
 PGP Corporation, 2010

May be reproduced only in its entirety (without revision).

 PGP Corporation

PGP Software Developer’s Kit (SDK)
Cryptographic Module

FIPS 140-2 Security Policy

Document Version 4.0.1

Revision Date 7/14/10

 PGP Corporation, 2010

May be reproduced only in its entirety (without revision).

Table of Contents
1 INTRODUCTION ...2

2 MODULE SPECIFICATIONS ..3

2.1 SUPPORTED ALGORITHMS..4
2.2 CRYPTOGRAPHIC BOUNDARY ...6
2.3 PORTS AND INTERFACES ..7
2.4 SECURITY LEVEL ...8
2.5 OPERATIONAL ENVIRONMENT...9
2.6 APPROVED MODE OF OPERATION...10

3 SECURITY RULES ...11

4 ROLES AND SERVICES...12

5 ACCESS CONTROL POLICY...20

5.1 CRITICAL SECURITY PARAMETERS..20
5.2 ACCESSES ..20
5.3 SERVICE TO CSP AND PUBLIC KEY ACCESS RELATIONSHIP22

6 CRYPTOGRAPHIC KEY MANAGEMENT..28

6.1 KEY GENERATION AND ESTABLISHMENT..28

7 PHYSICAL SECURITY POLICY ...29

8 SELF-TESTS...29

8.1 POWER-UP TESTS ...30
8.2 ON-DEMAND TESTS ...31
8.3 CONDITIONAL TESTS..31

9 MITIGATION OF OTHER ATTACKS ..32

GLOSSARY..33

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 2

1 Introduction

The PGP Software Developer’s Kit (SDK) Cryptographic Module (SW Versions
4.0.0 and 4.0.1) is a software only cryptographic module validated to the
standards set forth by the FIPS PUB 140-2 Security Requirements for
Cryptographic Modules document published by the National Institute of
Standards and Technology (NIST). The module is intended to meet the security
requirements of FIPS 140-2 Level 1 overall.

This module is responsible for the cryptographic services used by PGP
Corporation’s line of software products and is used as a building block to provide
the secure exchange of email, network communications and storage of data.

This document, the Cryptographic Module Security Policy (CMSP), also referred
to as the Security Policy, specifies the security rules under which the module
must operate.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 3

2 Module Specifications

The PGP SDK, SW Versions 4.0.0 and 4.0.1, is a software-only cryptographic module
embodied as a shared library binary that executes on general-purpose computer
systems and is available on a number of operating systems. The specific operating
system and version to be validated is specified in the Operational Environment section
of this document.

For the purpose of FIPS validation, this document will only be concerned with the core
cryptographic APIs described under Section 4 of this document.

Table 1: Embodiment of the PGP SDK core cryptographic module on various OS in FIPS
Mode

Operating System Typical Pathname

Windows XP Professional SP2 %windir%/system32/PGPsdk.dll

Mac OS X 10.6 /Library/Frameworks/PGP.framework/PGP

Linux, 32-bit: CentOS 5.4 libPGPsdk.so

The PGP SDK cryptographic module is accessible to client applications through an
application-programming interface (API). The API functions in the crypto module are
enumerated in the Roles and Services Section of this document.

The PGP SDK provides a FIPS mode of operation; which is described in the Approved
Mode of Operation section of this document.

For the purposes of FIPS 140-2, the PGP SDK library is classified as a multi-chip
standalone module.

The PGP SDK does not support multiple concurrent operators.

The module does not support a bypass mode.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 4

2.1 Supported Algorithms

The PGP SDK implements the following algorithms in the FIPS mode of operation.

Note: Algorithm validation certificate numbers listed in Table 2 are in order of WIN32 /
OSX / CentOS operating systems.

Table 2: Algorithms supported by the PGP SDK in FIPS mode

Type Algorithm FIPS Status

Triple-DES (3-Key)
TECB, TCBC, TCFB

FIPS 46-3 (cert # 905, 906, 907) Symmetric Key

AES (128,192,256)

ECB, CBC and CFB128

FIPS-197 (cert # 1288 , 1289 ,
1290)

RSA (up to 4096 bits) FIPS 186-2 for Sign/Verify
(cert # 614 , 615 , 616)

Encrypt/Decrypt (Key wrapping;
key establishment methodology
provides between 112 and 128
bits of encryption strength)

Asymmetric Key

DSA

FIPS 186-2
(cert # 414 , 415 , 416)

