
IBM® Crypto for C (ICC)
Version 8.0.0

 FIPS 140-2 Non-Proprietary
Security Policy, version 1.2

December 6, 2010

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 2
IBM Crypto for C (ICC) v8.0.0

This document is the property of International Business Machines Corporation (IBM®
Corp.). This document may only be reproduced in its entirety without modifications.

© Copyright 2010 IBM Corp. All Rights Reserved

 Table Of Contents
2. References and Abbreviations .. 3

2.1 References ... 3
2.2 Abbreviations .. 3

3 Introduction ... 5
3.1 Purpose of the Security Policy ... 5
3.2 Target Audience .. 5

4. Cryptographic Module Definition .. 6
4.1 Cryptographic Module Boundary .. 8

5. FIPS 140-2 Specifications .. 9
5.1 Ports and Interfaces .. 9
5.2 Roles, Services and Authentication ... 9

5.2.1 Roles and Authentication .. 9
5.2.2 Authorized Services .. 10
5.2.3 Access Rights Within Services ... 15
5.2.4 Operational Rules and Assumptions .. 15

5.3 Operational Environment ... 16
5.3.1 Assumptions .. 16
5.3.2 Installation and Initialization .. 17

5.4 Cryptographic Key Management ... 17
5.4.1 Implemented Algorithms .. 17
5.4.2 Key Generation .. 17
5.4.3 Key Establishment ... 18
5.4.4 Key Entry and Output .. 19
5.4.5 Key Storage ... 19
5.4.6 Key Zeroization ... 19

5.5 Self-Tests ... 19
5.5.1 Show Status .. 20
5.5.2 Startup Tests .. 20
5.5.3 Conditional Tests ... 21
5.5.4 Severe Errors ... 22

5.6 Design Assurance ... 22
5.7 Mitigation Of Other Attacks .. 23

6. API Functions ... 23

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 3
IBM Crypto for C (ICC) v8.0.0

2. References and Abbreviations

2.1 References
Author Title
NIST FIPS PUB 140-2: Security Requirements For Cryptographic

Modules, May 2001
NIST [Derived Test Requirements for FIPS PUB 140-2, November

2001
NIST Implementation Guidance for FIPS PUB 140-2 and the

Cryptographic Module Validation Program

2.2 Abbreviations
ANS.1 Abstract Syntax Notation One. A notation for describing data structures.
AES The Advanced Encryption Standard. The AES is intended to be issued as a FIPS

standard and will replace DES. In January 1997 the AES initiative was announced and
in September 1997 the public was invited to propose suitable block ciphers as candidates
for the AES. NIST is looking for a cipher that will remain secure well into the next
century. NIST selected Rijndael as the AES algorithm.

AES_CCM AES counter mode as documented in NIST SP800-38C
AES_GCM AES Galois counter mode as documented in NIST SP800-38D
Camellia A 128 bit block cipher developed by NTT
CMAC Cipher based MAC. As documented in NIST SP800-38B
CMVP (The NIST) Cryptographic Module Validation Program; an integral part of the

Computer Security Division at N IST, the CMVP encompasses validation testing for
cryptographic modules and algorithms

Crypto Cryptographic capability/functionality
CSEC The Communications Security Establishment Canada; An entity operating

under the Canadian Department of National Defense, CSEC provides technical
advice, guidance and services to the Government of Canada to maintain the
security of its information and information infrastructures. The CMV Program
was established by NIST and CSEC in July 1995.

DER Distinguished Encoding Rules
DES The Data Encryption Standard, an encryption block cipher defined and endorsed by

the U.S. government in 1977 as an official standard; the details can be found in the
latest official FIPS (Federal Information Processing Standards) publication
concerning DES. It was originally developed at IBM. DES has been extensively
studied since its publication and is the most well-known and widely used
cryptosystem in the world.

DH

Diffie-Hellman key agreement protocol (also called exponential key agreement) was
developed by Diffie and Hellman in 1976 and published in the ground-breaking paper
“New Directions in Cryptography”. The protocol allows two users to exchange a secret
key over an insecure medium without any prior secrets.

