are Oy O , and returns 7).
When A halts and outputs b, then B4 outputs b.

Now we see that:

e B4 asks at most mg queries to its oracles, since A asks at most ¢
queries, and each query is at most nm-bits.

13

o Pr(P P EPerm(n): 50 PO 1)
=P r(P, P & Perm(n) . AMOMACp, g () 1,
since B4 gives A a perfect simulation of MOMACp, p,(-) if O;(-)=
Pi()for1 4 6.

e Pr(P & Perm(n) : BAl(') Qo0) =1)
=P r(P & Perm(n) : AOMACP() 1),
since B 4 gives A a perfect simulation of OMACp(+) if O;(-)= Q;(+) for
1 ¢ 6. SeeFig. 11 and Fig. 12 for illustrations of B 4’s computation.
Note that Rnd is canceled in Fig. 11.

—— Rnd —r— Rnd —— Rnd Rnd
[‘] G®L-u oL -u”
Rnd Rnd E Rnd Rnd E

T T
Figure 11: Computation of B4 when O; Q; for 1 i 6, and |M|

L

L-u L-u™

T T
Figure 12: Computation of B4 when O; @Q;for1 ¢ 6,and |M|< n.

This concludes the proof of the lemma. Q.E.D.
We finally give a proof of Main Lemma.

Proof (of Lemma 5.1). By the triangle inequality, the left hand side of (4)
is at most

Pr(Py ré Perm(n) : AMOMACE R () =1)

6

- Pr(R il Rand(x,n) : AT =1) (6)

+ Pr(P il Perm(n) : AOMACP() =1) .
- Pr(P p L Perm(n) . AMOMACE, R (1) —)

14

N\ /

Lemma 5.3 gives us an upper bound on (6) and Lemma 5.4 gives us an upper
bound on (7). Therefore the bound follows since

(2m?* 4+ 1)¢* L+ 3m?¢*> (bm?+1)¢?

2n 2n 2n
Q.E.D.
6 Discussions
6.1 Summary of Properties
We give a summary of properties of OMAC in Table 2.
Table 2: Summary of properties of OMAC.
Security function Message authentication code.
Error propagation Not applicable.
Synchronization Not applicable.
Parallelizability Sequential.
Keying material Single block cipher key.
Ctr/IV/Nonce requirements ~ No counter/IV /nonce is used.
Memory requirements Very modest.
Pre-processing capability L FEg(Cst),L-uand L-u™!
can be pre-processed.
Message-length requirements Arbitrarily length.
Ciphertext expansion Not applicable.

6.2 Advantages

Minimum key length. The key length of OMAC is k-bits, while the key
length of XCBC is (k+2n)-bits and the key length of TMAC is (k+n)-
bits.

Arbitrarily length messages. The domain of OMAC is {0 1} and |M|
need not be a multiple of the block length n.

Optimal number of block cipher invocations. To generate a tag for
any non-empty message M € {0 1}*, OMAC requires [|M|/n] block
cipher invocations (The empty string is an exception, and it requires
one block cipher invocation).

15

Optimal number of block cipher key schedulings. OMAC needs only
one block cipher key scheduling.

Provable security. We prove that OMAC is a variable input length pseu-
dorandom function (VIPRF) with fixed output length assuming that
the underlying block cipher is a pseudorandom permutation (PRP).

No decryption. As for any CBC MAC variant, OMAC does not use de-
cryption of the block cipher.

Simplicity. Because OMAC is simple, it is easily implemented in both
software and hardware.

6.3 Limitations

Sequential block cipher invocations. The CBC MAC and its variants,
including OMAC, are not parallelizable.

Limited pre-processing capability. For OMAC, key scheduling of the
underlying block cipher, I Fx(Cst), L-u and L -u~! can be pre-
processed. Additional pre-processing is not possible.

6.4 Design Rationale

Our choice for OMAC is Cst =0 ", Hy(z)= L-x,Cst; uwand Csty u™!,
where “” denotes multiplication over GF(2"). Or equivalently, L Ex(0"),
Hp(Csty)= L-uand Hy(Csty)= L-u"!. Below, we list reasons of this
choice.

e We adopted multiplications in GF(2") since it is simple, easy to un-
derstand, and easy to implement for appropriate constants.

