Cross Block Chaining (XBC)

Submission To NIST For A General Block Cipher Mode Of Operation

May 26, 2014

Inventor / Owner / Developer / Submitter :

Andre Watson
andre.watson@gmail.com

14027 Eastern St
Poway, CA 92064
+1 8583491023

1 Mode of Operation

Cross Block Chaining (XBC) is designed to be similar to the classic standard modes of operation, specifically CBC, except that it operates using two IVs that "collect" data through the course of the encryption process in a way that resembles CFB and OFB operation. This has two main net effects. Firstly, for very short messages, the keys can be split to prevent decryption by a single person, effectively creating a two-man rule [1]. Secondly, because the mode crosses itself, the entire previous message is necessary to decrypt the remaining blocks, which insures extra security in that the entire message must be decrypted from the beginning with no errors. This does, however, mean that any error will propagate through the entire message.

Two versions of this algorithm are presented with what is a minute difference in operations. Each version has different implications and will be discussed inline. An interesting feature for both versions is that technically only one vector can be necessary to decrypt the majority of a longer message. While this would break any sort of two-man rule for longer messages, it still creates another layer of security through obfuscation by creating another mode of operation which would need to be tested against in an attack. Further, with two positions that a compromised vector could occupy, this increases the challenge of any attack. It is also possible that the same vector can be used for both IVs, which is another option to consider.

1.1 Algorithm XBC-1

The first version of XBC is quite similar to CBC, but with an additional IV that is XORed with the entry data into the block cipher, and this in turn is fed into the output of the block cipher of the next round. As can be seen in Figure 1, this creates the crossing between rounds of the block cipher that the algorithm is named after.

Figure 1: The block diagram of XBC-1 operation. The grey blocks are the underlying block cipher used which is not covered in this paper, as any block cipher may be used.

The pseudo code description for XBC-1 is as follows:

Variables:

$\boldsymbol{K}: \quad$ The key for the underlying block cipher.
$I V_{0}^{1}$:
$I V_{0}^{2}:$

PT :

CT:
$I V_{n}^{1}$:
$I V_{n}^{2}$:

The first provided initialization vector, must have length of the underlying block cipher.
The second provided initialization vector, must have length of the underlying block cipher.
The plain text, of arbitrary length, padded out to a multiple of the block length of the underlying block cipher, described as blocks $\mathbf{0}$ to \boldsymbol{n}.
The cipher text blocks, described as blocks $\mathbf{0}$ to \boldsymbol{n}.
The first initialization vector sent into round \boldsymbol{n}.
The second initialization vector sent into round \boldsymbol{n}.

Algorithm:

$$
\begin{aligned}
& \text { FOR blocks } i=0 \text { to } n \text { DO } \\
& \quad I V_{i+1}^{2}=P T_{i} \oplus I V_{i}^{1} \\
& i=B L O C K C I P H E R\left(K, I V_{i+1}^{2}\right) \\
& C T_{i}=I V_{i+1}^{1}=i \oplus I V_{i}^{2}
\end{aligned}
$$

It should be carefully noted what happens in the event that one of the two IVs is compromised. In the case where the cipher key is unknown, the message cannot be effectively decrypted or discerned by a compromise of either vector. But in the case where the cipher key is known, and one IV is comprised, we end up in the following situation as seen in Figure 2.

Say IV2 is compromised as represented by the dotted line. This allows the decryption process to occur back to the input of the first block cipher round. However, this value is also IV2 for the second round of the block cipher. Because we already had the second round IV1 in the form of the first block of cipher text, every needed part of the algorithm is now present to decrypt the cipher text from the second round onwards.

On the other hand, if IV2 is secure, but IV1 is compromised, this situation does not occur and the algorithm remains secure, assuming that the plain text of the first block is something that can't easily be guessed.

As such, IV2 is significantly important, and if this algorithm were used for some sort of two-man rule, it is recommended that only one or two blocks worth of data be stored so that no large plain text comprise can occur due to any compromise of IV2.