DSA The Digital Signature Algorithm (DSA) was published by NIST in the Digital
Signature Standard (DSS)

ECC Elliptic curve cryptography. A potentially faster and more secure replacement for

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 4
IBM Crypto for C (ICC) v8.0.0

prime field based asymmetric algorithms such as RSA and Diffie-Hellman
ECDH Elliptic curve Diffie-Hellman
ECDSA Elliptic Curve digital signature algorithm
ICC IBM Crypto for C-language is a general-purpose cryptographic provider module.
Libcrypt The cryptography engine of OpenSSL.
MD2
MD4
MD5

MD2, MD4, and MD5 are message-digest algorithms developed by Rivest. They
are meant for digital signature applications where a large message has to be
"compressed" in a secure manner before being signed with the private key. All
three algorithms take a message of arbitrary length and produce a 128-bit
message digest. While the structures of these algorithms are somewhat similar, the
design of MD2 is quite different from that of MD4 and MD5 and MD2 was optimized
for 8-bit machines, whereas MD4 and MD5 were aimed at 32-bit machines.
Description and source code for the three algorithms can be found as Internet
RFCs 1319 - 1321.

MDC2 A seldom used hash algorithm developed by IBM
NIST (The) National Institute of Standards and Technology; NIST is a non-regulatory

federal agency within the U.S. Commerce Department's Technology
Administration. NIST's mission is to develop and promote measurement,
standards, and technology to enhance productivity, facilitate trade, and improve
the quality of life. NIST oversees the Cryptographic Module Validation Program.

OpenSSL A collaborative effort to develop a robust, commercial-grade, full-featured and
Open Source toolkit implementing the Secure Socket Layer (SSL V1/V3) and
Transport Layer Security (TLS V1) protocols.

PKCS#1 A standard that describes a method for encrypting data using the RSA public-key
crypto system

PRNG Pseudo-Random number generator. Essentially a sequence generator which, if
the internal state is unknown, is unpredictable and has good distribution
characteristics.

RC2 A variable key-size block cipher designed by Rivest for RSA Data Security. "RC"
stands for "Ron's Code" or "Rivest's Cipher." It is faster than DES and is designed
as a "drop-in" replacement for DES. It can be made more secure or less secure
than DES against exhaustive key search by using appropriate key sizes. It has a
block size of 64 bits and is about two to three times faster than DES in software.
The algorithm is confidential and proprietary to RSA Data Security. RC2 can be
used in the same modes as DES.

RC4 A stream cipher designed by Rivest for RSA Data Security. It is a variable key-size
stream cipher with byte-oriented operations.

RSA A public-key cryptosystem for both encryption and authentication; it was invented in
1977 by Ron Rivest, Adi Shamir, and Leonard Adleman.

SHA-1 The Secure Hash Algorithm, the algorithm specified in the Secure Hash Standard
(SHS), was developed by NIST and published as a federal information processing
standard. SHA-1 was a revision to SHA that was published in 1994. The revision
corrected an unpublished flaw in SHA.

SHA-2 A set of hash algorithms intended as an upgrade to SHA-1. These support a wider
range of hash sizes than SHA-1 and should be more secure

Triple DES Based on the DES standard; the plaintext is, in effect, encrypted three times. Triple
DES (TDEA), as specified in ANSI X9.52, is recognized as a FIPS approved
algorithm.

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 5
IBM Crypto for C (ICC) v8.0.0

TRNG True Random number generator. A random number generator using an entropy
source. May have worse distribution characteristics than a PRNG, but its output
cannot be predicted even with knowledge of its previous state.

3 Introduction

This document is a non-proprietary FIPS 140-2 Security Policy for the IBM Crypto for C
(ICC), Version 8.0.0 cryptographic module. It contains a specification of the rules under
which the module must operate and describes how this module meets the requirements
as specified in FIPS PUB 140-2 (Federal Information Processing Standards Publication
140-2) for a Level 1 multi-chip standalone software module. This Policy forms a part of
the submission package to the testing lab.

• FIPS 140-2 specifies the security requirements for a cryptographic module
protecting sensitive information. Based on four security levels for cryptographic
modules this standard identifies requirements in eleven sections. For more
information about the standard visit http://csrc.nist.gov/publications/fips/fips140-
2/fips1402.pdf.For more information on the FIPS 140-2 standard and validation
program please refer to the NIST website at http://csrc.nist.gov/cryptval/.

• For more information about IBM software please visit http://www.ibm.com

3.1 Purpose of the Security Policy
• There are three major reasons that a security policy is required. It is required for

FIPS 140-2 validation. It allows individuals and organizations to determine whether the
cryptographic module, as implemented, satisfies the stated security policy describes
the capabilities, protection, and access rights provided by the cryptographic module,
allowing individuals and organizations to determine whether it will meet their security
requirements.