L can be

e We adopted u and u™! as constants, since L -u and L -u~
computed efficiently from L by one shift and one conditional XOR,

respectively, as shown in (2) and (3).

e One might try to use Cst; 1 instead of Cst; u. In this case, the
fourth condition in Sec. 3 is not satisfied, and in fact, the scheme can be
easily attacked. Similarly, if one uses Cst, 1 instead of Csty u™!,
the fifth condition in Sec. 3 is not satisfied, and the scheme can be

easily attacked. Therefore, we can not use “1” as a constant.

16

6.5 On Standard Key Separation Technique

For XCBC, assume that we want to use a single key K of F, where F is the
AES.

Then the following key separation technique is suggested in [4]. Let K
be a k-bit AES key. Then

Ky the first k bits of AESk (C1,) 0 AESK (C1y),
I(Q =A ES]{ (Cg) and
K3 =A ESk (Cs)

for some distinct constants Cy4, C1p, Cy and C5. We call it XCBC+kst (key
separation technique). XCBC+kst uses one k-bit key. However, it requires
additional one key scheduling of AES and additional 3 or 4 AES invocations
during the pre-processing time.

Similar discussion can be applied to TMAC. For example, we can let

Ky the first k bits of AESk (C1,) 0o AESK (C1p), and
Koy =A ESk(Cy)

for some distinct constants C',, Cp and Cy5. We call it TMAC+kst.

We note that OMAC does not need such a key separation technique since
its key length is k bits in its own form (without using any key separation
technique). This saves storage space and pre-processing time compared to

XCBC+kst and TMAC+kst.

6.6 Comparison

Let £:{0 1}* 0 1}» 0 1}™ be «dlock ciphes{and M € {0 1}* be a
message. We show a comparison of CBC MAC and its variants in Table 3,
where

e “K len.” denotes the key length.

o “#K sche.” denotes the number of block cipher key schedulings. For
RMAC, it requires one block cipher key scheduling each time generat-
ing a tag.

o “H#M” denotes the number messages which the sender has MACed.

e “HFinvo.” denotes the number of block cipher invocations to generate
a tag for a message M, assuming |M| 0.

17

o “HF pre.”
the pre-processing time. These block cipher invocations can be done
without the message. For XCBC+kst and TMAC+kst, the block
cipher is assumed to be the AES.

Table 3: A comparison of CBC MAC and its variants.

denotes the number of block cipher invocations during

| Name | Domain | K len. | # K sche. | #£F invo. | #FE pre. |
CBC MAC | ({, /)™ k | |/n
EMAC {, Mt k 1+ | |/n
RMAC {,. F k 1+ # I+ (] [+1)/n]
CBC {1, k+2n [l |/n]
TMAC {, V k+n [l |/n]
CBC+kst {, } k [l |/n] Jor4
TMAC+kst {1, " k [[/n] r
[OMAC [{, g [I/ml] |

6.7 MAC Truncation

It is possible to reduce the output length by truncating the value of OMACk (

That is, let

OMAC[r]; (M)

the first 7-bits of OMACk (M)

Then we can prove a security bound similar to Theorem 5.1.

Corollary 6.1 Let F: K »0{1}"

used in OMAC[7]. Then

AdviNiac (g nm)

where t!

t+O(mq) and ¢

mq.

0 1}" be the underlyingdlock cipher

(5m® +1)¢°

27’L

1
+ > + AdvRP (¢ q")

(Lemma 5.1 and Corollary 5.1 for OMAC also hold for OMAC[7].)

References

[1] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block

chaining message authentication code.

JCSS,

vol.

1, no. 3, 2000.

Earlier version in Advances in Cryptology — CRYPTO 94, LNCS 8539,
pp. 341-358, Springer-Verlag, 1994.

18

20

M).

[2]

A. Berendschot, B. den Boer, J. P. Boly, A. Bosselaers, J. Brandt,
D. Chaum, I. Damgard, M. Dichtl, W. Fumy, M. van der Ham,
C. J. A. Jansen, P. Landrock, B. Preneel, G. Roelofsen, P. de Rooij,
and J. Vandewalle. Final Report of RACE Integrity Primitives. LNCS
1007, Springer-Verlag, 1995.