It should also be mentioned, that since the plain text plays a significant role in this algorithm due to its feedback nature, large portions of zeroes or ones in the plain text, or easily guessable plaintext, could potentially compromise the security benefits of this method in an attack.

Figure 2: A compromised algorithm where IV2 and the block cipher key are known allows for decryption from the second block onwards.

The error propagation for both encryption and decryption will proceed through the rest of the message from the point of error because the IVs will become corrupted. This will make every block operation return erroneous values, even if further blocks do not contain errors.

Reuse of IVs should use the normal considerations used for CBC IV reuse. Another consideration for IV selection is that it is possible to use the same IV for both IV1 and IV2 in this algorithm.

1.2 Algorithm XBC-2

XBC-2 is nearly identical to XBC-1 except that the encryption block output is used as IV1 for the next block operation, instead of using the cipher text value. This can be seen in Figure 3. This is a clear departure from the CBC base style and has something in common with the OFB algorithm structure.

Figure 3: The block diagram of XBC-2 operation.
The pseudo code description for XBC-2 is as follows:

Variables:

$\boldsymbol{K}: \quad$ The key for the underlying block cipher.
$\boldsymbol{I} \boldsymbol{V}_{\mathbf{0}}^{\mathbf{1}}$: \quad The first provided initialization vector, must have length of the underlying block cipher.
$\boldsymbol{I} \boldsymbol{V}_{\mathbf{0}}^{\mathbf{2}}: \quad$ The second provided initialization vector, must have length of the underlying block cipher.
$\boldsymbol{P T}: \quad$ The plain text, of arbitrary length, padded out to a multiple of the block length of the underlying block cipher, described as blocks $\mathbf{0}$ to \boldsymbol{n}.
CT: \quad The cipher text blocks, described as blocks $\mathbf{0}$ to \boldsymbol{n}.
$\boldsymbol{I} \boldsymbol{V}_{\boldsymbol{n}}^{\mathbf{1}}: \quad$ The first initialization vector sent into round \boldsymbol{n}.
$\boldsymbol{I} \boldsymbol{V}_{\boldsymbol{n}}^{\mathbf{2}}: \quad$ The second initialization vector sent into round \boldsymbol{n}.

Algorithm:

FORblocks $\boldsymbol{i}=\mathbf{0}$ to \boldsymbol{n} DO

$$
\begin{aligned}
& I V_{i+1}^{2}=P T_{i} \oplus I V_{i}^{1} \\
& I V_{i+1}^{1}=B L O C K C I P H E R\left(K, I V_{i+1}^{2}\right) \\
& C T_{i}=I V_{i+1}^{1} \oplus I V_{i}^{2}
\end{aligned}
$$

In XBC-2, IV2 has a much reduced role. As seen in Figure 4 with the dotted line, IV2 is primarily used to hide the intermediate value that becomes IV1 in the next block operation. Looking carefully at the subsequent block operations reveals that no IV1 value in any block frame is exposed in the cipher text. This can remove the one exposed IV value that is normally the cipher text output from any potential attack. This does, however, mean that IV1 is the primary vector controlling the IVs passed into the next block operation, and should be chosen with care.

If the key and IV2 are both compromised, similarly to the situation in XBC-1, the second block round can be decrypted because both of the IVs can be determined from the first round. The first block will remain uncompromised.

Because of both of the previous statements, both IVs are significantly important, but for different situations, and if this algorithm were used for some sort of two-man rule, it is recommended that only one or two blocks worth of data be stored so that no large plain text compromise can occur due to any compromise of IV2 with the key.

Also like XBC-1, a compromise of IV1 and the key will not compromise the algorithm. The plain text is somewhat less important in XBC-2 than it was in XBC-1, since the actual IVs are not exposed in the cipher text, thereby making mid-stream attacks more difficult.

Figure 4: The main effect of IV2 on XBC-2
The error propagation for both encryption and decryption will proceed through the rest of the message from the point of error because the IVs will become corrupted. This will make every block operation return erroneous values, even if further blocks do not contain errors.