Message Digest SHA-1, 224,256,384,512 FIPS 180-2
(cert # 1182 , 1183 , 1184)

Message
Authentication

HMAC SHA-1,224, 256,
384, 512

FIPS-198 (cert # 748 , 749 ,
750)

Random Number
Generation

ANSI X9.31 DRNG X9.31 (cert # 717 , 718 , 719)

Split Knowledge Shamir Threshold Secret
Sharing

Allowed

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 5

In non-FIPS mode, the PGP SDK cryptographic module also provides the following
non-FIPS Approved algorithms:

• Symmetric Key Encryption: CAST-5, IDEA, Two-Fish, Blow-Fish, Arc4-128,
AES (EME2 mode)

• Message Digest: MD5, HMAC-MD5, RIPEMD-160

• DSA with SHA-256 (FIPS 186-3)

• Key establishment: ElGamal

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 6

2.2 Cryptographic Boundary

The physical cryptographic boundary is defined as the computer's case that the PGP
SDK is installed in and includes all the accompanying hardware. The module’s
logical cryptographic boundary is defined to be a subset of the PGP SDK binary
software library as defined by the Roles and Services Section of this document.

An operator is accessing (or using) the module whenever one of the library calls is
executed through the API and thus the module logical interfaces are provided by the
API calls.

In addition, the SDK’s key database is included in the cryptographic boundary.

Note that the dashed line represents the PGP SDK crypto boundary. Note that
the Key Database itself is not a CSP, but rather the Key Database is an
underlying data structure that contains CSPs.

Client
Application

Client
Application

Asymmetric Key Management

High-level Cryptographic

Low-Level Cryptographic

Random Number

Miscellaneous

User Interface

P
ro

g
ra

m
m

in
g

 A
P

I
 Key Database(s)

Figure 1: Module Cryptographic Boundary

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 7

2.3 Ports and Interfaces

The PGP SDK software module restricts all access to its Critical Security
Parameters (CSPs) through the API calls as enumerated in the Roles and
Services Section of this document. This API acts as the logical interface to the
module.

Although the computer’s physical ports such as keyboards, mouse, displays,
hard disks, smart card interfaces, etc. provide a means to access the
cryptographic module, the actual interface is via the API itself.

For the purpose of FIPS 140-2, the logical interfaces can be modeled as
described in the following table.

Table 3: PGP SDK Logical Ports

Data Input Parameters passed to the module via API calls

Data Output Data returned by the module via API call

Control Input Control Input – API function calls

Status Output Error and status codes returned by API calls.

The module does not support maintenance ports. The general purpose PC used
receives power via a power supply.

Input and output data can consist of plain-text, cipher-text, and cryptographic
keys as well as other parameters. The module does not support a cryptographic
bypass mode.

All data output is prohibited whenever an error state occurs or during the self-test
process.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 8

2.4 Security Level

The PGP SDK Cryptographic Module meets the overall security requirements of
FIPS 140-2 Level 1.

Table 4: Module Security Level Specification

Security Requirements Area Level

Cryptographic Module Specification 1

Module Ports and Interfaces 1

Roles and Services 1

Finite State Machine 1

Physical Security N/A

Operational Environment 1

Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 3

Mitigation of Other Attacks N/A

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 9

2.5 Operational Environment

The following Operating Systems were used to operationally test and validate the
PGP SDK to the requirements of FIPS-140-2. Therefore these Operating
Systems provide the highest level of assurance that the module will correctly
operate.

Operating System configurations

• Mac OS X 10.6 (i386)

• Windows XP Professional SP-2

• Linux, 32-bit: CentOS 5.4

As per FIPS Implementation guidance the PGP SDK cryptographic module will
remain compliant with the requirements of FIPS 140-2 when operating on the
following Operating Systems provided that the general-purpose computer (GPC)
uses the specified single user operating system/mode specified on the validation
certificate, or another compatible single user operating system:

• Windows XP SP1

• Windows 2000 SP3

• Windows NT 4 SP6a

• Windows ME

• Windows 98SE

• Windows 98

• Mac OS X 10.5 (i386)

• Unix

o Linux, 32-bit: Fedora Core 4, 5, 6 Red Hat Enterprise Linux 3, 4

o AIX5.2 and 5.3

o Solaris 8 and 9

o HPUX 11.11

o Linux, 64-bit: Fedora Core 5

o CentOS 5.3

The operating system must be configured for single-user mode.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 10

2.6 Approved Mode of Operation

The PGP SDK provides a FIPS 140-2 compliant mode of operation. Before any
cryptographic operations can be performed, the client application must initialize
(power-up) the module by invoking the PGPEnableFIPSMode() API.