J. Black and P. Rogaway. CBC MACs for arbitrary-length messages:
The three key constructions. Advances in Cryptology — CRYPTO
2000, LNCS 1880, pp. 197-215, Springer-Verlag, 2000.

J. Black and P. Rogaway. Comments to NIST concerning AES modes of
operations: A suggestion for handling arbitrary-length messages with
the CBC MAC. Second Modes of Operation Workshop. Available at

http://www.cs.ucdavis.edu/ " rogaway/.

J. Black and P. Rogaway. A block-cipher mode of operation for par-
allelizable message authentication. Advances in Cryptology — FEURO-
CRYPT 2002, LNCS 2332, pp. 384-397, Springer-Verlag, 2002.

FIPS 113. Computer data authentication. Federal Information Pro-
cessing Standards Publication 113, U. S. Department of Commerce /
National Bureau of Standards, National Technical Information Service,
Springfield, Virginia, 1994.

ISO/IEC 9797-1. Information technology — security techniques — data
integrity mechanism using a cryptographic check function employing
a block cipher algorithm. International Organization for Standards,
Geneva, Switzerland, 1999. Second edition.

T. Iwata and K. Kurosawa. OMAC: One-Key CBC MAC. Cryptology
ePrint Archive, Report 2001/180, November 25, 2002,
http://eprint.iacr.org/.

L. Jaulmes, A. Joux, and F. Valette. On the security of random-
ized CBC-MAC beyond the birthday paradox limit: A new construc-
tion. Fast Software Encryption, FSE 2002, LNCS 2365, pp. 237-251,
Springer-Verlag, 2002. Full version is available at Cryptology ePrint
Archive, Report 2001/074, http://eprint.iacr.org/.

K. Kurosawa and T. Iwata. TMAC: Two-Key CBC MAC. Cryptology
ePrint Archive, Report 2001/092, July 10, 2002,
http://eprint.iacr.org/. To appear in CT-RSA 2003, LNCS 2612,
pp. 33-49, Springer-Verlag, 2003.

19

http:lleprint.ia�r.orgl
http:lleprint.ia�r.orgl
http:lleprint.ia�r.orgl
http:llwww.�s.u�davis.edul-rogawayl

[11] E. Petrank and C. Rackoff. CBC MAC for real-time data sources.
J.Cryptology, vol. 13, no. 3, pp. 315-338, Springer-Verlag, 2000.

[12] P. Rogaway. Bucket hashing and its application to fast message au-
thentication. Advances in Cryptology — CRYPTO ’95, LNCS 963,
pp. 29-42, Springer-Verlag, 1995.

[13] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher
mode of operation for efficient authenticated encryption. Proceedings

of ACM Conference on Computer and Communications Security, ACM
CCS 2001, ACM, 2001.

[14] S. Vaudenay. Decorrelation over infinite domains: The encrypted CBC-
MAC case. Selected Areas in Cryptography, SAC 2000, LNCS 2012, pp.
57-71, Springer-Verlag, 2001.

[15] S. Vaudenay. Decorrelation over infinite domains: The encrypted CBC-
MAC case. Communications in Information and Systems (CIS), vol.
1, pp. 75-85, 2001.

Proof of Lemma 5.2

If A is a finite multiset then #A denotes the number of elements in A.

Let {a,b,c, } be afinite multiset of bit strings. Thatis, a € {0 1}*,b €
{0 1}*,c € {0 1}* hold. We say “{a,b,¢, } aredistinct” if there exists
no element occurs twice or more. Equivalently, {a,b,¢, } are distinct if
any two elements in {a,b,¢, } are distinct.

Before proving Lemma 5.2, we need the following lemma.