For the selection of the IVs, it is possible to use the same IV for both IV1 and IV2 in this algorithm. Reuse of IVs should use the normal considerations used for CBC IV reuse.

2 Summary of Properties

2.1 Algorithm XBC-1

Security Function Error Propagation
Synchronization
Parallelizability
Keying Material Requirements
Counter/IV/Nonce Requirements

Memory Requirements

Pre-processing Capability
Message Length Requirements

Ciphertext Expansion

2.2 Algorithm XBC-2

Security Function

Error Propagation

Synchronization

A cipher mode of operation for block cipher encryption with two completely separate IVs

Infinite from the point of error onwards, resulting in total message loss from the point of error

The same two IVs must be used for encryption and decryption

Sequential
One key for the underlying block cipher
Some IV reuse will be fine, but as the same first IV could be used with different second IVs, any "master key" situation will need to be wary of reuse as well

The block cipher memory requirements, plus two accumulation values for the IVs which are both block length

No values can be pre-processed
Arbitrary length is acceptable, but the underlying block cipher will determine any padding scheme to make the message be a multiple of block length

None

A cipher mode of operation for block cipher encryption with two completely separate IVs

Infinite from the point of error onwards, resulting in total message loss from the point of error

The same two IVs must be used for encryption and decryption

Parallelizability
Keying Material Requirements
Counter/IV/Nonce Requirements

Memory Requirements

Pre-processing Capability
Message Length Requirements

Ciphertext Expansion
Other Characteristics

Sequential
One key for the underlying block cipher
Some IV reuse will be fine, but as the same first IV could be used with different second IVs, any "master key" situation will need to be wary of reuse as well

The block cipher memory requirements, plus two accumulation values for the IVs which are both block length

No values can be pre-processed
Arbitrary length is acceptable, but the underlying block cipher will determine any padding scheme to make the message be a multiple of block length

None
Arguably, the first IV is significantly more important than the second IV for this algorithm because the second IV mainly serves only to obscure the first ciphertext block and prevents output of the intermediate values of the mode of operation process in the ciphertext. Due to the reliance of every block on the previous blocks, this makes decryption impossible without the second IV. However, it is the first IV that is being accumulated throughout the encryption process, so care of choosing a non-obvious first IV should be noted.

3 Test Vectors

All three of the following test vector cases were output using the Crypto++ AES-128 [2][3] functionality with a new cipher mode of operation class added for both XBC-1 and XBC-2. Intermediate values are provided for the first two sets of vectors for each variant.

3.1 Algorithm XBC-1

Test Case 1:

The first vector is exactly 128 bits in length and therefore uses \boldsymbol{n}（for $\boldsymbol{n e x t}$ ）for what would be the next block＇s IV iteration because there will not be another cipher block in this test case．

```
K: }000000000000000000000000 00 00 00 00 ⿻⿻一𠃋
IV '1 : FF 00 FF 00
IV}\mp@subsup{|}{}{2}:\quad00\textrm{FF}00\textrm{FF}00\textrm{FF}00\textrm{FF}00\textrm{FF}00\textrm{FF}00\textrm{FF}00\textrm{FF
```



```
IV
i=AES(K,N): }\quad61\mathrm{ 3A 30 90 C5 20 FE 8D A2 94 61 33 84 3B D3 32
CT=IV
```


Test Case 2：

In the second vector，a 196 bit plain text value is used with zero padding to complete the 128 bit boundary for the block．In a real encryption scenario，a non－block aligned input value could be padded in any number of ways，as long as this padding is supported by the block algorithm； potentially by null termination for a string，a length for a non－string value，a sentinel for file end， or some other method．

```
K: E5 C7 CD DE 87 2B F2 7C 43 E9 34 00 8C 38 9C OF
IV 1: : F3 09 62 49 C7 F4 6E 51 A6 9E 83 9B 1A 92 F7 84
IV\mp@code{0}:
PT: 12 34 56 78 90 AB CD EF 12 34 56 78 90 AB CD EF
    12 34 56 78 90 AB CD EF
```



```
i=AES(K,IV 2): CB CD 7B DC BC DD D2 1B DA 2D 7D 36 14 F6 73 C4
CT
IV 2}=P\mp@subsup{P}{1}{\prime}\oplusI\mp@subsup{V}{1}{1}:\quad97 96 5A 84 45 05 3F 80 B2 48 5D 42 7D 9B 16 E4
i=AES(K,IV2): 40 51 4E BO E4 8C 2C 2D 4B 02 F7 58 76 2D 34 BE
CT
```