Once the PGPEnableFIPSMode() call is made, the following events will occur:

1. The module will perform a series of power on self-tests as detailed in the Self-
Tests section of this document.

2. If a self-test fails, the module will return from the PGPEnableFIPSMode() API
call with a status or error indication.

3. If a self-test fails, the module will enter a FIPS persistent error state and no
cryptographic functions will be allowed until re-initialization.

4. All data output will be prohibited whenever an error state occurs or during the
self-test process.

5. Only FIPS Approved or allowed cryptographic algorithms as enumerated in
the Supported Algorithms section of this documents can be used in FIPS
mode.

6. When in FIPS mode, the module will not allow the use of zero length
passphrases because the passphrase is used to associate a key with the
correct entity.

7. Once in FIPS mode the module will maintain that mode until the module is
shut down by the PGPsdkCleanup() API call.

8. The module will also provide conditional tests specified in the Self-Test
section of this document.

The client application can, at any time, test if the module is in FIPS compliant
mode by performing the PGPGetSDKErrorState() and PGPGetFeatureFlags()

API call.

An application can also check the module error state, reset the error state, and
run all or any specific self-test through making the proper API calls.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 11

3 Security Rules

The following is a list of security requirements that specify the Approved mode of
operation and must be adhered to when complying with FIPS 140-2.

1. PGP SDK must be used as described in this document. Calling any function
not listed under Section 4 of this document violates this security policy. For
APIs that accept other functions as arguments, only those functions listed
under Section 4 of this document are permitted.

2. All access to Critical Security Parameters (CSPs) must only be made through
the API calls specified in Section 4 below.

3. Installation of the module is the responsibility of the Crypto-Officer.

4. The PGP SDK must be installed on a host computer where the operating
system is configured for single user mode.

5. The PGP SDK provides a FIPS 140-2 compliant mode of operation. Before
the module can be used, it must be initialized as described in the Approved
Mode of Operation section of this document.

6. Only FIPS Approved or allowed cryptographic algorithms as enumerated in
the Supported Algorithms section of this document are to be used.

A. DSA with SHA 256 (FIPS 186-3) shall not to be used in FIPS mode.

7. Plaintext keys may only be manually established; automated distribution of
these types of keys is prohibited.

8. The module inhibits data output during self-tests and error states. The data
output interface is logically disconnected from the processes performing key
generation and zeroization.

9. The zeroization process can be achieved as follows:

a. Free all allocated contexts with the appropriate API function:
PGPFreePrivateKeyContext, PGPFreeSymmetricCipherContext,

PGPFreeCBCContext, PGPFreeCFBContext, PGPFreeHashContext,

PGPFreeHMACContext, or PGPFreeData.

b. Make calls to the PGPWipeFile API function and zeroize all persistently
stored CSPs including ASCII armored files and all “.rnd” files.

c. On exit, make a call to the PGPsdkCleanup API function

.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 12

4 Roles and Services

As mentioned earlier the only access to the cryptographic module is through the
PGP SDK API. Thus, the module operator is defined as any client application
that is linked to the PGP SDK shared library.

The cryptographic module supports two roles. An operator accesses both roles
while using the PGP SDK and the means of access is the same for both roles. A
role is implicitly assumed based on the services that are accessed.

The roles are defined as the following:

• User: Shall be allowed to perform the Module Info Service.

• Cryptographic Officer: Shall be allowed to perform all security relevant
services provided by the module.

 The following table lists the services in the cryptographic module organized by
service category.

Table 5: Asymmetric Key Management

Service API Description

Open key
Database

PGPOpenKeyDBFile Create a new key set and
its underlying database
based on key data
archived in file(s). The
key set contains all the
keys in the file(s).

Free key
Database

PGPFreeKeyDB

Release the storage for a
key. The removal
includes clearing any
memory that held key
material.

Import key(s) PGPImport Import key(s) that were
previously exported into
a new key set.

Export key(s) PGPExport Export key(s) from a key
set into a specified file or
buffer.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 13

Table 5: Asymmetric Key Management

Service API Description

Manage Key
Database

PGPFindKeyByKeyID
PGPIncKeyDBRefCount
PGPKeyDBIsMutable
PGPKeyDBIsUpdated

Operations to manage
and get status of a Key
Database

Generate a key PGPGenerateKey
PGPGenerateSubKey
PGPCreateKeyBundle

Generate a new PGP key
and place it into a key set
in association with a CO
via a passphrase.