Lemma A.1 Let ¢1,2,93,9 ,q ,¢ be siz non-negative integers. For 1
i , let wgl) ,xgqi) be fized n-bit strings such that {xgl) xgqi)} are
distinct. Similarly, for 1 4 , let yfl) yfqi) be fixed n-bit strings such
that {y{" iy {8 wiPY ae distinet, and {5 i)

{y(l) ,y(q4)} U {y(l) 7y(qf’)} U {y(l) ,y(%)} are distinct. Let P €

20

Perm(n) and Rnd € {0 1}". Then the number of (P,Rnd) which satisfies

Ql(ﬂﬁ(li)): Y) for1 Vi q,

Qz(ﬂﬁ(zi)): yé” Jor1 Vi g,

Q3($g)): Z/:(az) Jor1 Vi g, ()
Q @)=y for1 Vi g,

Q (x(i)): y(l) forl Yi ¢ and

Q («"= " for1 Vi g

is at least (2" —2q — ¢*) - (2" — q)!, where ¢ q1 +---+¢q

Proof (of Lemma A.1). At the top level, we consider two cases: Cst €
{x(ll) T gql)} and Cst € {96(11) X gql)}.

Case 1: Cst € {x(ll N (1q1)}. Let ¢ be a unique integer such that 1

¢ ¢ and Cst xgc) Let [be an n-bit variable. First, observe that:

#{)1 Y a1l T e gi) ng)@@h T 1< qige,

#1350 a1l 3 @) 2 eyl alelu< e,
#1 % og1 G g2V Ve aialw)< gg,
#Hilr i1 3 g 2YVelu< ag,
#0131l 3 g2 YVaelu< g,

#{)1 Y @l T e éi) wé”@l u}< g2q3,

#I1 3 owl 3 g2 YValui< g,

#Hi1 3 w1l 3 ogeYay?ar Valu< g,
#Hi1 % w1l % ogeYaey?er Velu)< g,
#0131 3 geVaeiu Yalu)< g,
#1113 g1 3 g2l eyPar Vi< g,

#Hill % g1 3 gePayaieie Vatu< g,
#1 A 1 3 g2y aiaru «Valu< g,
#{1 7 13 g2PayPar W< qq,

#{l]1 3 13 q,w(i)@l-u x(l)@l u i< g q,
#1111 q37y§2:)@y§c)@l y3 }< 0143,
#1313 g yey? el }< 0"y

#1113 g1 3 gyPeyaer y9W< qq,

#Hilr o1 3 guPer?er U< g,
#HIL % @l 3 guley?el o1< ne,
#HIL % @1 3 guley?el yVI< g,
#ilr o1 3 gyl ey?er yU< gg and
#HIL % @1 3 guley?ael yVI< g

Here we used the fact that we are working in a field (We will continue
to use this without mention).

We now fix any [which is not included in any of the above twenty-three
sets. We have at least (2" — (q1g2 + 2193 + 2q1q¢ +2q19 +2q19 + 2q2q3 +
202 +2020 +2q2¢ + 43¢ + a3 +3¢ +qq +aq +qq))>(2"—¢)
choice of such [.

Now we let L < [and Rnd < [& y§c). Then we have

{$(11) 3T (1q1)
2 M @rnd 2 4 Rnd
m@Rnd@L u 7acgqg’)@Rnd@L-u
(1) ORnd P L -u~ T (42) ARnda L-u!
x(l)@L-u ()@L-u
(1)

oL -u! 7ac(%)@L-u_l}

(which are inputs to P) are distinct. Also, the corresponding outputs

{y?) @ Rnd ,yyh) @ Rnd
yél) @ Rnd ,yng)) @ Rnd
B i
y(l) y (q4)

y(l) y (g5)
y(l) y (q6)}

are distinct. In other words, for P, the above ¢4 +¢2+¢3+¢q +¢g +¢ input-
output pairs are determined. The remaining 2" — (1 + 2 +¢3+¢ +q +q)
input-output pairs are undetermined. Therefore we have (2" —(¢1 +q2+¢3+
g +q +q))! (2" — ¢)! possible choice of P for any such fixed (L,Rnd).