Test Case 3：

For the third vector，a quote from Nikola Tesla was used with ASCII characters and single spacing after punctuation．Both the string and hex values for the string are presented for clarity and verifiability．No intermediate values are presented for this case．

For completeness sake，it is worth mentioning that this string，with a null terminator， coincidentally happened to fall on a 128 bit boundary，so no padding was necessary（beyond the null terminator of the string）．

PT (ASCII): When we speak of man, we have a conception of humanity as a whole, and before applying scientific methods to the investigation of his movement we must accept this as a physical fact. But can anyone doubt to-day that all the millions of individuals and all the innumerable types and characters constitute an entity, a unit? Though free to think and act, we are held together, like the stars in the firmament, with ties inseparable. These ties cannot be seen, but we can feel them. I cut myself in the finger, and it pains me: this finger is a part of me. I see a friend hurt, and it hurts me, too: my friend and I are one. And now I see stricken down an enemy, a lump of matter which, of all the lumps of matter in the universe, I care least for, and it still grieves me. Does this not prove that each of us is only part of a whole?

PT (hex):

	6	65	6E	20	77	65	20	73	70	65	61	6B	20	6F	66
20	6D	61	6E	2C	20	77	65	20	68	61	76	65	20	61	20
63	6F	61	63	65	70	7	69	6F	6E	20	6F	66	20	68	75
	61	6E	69	7	7	2	61	73	20	61	2	77	68	F	C
	2C	20	61	6E	64	20	62	65	66	6F	72	65	20	61	70
70	6C	79	69	6E	67	20	73	63	69	65	6E	7	69	66	69
63	20	6D	65	7	68	6	6	73	2	74	6F	20	74	68	65
20	6	6	76	6	73	74	6	67	61	74	69	6F	6E	20	6F
	20	68	69	7	20	6D	6	7	65	6D	65	6 E	74	20	77
	2	6D	75	7	74	2	61	63	63	65	70	74	20	74	8
69	73	20	61	73	20	61	20	70	68	79	73	69	63	61	6C
20	66	61	63	7	2	2	4	75	74	20	63	61	6E	20	61
	79	6F	6	65	20	6	6	75	6	74	20	74	6F	2D	64
61	79	20	7	68	61	7	2	61	6	6C	20	74	8	65	20
	69	6C	6	69	6F	6	73	20	6F	66	20	69	6 E	64	9
	69	64	75	61	6C	7	20	61	6	64	20	61	C	6C	20
	68	65	20	69	6E	6E	7	6D	6		61	62	6C	65	20
	79	70	65	7	20	61	6	64	20	63	68	61	72	61	63
74	65	72	73	20	63	6	6	7	74	69	74	75	74	65	0
61	6E	20	65	6	7	69	7	7	2	20	61	20	5	6	69
74	3F	20	54	68	6	75	67	68	20	66	72	65	5	20	4
6	20	74	68	69	6E	6B	20	61	6 E	64	20	61	63	74	2 C
20	77	65	20	61	72	65	20	68	65	6	64	20	74	$6 F$	67
65	74	68	65	72	2C	20	6C	69	6B	65	20	74	68	65	20
	74	61	72												