Change key
passphrase

PGPChangePassphrase Change the passphrase
associated with a private
key.

Update key
properties

PGPAddAttributeUserID
PGPAddKeyOptions
PGPAddUserID
PGPRevoke
PGPSetKeyAxiomatic
PGPCreateX509CRL

Change various values
associated with a key
including it current trust
value, its current status
(enabled, disabled,
revoked), its user ID, its
subkeys, and signatures.

Get key
properties

PGPPassphraseIsValid
PGPGetKeyDBObjDataProperty
PGPGetKeyDBObjAllocatedDataProperty
PGPGetKeyDBObjBooleanProperty
PGPGetKeyDBObjTimeProperty
PGPGetKeyDBObjNumericProperty

Obtain various values
associated with a key
including algorithms
used, key sizes, user
IDs, key Ids and
fingerprints, key
parameter data, and
signature information.

Sign key PGPCertifyUserID
PGPCreateX509Certificate
PGPCreateX509CertificateFromRequest
PGPCreateSelfSignedX509Certificate

Digitally sign a particular
key with RSA (via RSA
private key) or DSA (via
DSA signing key).

Split a binary
passphrase

PGPSecretReconstructData
PGPSecretShareData

Split a binary passphrase
used to wrap an
asymmetric key using the
Shamir Threshold Secret
Sharing scheme.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 14

Table 5: Asymmetric Key Management

Service API Description

High Level binary
passphrase split
API

PGPCombineShares

PGPCopySharesFromFile

PGPCopySharesToFile

PGPCreateShares

PGPFreeShareFile

PGPFreeShares

PGPGetPasskeyFromShares

PGPNewShareFile

PGPOpenShareFile

PGPSaveShareFile

PGPSplitShares

Wrapper code to facilitate
Shamir Threshold Secret
Sharing functions.

Manage a key set PGPCheckKeyRingSigs
PGPNewKeySet
PGPNewOneKeySet
PGPNewOneInclusiveKeySet
PGPAddKey(s)
PGPDeleteKeys
PGPDeleteKey
PGPFreeKeySet
PGPCleanSignatures

Operations to manage
the references in a key
set.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 15

Table 6: High Level Cryptographic

Service API Description

Encrypt data PGPEncode using
PGPOEncryptToKeyDBObj

Encrypt the provided data with the
provided key. This service formats the
resultant cipher text based on the
OpenPGP or S/MIME Message format.

Sign data PGPEncode using
PGPOSignwithKey

Digitally sign the provided data with the
provided key. This service formats the
resultant signature based on the
OpenPGP or S/MIME Message format.

Decrypt data PGPDecode Decrypt the provided data with the
provided key. This service assumes the
data provided is formatted based on the
OpenPGP or S/MIME Message format.

Validate
signed data

PGPDecode Verify the digital signature on the
provided data using the provided key.
This service assumes the data provided
is formatted based on the OpenPGP or
S/MIME Message format.

Encrypt to a
Symmetric
Key

PGPEncode using
PGPOConventionalEncrypt

Encrypt the provided data with the
provided symmetric key. This service
formats the resultant cipher text based
on the OpenPGP or S/MIME Message
format.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 16

Table 7: Low Level Cryptographic

Service API Description

Hash data PGPContinueHash
PGPCopyHashContext
PGPFinalizeHash
PGPFreeHashContext
PGPNewHashContext
PGPResetHash
PGPGetHashSize

Create a hash value based
on the provided data.

Compute
HMAC on data

PGPContinueHMAC
PGPFinalizeHMAC
PGPFreeHMACContext
PGPNewHMACContext
PGPResetHMAC

Compute the message
authentication code on the
provided data using the
provided key.