Case 2: Cst € {x(ll) T (1q1)}. In this case, we count the number of Rnd
and L independently. Then similar to Case 1, observe that:

22

#{Rnd | 1 3 ¢y Cst x(;) P Rnd}< ¢,

#End|1 T g1 3 gl ()@Rnd}< 4142,
#{Rnd | 1 i g1 35 ¢ xg) ¢ Rnd }< G3q
#{Rnd | 1 o¢ 1 3 ¢, 2@ ¢ Rnd x(])}g qq,
#{Rnd |1 F ¢ 1 q37y§2)@Rnd < qias,
#Rnd |1 T g1 3 ¢ yPard i< qg,
#Rnd |1 % g1 Y ¢ yPard i< qg,
#nd |1 % g1 Y ¢ yPard Vi< qg,
#{Rnd |1 F ¢ 1 q37y§i)@Rnd y;(f)}ﬁ 1293,
#Rnd |1 % @1 Y ¢ yPard i< g,
#Rnd|1 % ¢ 1 % qytord yVI< gog, and
#Rnd |1 T @1 Y ¢y arnd i< g .

We fix any Rnd which is not included in any of the above twelve sets.
We have at least (2" — (g2 + 192+ 43¢ +9 ¢ + 0103+ q19 + 19 + 019 +

293+ 029 +029 +qq)) > (2" —q— q2/2) choice of such Rnd.
Next we see that:

#{L|1 Fi g3 Cst wgl)@Rnd@L u}< gs,

#{L|1 3 cst 2V @Rodad L-u < ¢,

#{L|1 3 cst 2t @ L-ui< q,

#{L|1 3 cst 2t ®L-uli< ¢,

HLlr i og1 3 e gi) xg)@Rnd@L u}< q1gs,

#L|1 F g1 7 f]@(f) Y @ Rnd @ L -u 1< g,
#LI1 F g1 3 g Y) el u< quq ,

#LI1 FH a1l T g Y) L 1< g,

#L[1 F @l 7 g é” wé”@L uf< 23,

#{L|1 3 @1 T g 790(;) L < qaq

HLI1 3 1 3 galerd YV eLul< g,

#LI1 P 1l T gl erd Y eLu< g,
HLIL % g1 3 gaYoLlu 2VoLu< g,
#1131 3 galerdelow oV el u}< g,
#L|1 W ¢ 1 F g x(l)@Rnd@Lu (l)@L uj< q q,
#HLI1 3 g1 3 ¢a2Varu JPaLu)<qq,
#II1 % al o oma)< g,

23

#{L |1
#{L |1
#{L |1
#{L |1
#{L |1

EIZ (]27[/ y(l) @Rnd}g g2,
EIZ (]37[/ yi())Z)}S g3,

% gL < g,
gL yV¥< g, and
3 gL yWy< ¢

We now fix any L which is not included in any of the above twenty-two
sets. We have at least (2" —(q143+q19 +q19 +q19 +0203+929 +q29 +q29 +
039 +43¢ Y90 +qq ta+a+20+29 +2¢ +2q)) > (2" —2q-¢%/2)
choice of such L.

Then we have

5 ORnd P L-u

T (a4) GRndp L-u!

{Cst
x(ll) @ (lql)
w(Ql) ¢ Rnd T (2q2) ¢ Rnd
wgl) @RndPp L-u T (a5)
w(l) GRndp L-u!
x(l)@L-u x(q5)@L-u
x(l) ®L-u!

T (d6) ®L-ut}

(which are inputs to P) are distinct. Also, the corresponding outputs

{L,
y?) ¢ Rnd
yél) ¢ Rnd
B i
y(l) Y (g4)
y(l) Y (g5)
y(l) y (q6)}

7yYh

,yng)) @ Rnd

D
=]
5
Q.

are distinct. In other words, for P, the above 14+¢1+g2+¢3+¢ +¢ +¢ input-
output pairs are determined. The remaining 2" — (14+¢1+q2+¢3+q +¢ +q)
input-output pairs are undetermined. Therefore we have (2" — (1+¢1+¢2+

Gat+q +q +4q9))!

(L,Rnd).

(2" — (1 + q))! possible choice of P for any such fixed

Completing the Proof. In Case 1, we have at least (2" — ¢*) - (2" — ¢)!
choice of (P, Rnd) which satisfies (8).

24

In Case 2, we have at least (2" —q—q?/2)- (2" —2q—¢*/2) - (2" — (14¢))!
choice of (P, Rnd) which satisfies (8). This bound is at least (2" — 2¢ — ¢?) -
(2" = g)!.