6D	61	6D	65	6E	74	2C	20	77	69	74	68	20	74	69	65
73	20	69	6E	73	65		61	72	61	62	6C	65	2E		54
68	65	73	65	20	74	69	65	73	20	63	61	6E	E	6	74
20	62	65	20	73	65	65	6E	2C	20	62	75	74	20	77	65
20	63	61	6E	20	66	65	65	6C	20	74	68	65	6D	2E	20
49	20	63	75	7	20	6	79	73	6	6C	66	20	69	6E	20
74	68	65	20	66	69	6E	67	65	7	2C	20	61	6E	64	20
69	74	20	70	61	69	6	73	20	6D	65	3A	20	74	68	9
73	20	66	69	6E	67	65	72	20	69	73	20	61	20	70	61
72	74	20	6F	66	20	6D	65	2E	20	49	20	73	65	65	20
61	20	66	72	69	65	6	6	2	68	75	2	74	C	20	61
6 E	64	20	69	74	20	6	75	72	74	73	20	6D	5	2C	20
74	6F	6F	3A	20	6D	79	20	66	72	6	65	6E	64	2	61
6 E	64	20	49	20	61	72	65	20	6F	6E	65	2E	20	41	E
64	20	6E	6F	77	20	49	20	73	65	65	20	73	74	72	69
63	6B	65	6E	20	64	6	7	6	2	61	E	20	65	6E	65
6D	79	2 C	20	6	20	6C	75	6	7	2	F	66	20	6D	61
74	74	65	72	20	77	68	69	63	68	2C	20	6F	66	20	61
6C	6C	20	74	68	65	20	6C	75	6D	70	73	20	6F	66	20
6D	61	74	74	65	72	20	69	6E	20	74	68	65	20	75	
69	76	65	72	73	65	2C	20	4	20	63	61	72	65	20	C
65	61	73	74	20	66	6F	72	2C	20	6	6E	64	20	69	74
20	73	74	69	6C	6C	20	67	72	69	65	76	65	73	20	6D
65	2E	20	44	6F	65	73	20	74	68	69	73	20	6E	6F	4
20	70	72	6F	76	65	20	74	68	61	74	20	65	61	63	68
20	6F	66	20	75	73	20	69	73	20	$6 F$	6E	6C	79	20	70
61	72	74	20	$6 F$	66	20	61	20	77	68	6 F	6C	65		00

CT :
08 C8 B0 8B 68 5A 19 93 F0 7A C1 29 E2 69 E4 53 CB E9 B5 8A C3 OE 73 DD 3A F6 8F 16 OD B9 4455
 6D 62 FC C2 2321 B3 A0 CD B8 44 3F 559611 BE 5D B5 D5 $84 \quad 22 \quad 91 \quad 72$ C3 50 B2 $01 \mathrm{BD} 01 \mathrm{~A} 4 \quad$ 5B 3740 4E 68 CE ED DA 05 C5 37 D9 0482 OB 77 3F AD 13 6C 5300 C1 99 OA D9 A2 9C 0048 A6 D1 DC 7B CC D4 94 CB 20 F8 77 2E EF 3D 6B 28 2B $3 A 816981$ DD 1D AO 45 DD FD 3D 28 E9 6A CC 26 7A 81 5E 25 28 A0 OC FD AF 56 CB 72 5B B8 A1 9F C9 B5 7C BD 98 5E FC 4B D1 DE C7 30 26 DE 0147 6D 5E E7 12 2F 98 5D 95 6A 7294 A3 5F $69 \begin{array}{lllllllllllllll}92 & 12 & 21 & \text { AF } 26 & \text { F9 E6 F5 F5 } & 13 & 21 & 65 & 42 & 82\end{array}$ 55 7C 7C F7 AB 5289 5E A6 18 AA 82 8B 9945 A7
 $\begin{array}{llllllllllllllll}\text { F7 } & \text { B8 } & 00 & 21 & 89 & 29 & C 6 & 7 F & 7 E & B B & 2 D & 7 F & C 8 & 57 & 46 & \text { 5B }\end{array}$ $\begin{array}{llllllllllllllll}78 & 2 A & 2 F & C 4 & B D & B E & 15 & 2 C & A 1 & 45 & 1 B & 81 & 1 E & 82 & 00\end{array}$ A4 D5 4B 38 C5 $55 \quad 67 \quad 25 \quad 72 \mathrm{BF} 89 \mathrm{D} 3 \mathrm{E} 6 \quad 60 \mathrm{D} 3 \mathrm{3}$
 F8 BB 8B A2 C2 EA D2 48 E3 5F 13 DE 9766
7E EE 07 9E 78 D8 A9 A2 31 D6 3 A 45 6F C7 42 4A
$\begin{array}{lllllllllllllll}82 & 18 & \mathrm{EF} & 85 & 29 & 82 & 17 & \text { CA F4 } & 52 & 29 & 38 & 05 & 96 & 19 & 7 E\end{array}$