Encrypt data
via symmetric
cipher

PGPCBCEncrypt
PGPCFBEncrypt
PGPSymmetricCipherEncrypt
PGPCBCGetSymmetricCipher
PGPCFBGetSymmetricCipher
PGPCFBSync
PGPCopyCBCContext
PGPCopyCFBContext
PGPCopySymmetricCipherContext
PGPFreeCBCContext
PGPFreeCFBContext
PGPFreeSymmetricCipherContext
PGPGetSymmetricCipherSizes
PGPInitCBC
PGPInitCFB
PGPInitSymmetricCipher
PGPNewCBCContext
PGPNewCFBContext
PGPNewSymmetricCipherContext
PGPWashSymmetricCipher
PGPWipeSymmetricCipher
PGPImportTARCacheObj
PGPOpenTarCacheFile
PGPFreeTarCache

Encrypt the provided data
with the provided key using a
symmetric cipher algorithm.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 17

Table 7: Low Level Cryptographic

Service API Description

Decrypt data
via symmetric
cipher

PGPCBCDecrypt
PGPCFBDecrypt
PGPSymmetricCipherDecrypt
PGPExportTARCacheObj

Decrypt the provided data
with the provided key using a
symmetric cipher algorithm.

Encrypt with
public key *

PGPPublicKeyEncrypt
PGPFreePublicKeyContext
PGPNewPublicKeyContext

Encrypt the provided data
with the public portion of a
public/private key pair.

Verify signature
with public key

PGPPublicKeyVerifyRaw
PGPPublicKeyVerifySignature

Verify the digital signature on
the provided data using the
provided key.

Decrypt with
private key *

PGPPrivateKeyDecrypt
PGPFreePrivateKeyContext
PGPNewPrivateKeyContext

Decrypt the provided data
with the private portion of a
public/private key pair.

Create
signature with
private key

PGPPrivateKeySign
PGPPrivateKeySignRaw

Digitally sign the provided
data with the provided key.

* Low-level Public Key Crypto functions can only be used for key wrapping.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 18

Table 8: Random Number Services

Service API Description

Get
random
bytes

PGPCFBGetRandom
PGPContextGetRandomBytes

Obtain random
data.

Get
random
pool
properties

PGPGlobalRandomPoolHasIntelRNG
PGPGlobalRandomPoolGetEntropy
PGPGlobalRandomPoolGetSize
PGPGlobalRandomPoolGetMinimumEntropy
PGPGlobalRandomPoolHasMinimumEntropy

Obtain information
about the random
pool.

Update
random
pool

PGPCFBRandomCycle
PGPCFBRandomWash
PGPGlobalRandomPoolAddKeystroke
PGPGlobalRandomPoolAddSystemState
PGPGlobalRandomPoolMouseMoved

Update the data in
the random pool.

Table 9: Miscellaneous

Service API Description

Initialize SDK PGPsdkInit Initialize the library for use.

Cleanup SDK PGPsdkCleanup Cleanup the library after
use.

Create context PGPNewContext
PGPNewContextCustom

Create a context for a
particular use of the library.

Free context PGPFreeContext Destroy a context from a
particular use of the library
(zeroize the data from
RAM).

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 19

Table 9: Miscellaneous

Service API Description

Data storage
management

PGPFreeData
PGPNewData
PGPNewSecureData
PGPReallocData
PGPWipeFile

Create and free memory for
holding various data
including plaintext and
passphrases. The
PGPWipeFile function is
used to zeroize data from
the hard drive.

Data I/O PGPOAllocatedOutputBuffer
PGPOInputBuffer
PGPOInputFile
PGPOOutputBuffer
PGPOOutputFile
PGPOInputTARCache
PGPOOutputTARCache
PGPOOutputDirectory
PGPOPasskeyBuffer
PGPOPassphrase
PGPOPassphraseBuffer
PGPORawPGPInput

Deal with buffers and file
references for data
including plaintext and
passphrases.

Option list
manipulation

PGPAddJobOptions
PGPAppendOptionList
PGPBuildOptionList
PGPCopyOptionList
PGPFreeOptionList
PGPNewOptionList

Create, modify, and free a
list of options and
parameters provided to SDK
services.

Module status PGPGetSDKErrorState
PGPResetSDKErrorState
PGPGetFeatureFlags

Obtain or reset the current
status of the PGP SDK
cryptographic module.

Run self tests PGPRunAllSDKSelfTests
PGPRunSDKSelfTest

Run the required self-tests.

Enable FIPS
compliant mode

PGPEnableFIPSMode Power-Up the module into
FIPS 140-2 mode

Module Info PGPGetVersionString Obtain module version
number information.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 20

5 Access Control Policy

In the PGP SDK, access to critical security parameters is controlled. A PGP
SDK User or Cryptographic Officer can only read, modify, or otherwise access
the security relevant data through the cryptographic module services provided by
the module API interface. This section details the Critical Security Parameters
(CSPs) in the cryptographic module that a User or Cryptographic Officer can
access, how the CSPs can be accessed in the cryptographic module, and which
services are used for access to the data item.