This concludes the proof of the lemma. Q.E.D.

We now prove Lemma 5.2.

Proof (of Lemma 5.2). For 1 i 6, let O; be either Q; or P;. The
adversary A has oracle access to O O . Since A is computationally
unbounded, there is no loss of generality to assume that A is deterministic.

There are six types of queries A can make: (O;,z) which denotes the
query “what is O;(2)?” For the i-th query A makes to O;, define the query-

answer pair (x;i),y](«i)) € {0 1}" 0 1}", where A’s queryx«as (O;,z ;Z))

and the answer it got was y](i)
Suppose that we run A with oracles Oy O . For this run, assume
that A made ¢; queries to O;(-), where ¢; +---4¢ g. For this run, we

define view v of A as

For this view, we always have:
For1 5 6, {y]m ,y;qj)} are distinct.

We note that since A never repeats a query, for the corresponding queries,
we have:
For1 5 6, {xgl) J ;qﬂ)} are distinct.

Since A is deterministic, the i-th query A makes is fully determined by the
first ¢ — 1 query-answer pairs. This implies that if we fix some gn-bit string
V' and return the i-th n-bit block as the answer for the ¢-th query A makes
(instead of the oracles), then

e A’s queries are uniquely determined,
e (1 ,q¢ are uniquely determined,

e the parsing of V into the format defined in (9) is uniquely determined,
and

e the final output of A (0 or 1) is uniquely determined.

25

Let Vi, be a set of all gn-bit strings V' such that A outputs 1. We let

None d:ef# Vione. Also, let Vi,,q be a set of all gn-bit strings V' such that:

For 1 Vi< Yj ¢, the i-th n-bit block of V' the j-th n-bit block of V.
Note that if V' € V,,4 then the corresponding parsing v satisfies:
o (" Wiy Y i) are distinet, and

. {yz())l) ,y:())qS)}U {y(l) ,y(q4)}U {y(l) 7y(%)}u {y(l) 7y(%)}
are distinct.

Now observe that the number of V' which is not in the set Vi .4 is at most

gn
()25 Therefore, we have

2
#{V | Ve (Vone N Vgood)} 2 None - (g) Q_n (10)

Evaluation of p,,,q. We first evaluate

Prand f Pr(Pl 7P (E Perm(n) : _APl(') Le() =1)
#{(Pl 7P) | APl() ’P6(') :1 }
1@

For each V € V,,,., the number of (P P) such that

For1 j 6,Pj(ac§i)): ;i)fol’l Yiog;, (11)

is exactly []j<;« (2" — ¢;)!, which is at most (2" — ¢)!- {(2")!} . Therefore,
we have o

Z #{(P, Py (P P) satisfying (11)}
veve {21

(2" — ¢!
2o

(2" = q)!
(27)!

Prand

None'

26

Evaluation of p,,. We next evaluate

Preal f Pr(P & Perm(n);Rnd & {0 137 : A90) Qel) =1
#{(P,Rnd) | AP0 Qel) =1
GO

Then from Lemma A.1, we have

{(P,Rnd) | (P, Rnd) satisfying (8)}

Preal 2 Y n
VE(VoneﬁVgood) (2) 2
27 — ¢)! 2 2
N 2" =9t | 24+
= 2! on
Ve(Voneanood)

Completing the Proof. From (10) we have

Preal > Nope — g ZL: % 1_2‘12";‘]2
2 Prand — g ZL:% . 1_2‘];92 (12)
Since 277 - %ﬂ > 1, from (12), we have
Preal 2 (pmnd - %) - 1= Qq;qz
2 Prand = 3(];%3(]
Prand — 32%2 (13)
Applying the same argument to 1 — ppeq; and 1 — pup,q yields that
L= preat 2 1 = Pranad — 32%2 (14)
Finally, (13) and (14) give [preat = Prand < 3 Q.E.D.

27

B Proo o Lemma 5.3

Let S and S’ be distinct bit strings such that |S| sn for some s > 1,
and [S'] §'n for some s’ > 1. Define V,,(5,5) p r(P & Perm(n) :
CBCp, (5)= CBCp,(5’)). Then the following proposition is known [3].