3.2 Algorithm XBC-2

The same three test cases are used for XBC-2. Note that the first test case produces the same output since the vectors do not carry forward for that case.

Test Case 1:

$K:$	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
$I V^{1}:$	FF	00														
$I V^{2}:$	00	FF														
$\mathrm{PT}:$	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Test Case 2:

Test Case 3:

PT (ASCII): When we speak of man, we have a conception of humanity as a whole, and before applying scientific methods to the investigation of his movement we must accept this as a physical fact. But can anyone doubt to-day that all the millions of individuals and all the innumerable types and characters constitute an entity, a unit? Though free to think and act, we are held together, like the stars in the firmament, with ties inseparable. These ties cannot be seen, but we can feel them. I cut myself in the finger, and it pains me: this finger is a part of me. I see a friend hurt, and it hurts me, too: my friend and I are one. And now I see stricken down an enemy, a lump of matter which, of all the lumps of matter in the universe, I care least for, and it still grieves me. Does this not prove that each of us is only part of a whole?

PT (hex):

57	68	65	$6 E$	20	77	65	20	73	70	65	61	$6 B$	20	$6 F$	66
20	$6 D$	61	$6 E$	$2 C$	20	77	65	20	68	61	76	65	20	61	20
63	$6 F$	$6 E$	63	65	70	74	69	$6 F$	$6 E$	20	$6 F$	66	20	68	75
$6 D$	61	$6 E$	69	74	79	20	61	73	20	61	20	77	68	$6 F$	$6 C$
65	$2 C$	20	61	$6 E$	64	20	62	65	66	$6 F$	72	65	20	61	70