A PGP SDK operator using the module in the Cryptographic Officer role can
access all of the module services, but an operator in the User role can only use a
subset of those functions. More information on this can be found in the Roles and
Services section of this document.

5.1 Critical Security Parameters

The Critical Security Parameters (CSPs) used by the PGP SDK module are
protected from unauthorized disclosure, modification, and substitution. Public
keys are protected from unauthorized modification, and substitution

Definition of CSPs:

• DSA Signing Key - used to sign data with DSA.

• RSA Private Key - used to sign data with RSA (or) to decrypt RSA
wrapped keys (Note: the same key may not be used for signing and
decryption).

• TDES Encrypting Key - used to TDES encrypt/decrypt data.

• AES Encrypting Key - used to AES encrypt/decrypt data.

• HMAC Key - used for message authentication of data.

• Random Seed Pool - An internally maintained pool of data for seeding the
random number functions (including ANSI X9.31 DRNG key).

Definition of Public Keys:

• RSA Public Key - used to verify RSA signatures (or) used to wrap session
specific symmetric keys. (Note: the same key may not be used for
signature verification and encryption)

• DSA Public Key - used to verify DSA signatures.

5.2 Accesses

The types of access to CSPs and Public Keys in the PGP SDK are listed in the
following table.

Table 10: CSP Access Types

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 21

Access Description

create The item is created

destroy The item is destroyed, in other words the data is cleared from

any memory in the cryptographic module and then that memory is released

read The item is accessed for reading and use

write The item is modified or changed

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 22

5.3 Service to CSP and Public Key Access Relationship

The following table shows which CSPs and Public Keys are accessed by each
service, the role(s) the operator must be in for access, and how the CSP or
Public Key is accessed on behalf of the operator when the service is performed.

Several services provided by the PGP SDK do not access any CSPs and are
included here for completeness.

Table 11: Module Services vs. CSP and Public Key Access vs. Role Access

Service CO User CSP or Public Key create destroy read write

Open key database

X

 DSA Signing Key

RSA Private Key

RSA Public Key

DSA Public Key

•

Free key database

X

 DSA Signing Key

RSA Private Key

RSA Public Key

DSA Public Key

•

Import key(s)

X

 DSA Signing Key

RSA Private Key

RSA Public Key

DSA Public Key

•

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 23

Table 11: Module Services vs. CSP and Public Key Access vs. Role Access

Service CO User CSP or Public Key create destroy read write

Export key(s)

X

 DSA Signing Key

RSA Private Key

RSA Public Key

DSA Public Key

•

Manage key
database

X

 DSA Signing Key

RSA Private Key

RSA Public Key

DSA Public Key

•

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 24

Table 11: Module Services vs. CSP and Public Key Access vs. Role Access

Service CO User CSP or Public Key create destroy read write

Generate a key

X

 DSA Signing Key

RSA Private Key

RSA Public Key

DSA Public Key

Random Seed Pool

•

•

Change key
passphrase

X

 DSA Signing Key

RSA Private Key

RSA Public Key

DSA Public Key

• •

Update key
properties

X

 DSA Signing Key

RSA Private Key

RSA Public Key

DSA Public Key

• •

Get key properties

X

 DSA Signing Key

RSA Private Key

RSA Public Key

DSA Public Key

•

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 25

Table 11: Module Services vs. CSP and Public Key Access vs. Role Access

Service CO User CSP or Public Key create destroy read write

Sign key

X

 DSA Signing Key

RSA Private Key

RSA Public Key

DSA Public Key

•

•

Split a binary
passphrase

X
 N/A

High level binary
passphrase split API

X
 N/A

Manage a key set X N/A

Encrypt data

(Note: RSA is used to
wrap the TDES and
AES keys)

X

 RSA Public Key

TDES Encrypt Key

AES Encrypt Key

•

•

Sign data

X

 DSA Signing Key

RSA Private Key

•

Decrypt data

(Note: RSA is used to
unwrap the TDES
and AES keys)

