CTR-Mode Encryption ### Helger Lipmaa ### **Phillip Rogaway** Helsinki University of Technology (Finland) University of Tartu (Estonia) University of California - Davis (USA) Chiang Mai University (Thailand) ### **David Wagner** University of California - Berkeley (USA) ### What is CTR Mode? - * The simplest correct way to encrypt using a block cipher - * An old mode, dating to DH79, but omitted from earlier FIPS - * A Vernam cipher (like a one-time pad), but no state is maintained by the sender ### Why the renewed interest? * Because CTR mode is fully parallelizable, making it much more efficient, in many contemporary usage scenarios, than modes like CBC. ## **CTR Mode Encryption** The ciphertext is C[1] C[2] C[3] and something adequate to recover ctr # **CTR Mode Decryption** The plaintext is M = M[1] M[2] M[3] ### Where does the ctr come from? - * It is supplied on the encrypting side (like the IV in CBC mode) - * It is **crucial** that no **ctr+i** value be repeated repeating such a value is like reusing a one-time pad. - * Recommended way of making ctr: ``` ctr = nonce || 0000 ··· 0000 ..64 bits 64 zero bits ... ``` ### Advantages - * Faster SW speed on modern processors (Itanium, Alpha, AltiVec, etc.) - * Essentially unlimited HW speed - * Provably secure (Same bounds as CBC MAC, same assumption [BDJR]) - * Random access to the "middle" of the ciphertext - * Preprocessing possible - * Arbitrary message lengths - * No need to implement E^{-1} - * Completely patent-free **Complaint** Answer No integrity Right. Just like all the other conventional modes. For integrity, use a No error propagation So what. Sender needs state or \$ Right. True of any secure enc scheme Sensitive to usage errors Some validity. Be clear: do not reuse a ! Counter/nonce distinction helps encryption **Quadesec bound**henticated-encryption mode. Interaction with weak Use with strong block cipher ciphers Like other modes; n=128 makes OK