	6C	79	69	6E	67	20	73	63	69	65	6E		69		69
63	20	6D	65	74	68	6F	64	73	20	74	6F	20	74	68	65
20	69	6E	76	65	73	74	69	67	61	74	69	6F	6E	20	6F
6	20	68	69	73	20	6D	6F	76	65	6D	65	6E	74	20	77
65	20	6D	75	73	74	20	61	63	63	65	70	74	20	74	68
69	73	20	61	73	20	61	20	70	68	79	73	69	63	61	C
2	66	61	63	74	2E	20	4	7	74	20	63	61	6 E	0	61
6 E	79	6F	6E	65	20	64	6F	75	62	74	20	74	6F	2D	64
61	79	20	74	68	61	74	20	61	6C	6C	20	74	68	65	20
6D	69	6C	6C	69	6F	6E	73	20	6F	66	20	69	6E	64	69
76	69	64	75	61	6C	73	20	61	6E	64	20	61	6C	C	0
74	68	65	20	69	6	6E	75	6D	6	72	61	62	6C	5	0
74	79	70	65	73	20	61	6E	64	20	63	68	61	72	61	63
7	65	72	73	20	63	6F	6E	73	74	69	74	75	74	5	20
61	6E	20	65	6E	74	69	74	79	2C	20	61	20	75	6E	69
74	3F	20	54	68	6	75	6	68	20	66	72	65	65	20	4
6 F	20	74	68	69	6	6	2	6	6	64	20	61	63	74	2C
20	77	65	20	61	7	6	2	6	6	6C	64	20	4	$6 F$	7
65	74	68	65	7	2C	20	6C	69	6B	65	20	74	68	65	20
73	74	61	72	73	20	69	6E	20	74	68	65	20	66	69	2
6D	61	6D	65	6E	74	2C	20	77	69	74	68	20	74	69	65
73	20	69	6E	73	65	70	61	7	61	62	6C	65	2E	20	54
68	65	73	65	20	7	69	65	7	2	63	6	6E	6E	F	74
20	62	65	20	73	6	65	6	2	2	62	75	74	0	77	65
20	63	61	6E	20	66	65	65	6C	20	74	6	65	6D	2E	0
49	20	63	75	74	20	6D	79	73	65	6C	66	20	69	6E	20
74	68	65	20	66	69	6	6	65	7	2C	2	1	6E	64	20
6	74	20	70	61	69	6E	73	20	6D	65	3A	20	4	68	9
73	20	66	69	6	6	65	7	2	69	73	20	61	20	70	61
72	74	20	6F	66	2	6D	65	2	20	49	20	73	65	5	0
61	20	66	72	69	65	6E	64	20	68	75	72	74	2C	20	61
6 E	64	20	69	74	20	68	75	72	74	73	20	6D	65	2C	20
74	6F	6F	31	20	6D	79	2	66	7	69	65	6E	64	20	61
6 E	64	20	49	20	6	7	65	20	6F	6E	65	2E	20	41	6E
64	20	6E	6F	7	20	49	20	73	65	65	20	73	74	72	9
63	6B	65	6E	20	64	6F	7	6E	20	61	6E	20	65	6E	65
6D	79	2C	20	61	20	6C	75	6D	70	20	6F	66	20	6D	61
74	74	65	72	20	77	68	69	63	68	2C	20	6F	66	20	61
6C	6C	20	74	68	65	20	6	75	6D	70	73	20	6F	66	20
6D	61	74	74	65	7	2	6	6	20	74	68	65	20	75	6E
69	76	65	72	73	65	2C	20	49	20	63	61	7	65	20	6C
65	61	73	74	20	66	6F	72	2C	20	61	6E	64	20	69	4
20	73	74	69	6C	6C	20	67	72	69	65	76	65	73	20	6D
65	2E	20	44	6F	65	73	20	74	68	69	73	20	6E	$6 F$	74
20	70	72	6F	76	65	20	74	68	61	74	20	65	61	63	68
20	6F	66	20	75	73	20	69	73	20	6F	6E	6C	79	20	70
61	72	74	20	6F	66	20	61	20	77	68	6F	6C	65	3F	00
08	C8	B0	8B	68	5A	19	93	FO	7A	C1	29	E2	69	E4	53
4A	FE	D1	FD	D6	3E	D6	47	F5	C7	EF	97	1B	22	4A	69
38	00	44	OA	88	C9	91	20	31	DA	DA	56	84	19	87	C9

 8171 C5 EB 6B A4 B0 EB D9 DF 7126 5A C0 A4 D5
 D9 36 F7 9605 1E $48 \quad 31$ DO AD E1 B3 CC 47 D4 71
 30 4D 0025 AA 69 5B 7A 21 9F 36 ED OC C1 OA CC

 41 8B A6 72 FB 3 E 53 5A 52 35 EF 53089483 A9 28 6A 5E A5 AF A2 OC 6F C8 1080 1C 79 D6 1A 3A 1219 7D A0 61 D6 F2 5E EA C9 9B 3C 30 A1 B7 4B 9B EA 2E 807938 AA 64 FE OD 21 A1 98 16 2E EF 27 9D AC E1 2D 89 9B A6 C8 FC AO EF 3206 F9 OA

 7128 2A 61 FD EB CC 43 B5 AD F5 81 1C 9D EE 00 29 B1 8C A1 8D 7E 0A D3 37 DB 5C 9E 5A 7C B3 47 OE 7F 24 C5 9B 4041 D7 A8 9D 35 FE 8A 91 CC 49 20 FB A4 47 CF 96 1E E2 3 E C7 3 AA E9 7749 2B 19 | F7 | D 9 | 32 | 72 | 87 | 74 | 73 | 88 | 70 | B2 | C9 | 61 | 36 | A0 | 53 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | DA 6C 3B C1 A3 53 5E 35 6F CB F2 03 AB D2 A6 F4