X

 RSA Private Key

TDES Encrypt Key

AES Encrypt Key

•

Validate signed data
X

 RSA Public Key

DSA Public Key

•

Encrypt to a
Symmetric key X

 TDES Encrypt Key

AES Encrypt Key
•

•

Hash data X N/A

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 26

Table 11: Module Services vs. CSP and Public Key Access vs. Role Access

Service CO User CSP or Public Key create destroy read write

Compute HMAC on
data

X HMAC Key
• • • •

Encrypt data via
symmetric cipher X

 TDES Encrypt Key

AES Encrypt Key
• • • •

Decrypt data via
symmetric cipher X

 TDES Encrypt Key

AES Encrypt Key
• • • •

Encrypt with public
key

(Note: RSA is used
to wrap keys)

X

 RSA Public Key

• • •

•

Verify signature
with public key

X

 RSA Public Key

DSA Public Key

• • •

•

Decrypt with private
key (Note: RSA is
used to unwrap
keys)

X

 RSA Private Key

• • •

•

Create signature
with private key

X

 RSA Private Key

• • •

•

Get random bytes X Random Seed Pool
•

Get random pool
properties

X
 Random Seed Pool

•

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 27

Table 11: Module Services vs. CSP and Public Key Access vs. Role Access

Service CO User CSP or Public Key create destroy read write

Update random pool X Random Seed Pool
•

Initialize SDK X Random Seed Pool
•

Cleanup SDK X N/A

Create context X N/A

Free context X N/A

Data storage
management

X
 N/A

Data I/O X N/A

Option list
manipulation

X
 N/A

Module Status X N/A

Run self-tests X N/A

 Enable FIPS
 compliant mode

X
 N/A

Module Info X N/A

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 28

6 Cryptographic Key Management

The PGP SDK takes a number of steps to protect secret keys and CSPs from
unauthorized disclosure, modification, and substitution throughout the key life
cycle.

6.1 Key Generation and Establishment

The PGP SDK only supports the generation and establishment of wrapped key
pairs in OpenPGP or X.509 certificate formats.

• When in FIPS mode, the module performs key generation compliant with
ANSI X9.31.

• The generation of wrapped key pairs is an atomic operation to a module
API client, and intermediate key values are never output nor are they ever
accessible from the API.

• The PGP SDK key export and database services can be used to distribute
the public keys as appropriate via manual processes.

• The module uniquely identifies key certificates by using the opaque data
reference, PGPKeyID.

When establishing a symmetric key, an appropriate size public key and hash
algorithm must be used.

Table 12: Guidelines for equivalent strengths of cryptographic algorithms

Security
(bits)

Symmetric
encryption
algorithm

Minimum size of public keys (bits)

112 Triple-DES 2048

128 AES-128 3072

192 AES-192 7680

256 AES-256 15360

Note that the current version of PGP SDK limits the size of RSA keys to 4096
bits, as such the maximum estimated strength of any key establishment
technique using RSA is limited to 128 bits of strength.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 29

7 Physical Security Policy

The PGP SDK is implemented as a software module and as such, the physical
security section of FIPS 140-2 is not applicable.

8 Self-Tests

The PGP SDK provides for three forms of self-tests: power-on, on-demand and
conditional. Since the PGP SDK module provides a special FIPS Approved mode
of operation, the module is defined as powering-up into FIPS mode when the
PGPEnableFIPSMode() call is made by the client application.

All data output is prohibited during the self-test process.

If any of these test fail, the module will enter an error state, which can only be
cleared by a deliberate call to PGPResetSDKErrorState() or by powering down
the module. Once in an error state, all further cryptographic operations and data
output is disabled.

The resultant test status will be also returned by the PGPEnableFIPSMode() call.
A client application can also ascertain module at anytime by using the
PGPGetSDKErrorState() function. Possible error codes returned by the self-test
routines include:

• kPGPError_NoErr – Self-test was successful.

• kPGPError_SelfTestFailed – Self Test Failed.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 30

8.1 Power-Up Tests

When the client application invokes a PGPEnableFIPSMode() API call, the
module will start the self-test process. The following self-tests will run and in the
following order until all the tests have been completed or one of the tests fail.

• Triple-DES – Runs known answer test of a 64-byte block in ECB, CBC
and CFB modes, then decrypts the block checking for consistency with
original plain-text.

• DSA – Runs a pair-wise consistency sign/verify test of a 48-byte block
using a 1024 bit DSS key.

• AES - Runs known answer test of a 16 byte block in ECB modes for 128,
192 and 256 bit keys then decrypts the block checking for consistency
with original plain-text

• RSA – Signs a 48 byte block of data using a 2048 bit RSA key certificate,
check against a known answer then performs a pair-wise consistency test.
For encryption functionality, the module however only executes the pair-
wise consistency test, because the SDK support for asymmetrical
encryption outputs padded cipher-text e.g. Open-PGP.