Proposition B.1 (Black and Rogaway [3]) Let S and S’ be distinct bit
strings such that |S| sn for some s > 1, and |S"| s'n for some s’ > 1.
Assume that s, s 2" /4. Then

(s + 57

2n

Now let M and M’ be distinct bit strings such that |M| mn for
some m > 2, and |[M'| m'n for some m' > 2. Define W, (M, M') of
Pr(P, P & Perm(n) : MOMACp, p, (M) =M OMACp, . p, (M")).
We note that P and P are irrelevant in the event MOMACp, p,(M)=
MOMACp, p,(M') since M and M’ are both longer than n-bits. Also, P
is irrelevant in the above event since |M| and |M’| are both multiples of n.
Further, Ps is irrelevant in the above event since it is invertible, and thus,
there is a collision if and only if there is a collision at the input to the last
encryption.

We show the following lemma.

V. (S, 5"

Lemma B.1 (MOMAC Collision Bound) Let M and M’ be distinct bit
strings such that |M| — mn for some m > 2, and |M'| m'n for some
m’' > 2. Assume that m,m’ 2"/4. Then

"2

Wn(M, M’) (m—ginm)

Proof. Let M[1]---M[m] and M'[1]---M'[m'] be partitions of M and M’
respectively. We consider two cases: M[1] M'[1] and M[1] M'[1].

Case 1: M|[1] M'[1]. 1In this case, Let Py be any permutation in
Perm(n), and let S « (P (M[1]) & M][2]) o M[3] o ---0 M[m] and S «
(P (M'[1])®eM'[2])oM'[3]o- - -oM'[m']. Observe that MOMACpE, _ p,(M)=
MOMACp, p, (M) if and only if CBCp,(S)= CBCp,(5’), since we may
ignore the last encryptions in CBCp, (S) and CBCp, (57). Therefore

(m+m' — 2)?

W, (M, M) V(8,5 -

28

Case 2: M[1] M'[1]. In this case, we split into two cases: P (M]1]) &
M[2] P(M'[1])® M'[2] and Py(M[1])® M[2] Pi(M'[1]) ® M'[2]. The
former event will occur with probability at most 1. The later one will occur
with probability at most ﬁ, which is at most 21 Then it is not hard to
see that

9 _22 9 N2
WM A 1V, 8) + <m++>+2_n W;im

by applying the similar argument as in Case 1. Q.E.D.

Let m be an integer such that m 2" /4. We consider the following four

sets.
Dy 0t {M | M € {0 1}, n< |M|< mn and |M| is a multiple of n}
D, 9t {M | M € {0 1}*, n< |M|< mn and |M]| is not a multiple of n}
Ds " {M | M€ {01} and |M| n}

D (M| Me{0o1}and | M| } <n
We next show the following lemma.
Lemma B.2 Let 1,942,935, be four non-negative integers. For 1 1 4,
let MZ»(I) ,Mi(qi) be fized bit strings such that MZ»(]) €D;forl 35 ¢ and
{Mi(l) 7ZMZ»(q")} are distinct. Similarly, for 1 1 4, let Ti(l) ,Ti(qi) be

fized n-bit strings such that {Ti(l) 7TZ»(q")} are distinct. Then the number
of P P € Perm(n) such that

MOMACp, p, (M= T}

=1 for1 Vi g,
MOMACp, p,(MN= T for1 Yi g, 5
MOMACE, 7p6(M:§i))— Téi) for1 Vi g3 and (15)
MOMACp, p (M= 7Y for1 ¥ ¢

is at least {(2™)!} (1 — 2q2m2) . ZL, where ¢ g1+ -+ ¢ .

Proof. We first consider Ml(l) 71\41((“). The number of (P,P3) such that
MOMACy, _p, (M) =M OMACp, p (M) for1 i< 3j ¢

is at most {(2")!}*- U . %2 from Lemma B.1. Note that P; P are
irrelevant in the above event.

29

We next consider MQ(I) 71\42((12). The number of (P,P3) such that
MOMACy, _p, (M) =M OMACp, p, (M) for 1 i< 3j g

is at most {(2")1}*. % . %2 from Lemma B.1.