 206714 DA D3 8593 AB 23 C 5 F 8 FA AB D7 A4 FC $\begin{array}{llllllllllllll}38 & B 9 & B B & 4 B & 2 D & 5 E & F B & D 2 & 87 & 3 F & 28 & 5 F & 10 & 90 \\ 98 & 1 A\end{array}$ $3 F 50 \mathrm{BF}$ OD 34 FE CB 8E D7 81 CD B8 89 BD 88 9C 48 CD CA $3 \mathrm{~F} \quad 28$ 3E 6A 16 F4 4 F DF $60 \quad 02 \mathrm{CO} 6142$ E1 D3 5937 A 218 F 463 DE 00 7B 54 EE 7 F 66 2F
 5C 13 3C 02 5A 43 D2 5370 7A 0 D E8 85 C9 69 2E 2B CB B4 A9 BA 9111 E6 54 6B 09 A9 8C AE 3C 92 FC 68 1D 4B 98 ED F8 CF 54 5F 90 DC A2 DC 64 D3 OE BD 93 D7 DB 20 CA F2 D1 103981 D3 49 CC 62 6D 8C E5 B6 D8 9C D9 CF A8 F5 8A 7F BB EC BE 62 74 FA 24 DD 20 4A 7E 9B B6 70 CF 43 EA AC 12 DD D5 54 5A 5136 FD 56 DF 7D FF 93 D6 1A 49 B2 2D 61 AB $38 \quad 35$ 6F 08 4A DE 20 A9 37 AE DA F8 37 B1 8E $59 \quad 00$ 3A 2D $11 \begin{array}{lllllllllll}11 & 31 & \text { B4 } & 51 & 2 F & 80 & 3 F & 35 & 3 F & 41\end{array}$ 82 AF 21 D9 4D 1C FC EE 07 9E 35928924 AE 51

 CF 2C DF 22 2E 79 DB 43 6A 2B C8 30 9E 11 D2 C2 63 F6 $75 \quad 25 \quad 83 \quad 42 \quad 99 \quad 48$ E8 $01 \quad 54$ C5 86 CA 5652 FA EE 4D 9A 9D $7017 \quad 69$ F1 EE 81 BC 1A 8D C9 43
 8D BO B4 E2 2E OF AF 90 6D EB 45 50 99 A0 5C 6D OF DA 32 4A 7E 94 CA EC D8 AO FB C5 3633 1B A8 5B D4 A8 FC BD E1 CB OC EF C5 25 E 5 FE 3E AF 6F
 08 5B AD 8D 70 F4 CA 3E 62 F2 90 CB 6D EC 9B B9 B6 ED 2478 E8 2C C0 28 A8 CF 40 F1 6D E1 40 E4

4 Performance Estimates

No specific test data was gathered for performance because there are a significant number of things that can affect the overall throughput of nearly any block cipher algorithm. However, the performance for both XBC-1 and XBC-2 should be nearly identical to any block algorithm's sequential ECB and CBC performance results, because neither XBC-1 nor XBC-2 are doing any sort of heavy weight calculation. At most, there should only be a few extra assembly instructions per run of the block cipher algorithm.

5 Intellectual Property Statements / Agreements / Disclosures

There are no patents or patent applications for either XBC-1 or XBC-2 as far as the author is aware. The author also releases all intellectual property for XBC-1 and XBC-2 to the public domain. Therefore, there is no licensing obligation of any kind and XBC-1 and XBC-2 may be used freely by anyone.

6 References

1. Crowdsourcing via Wikipedia, "Two-man rule", http://en.wikipedia.org/wiki/Two-man_rule.
2. W. Dai, "Crypto++ Library", http://www.eskimo.com/weidai/cryptlib.html.
3. NIST, "Advanced Encryption Standard", FIPSPUB 197, November 26, 2001.