• SHA-1, 224, 256, 384, 512 – Runs a series of known answer tests using
test vectors derived from the FIPS-180 document.

• HMAC/SHA-1, 224, 256, 384, 512 – Runs a series of known answer tests

• X9.31 – DRNG Known answer test

• Software Integrity – The module contains a compiled in DSA/SHA public
key certificate used for SDK integrity verification. The PGP SDK library
binary is signed by PGP Corporation at ship, and a detached OpenPGP
signature file is added to the distribution. The module uses this public key
to test the installed module binary against the signature file.

• Critical Function Tests – self signatures of key certificates are checked
when keys are established via the PGPimport() API function.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 31

8.2 On-Demand Tests

After the PGPEnableFIPSMode() call is complete, the client application can
optionally initiate a specific test or all tests on demand by using the
PGPRunSDKSelfTest() or PGPRunAllSDKSelfTests() functions respectively.
Note that if the on-demand tests fail, the module will enter an error state in a
manner identical to the power-on self-tests.

8.3 Conditional Tests

When in FIPS mode, the module will perform the following conditional tests.

• Continuous random number generator tests on DRNG and NDRNG.

• Pair-wise consistency test when new public key pairs are generated:
When a signing key-pair is generated, a plain-text value is signed by
private key and verified by public key. Whenever an encryption key-pair is
generated, a plain-text value is encrypted with the public key, the cipher-
text is checked to be not the same as the original plaintext, the cipher-text
is then decrypted with the private-key and checked against original plain-
text.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 32

9 Mitigation of Other Attacks

The Mitigation of Other attacks security section of FIPS 140-2 is not applicable to
the PGP SDK cryptographic module.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 33

Glossary

API: Application Programming Interface.

Asymmetric Key: a public or private key.

Context: a reference value used to accept (or refer to) an internal PGP SDK
state for an ongoing operation. Examples of contexts include “asymmetric cipher
context” or “hash context.”

CSP: Critical Security Parameters

Cipher: a cryptographic algorithm used for encryption and decryption.

Client: Application or program calling into the PGP SDK API

ElGamal: ElGamal is a cryptographic algorithm used by the SDK for key
establishment in non-FIPS mode.

FIPS: Federal Information Processing Standards.

FIPS 140-2: FIPS for cryptographic modules.

FIPS Mode: FIPS 140-2 compliant mode of operation for PGP SDK.

High-level cryptographic: a high-level CAPI that abstracts away the details of
the cryptographic algorithms to be used.

Key Pair: a pair of public/private asymmetric keys.

Key Set: a collection of asymmetric keys.

Low-level cryptographic: a low-level CAPI that includes the intimate details for
specific cryptographic algorithms.

MAC: Message Authentication Code.

NIST: National Institute of Standards and Technology.

OpenPGP Message Format: the message-exchange packet formats used by
OpenPGP and all PGP products. See "OpenPGP Message Format, IETF
RFC 4880.”

Option List: a list of options that indicates how processing should proceed.

PGP: Pretty Good Privacy; an application and protocol (RFC 1991) for secure e-
mail and file encryption developed by Phil R. Zimmermann. Originally published
as Freeware, the source code has always been available for public scrutiny. PGP
uses a variety of algorithms, like IDEA, RSA, DSA, MD5, SHA-1 for providing
encryption, authentication, message integrity, and key management. PGP is
based on the Web-of-Trust model and has worldwide deployment.

PGP SDK: PGP Software Developer's Kit.

PGP SDK 4.0.1 Cryptographic Module Security Policy

Page 34

Passphrase: a value used to provide key to entity association, either an ASCII
passphrase (a sequence of ASCII characters) or a binary passphrase (binary
data).

Private Key: the secret portion of an asymmetric key pair.

Public Key: the public portion of an asymmetric key pair.

Random Number: a number generated randomly.

Random Pool: a collection of random bytes, global to the PGP SDK.

Signature: an encrypted hash of data that provides authentication and integrity
for the data.

S/MIME message format: the message-exchange packet formats specified by
IETF RFC 3852, 3370, 2633 and 2632.

Symmetric Key: key material used for symmetric ciphers. A symmetric key can
be provided by the operator or created as needed by the PGP SDK.

User ID: an identifier that is associated with an asymmetric key (via a Signature)
that represents the entity (e.g., user) to which the key is assigned.