Now we fix any (P;,P3) which is not like the above. We have at least

{2 1- o Lo a2 m2 e

2 72 2 72
Now P; and P, are fixed in such a way that the inputs to Ps; are
distinct and the inputs to P are distinct. Also, the corresponding out-
puts {Tél) 7T?Eq?’)} are distinct, and {T(l) T (q4)} are distinct. We
know that the inputs to P are distinct, and the corresponding outputs
{ngl) 7T?Eq?’)} are distinct. Also, the inputs to P are distinct, and and

the corresponding outputs {T(l) T (q4)} are distinct. Therefore, we have

2 2

at least {(2")1}2 1— & .= — 2 . (27—) (2" —¢qp)!- (2" —¢3)!-

2 2 2 2
(2" — q)! choice of P, ,P which satisfies (15). This bound is at least
{2} 1-22m0 L gince (20 — ¢)! > B
This concludes the proof of the lemma. Q.E.D.

We now prove Lemma 5.3.

Proof (of Lemma 5.3). Let O be either MOMACp, p, or R. Since A is
computationally unbounded, there is no loss of generality to assume that A
is deterministic.

For the query A makes to the oracle O, define the query-answer pair
(M](Z),T](Z)) €D; 01} where A’s i-th{query in D; was M](Z) € D; and
the answer it got was Tj(Z) e {0 1}".

Suppose that we run A with the oracle. For this run, assume that A
made ¢; queries in D;, where1l j 4and ¢ +---4+¢ ¢. For this run,
we define view v of A as

(16)

Since A is deterministic, the i-th query A makes is fully determined by the
first ¢ — 1 query-answer pairs. This implies that if we fix some gn-bit string
V' and return the i-th n-bit block as the answer for the ¢-th query A makes
(instead of the oracle), then

e A’s queries are uniquely determined,

30

e (1 ,q¢ are uniquely determined,

e the parsing of V into the format defined in (16) is uniquely determined,
and

e the final output of A (0 or 1) is uniquely determined.

Let Vi, be a set of all gn-bit strings V' such that A outputs 1. We let

None d:ef# Vione. Also, let Vi,,q be a set of all gn-bit strings V' such that:

For 1 Vi< Yj ¢, the i-th n-bit block of V' the j-th n-bit block of V.

Note that if V' € V.4, then the corresponding parsing v satisfies that:
{Tl(l) 7Tl(ql)} are distinct, {TQ(I) 7T2(q2)} are distinct, {ngl) 7Téq?’)}
are distinct and {T(l) T(q4)} are distinct. Now observe that the number

of V which is not in the set Vi o4 is at most g 22— Therefore, we have
qn
#{V | Ve (Vone N Vgood)} 2 None - g Q—n (17)

Evaluation of p,,,q. We first evaluate
Prand of Pr(R ﬁ Rand(x,n) : ARG =)

Then it is not hard to see

None
Prand W San
VEVone
Evaluation of p,.;. We next evaluate
Preal of PI’(Pl P (E Perm(n) . AMOMACPl Pe())

#{(Pl 7P) | AMOMACPl 7P6(') :1}
{20!}

Then from Lemma B.2, we have

#{(P Py (P P) satisfying (15)}

Preal 2 1
Ve(Vone Vgood) {(2)}

2¢°m
27 24n

v
—
|

VE(Vone Vgood)

31

Completing the Proof. From (17) we have

2971 2 2,0,2
Preal > None - 1 an - 7 Ao
- 2 2n 2n 2qn
qg 1 1 2¢*m?
Prand 9 om on
qg 1 2¢*m?
> rand — an
2 Prand 9 o9n on
2¢*m? + ¢2
> Prand — T (18)
Applying the same argument to 1 — ppeq; and 1 — pup,q yields that
2¢*m? + ¢
1- Preal 2 1- Prand — on (19)
Finally, (18) and (19) give |preat — Prandl< MSA Q.E.D.

C Document History

e November 25, 2002. First version of the OMAC document submitted
to IACR ePrint [8].

e December 20, 2002. Second version of the OMAC document submitted
to NIST. Section 6, Appendix C and Appendix D are added.

D Intellectual Propert Statement

We do not have any intellectual property claims related to OMAC.

32