3.2 Target Audience

This document is intended to be part of the package of documents that are submitted for
FIPS validation. It is intended for the following people:

• Developers working on the release
• Product Verification
• Documentation
• Product and Development Managers

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 6
IBM Crypto for C (ICC) v8.0.0

4. Cryptographic Module Definition

This section defines the software cryptographic module that is being submitted for
validation to FIPS PUB 140-2, level 1.

The IBM Crypto for C v8.0.0 (ICC) cryptographic module is implemented in the C
programming language. It is packaged as dynamic (shared) libraries usable by
applications written in a language that supports C language linking conventions (e.g. C,
C++, Java, Assembler, etc.) for use on commercially available operating systems. The
ICC allows these applications to access cryptographic functions using an Application
Programming Interface (API) provided through an ICC import library and based on the
API defined by the OpenSSL group. The physical boundary of the cryptographic module is
defined to be the enclosure of the computer that runs the ICC software.

The cryptographic module provided to the customer consists of:
• ICC static stub: static library (object code) that is linked into the customer’s

application, performs the integrity checks on the Crypto Module and communicates
with it. C headers (source code) containing the API prototypes and other definitions
needed for linking the static library.

• ICC shared library: Shared library (executable code) containing the IBM code
needed to meet FIPS and functional requirements not provided within the OpenSSL
libraries (e.g. TRNG, PRNG, self-tests, startup/shutdown). Contains also zlib, used
for TRNG entropy estimation

• Libcrypt: Shared library (executable code) containing the OpenSSL cryptographic
library.

There is a different set of the cryptographic module (static and shared libraries) for each
of the target platforms.

As outlined in G.5 of the Implementation Guidance for FIPS 140-2 (March 10, 2009
Update), the module maintains its compliance on other operating systems, provided:

• The operating system meets the operational environment requirements at the
module’s level of validation

• The module does not require modification to run in the new environment

ICC was tested and validated on a machine running the Microsoft Windows Server
2008® 64-bit and 32-bit operating system (x86-64). Both 64-bit and 32-bit ICC
binaries were tested. The software module maintains compliance when running on
other versions of Microsoft Windows.

ICC was tested and validated on a machine running the AIX ® 6.1 64-bit operating

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 7
IBM Crypto for C (ICC) v8.0.0

system (PowerPC 5 64). Both 64-bit and 32-bit ICC binaries were tested. The
software module maintains compliance when running on other versions of AIX ®.

ICC was tested and validated on a machine running the Solaris® 10 64-bit operating
system (UltraSparc-64). Both 64-bit and 32-bit ICC binaries were tested. The
software module maintains compliance when running on other versions of Solaris®.

ICC was tested and validated on a machine running the Red Hat Linux Enterprise
Server 5 64-bit (x86-64) and 32-bit (x86-32) operating systems. Both 64-bit and 32-
bit ICC binaries were tested. The software module maintains compliance when
running on other Linux based operating systems.

ICC was tested and validated on a machine running the Red Hat Linux Enterprise
Server 5 64-bit operating system (PowerPC-64). Both 64-bit and 32-bit ICC
binaries were tested. The software module maintains compliance when running on
other Linux based operating systems.

ICC was tested and validated on a machine running the Red Hat Linux Enterprise
Server 5 64-bit operating system (zSeries-64). Both 64-bit and 32-bit ICC binaries
were tested. The software module maintains compliance when running on other
Linux based operating systems.

In addition to the configurations tested by the laboratory, vendor-affirmed testing
was performed on a machines running HPUX® (PA-RISC and Itanium®), OS X®
(Mac), Solaris® (x86 and x86_64), z/OS, and i5/OS. The module binaries for these
platforms were compiled from the source code of the validated module without any
changes, additions, or deletions of code.

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 8
IBM Crypto for C (ICC) v8.0.0

4.1 Cryptographic Module Boundary
The relationship between ICC and IBM applications is shown in the following diagram. ICC
comprises a static stub linked into the IBM application which bootstraps and validates the
two cryptographic shared libraries.

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 9
IBM Crypto for C (ICC) v8.0.0

• IBM Application - The IBM application using ICC. This contains the application
code, and the ICC static stub.

• IBM Application code - The program using ICC to perform cryptographic functions
• ICC Static stub - Linked in to the application, this contains signatures of the ICC and

OpenSSL shared libraries, plus code to bootstrap the loading of the shared libraries.
• ICC shared library - This contains IBM code needed to meet FIPS and functional

requirements not provided within the OpenSSL libraries. TRNG, PRNG, self test,
startup/shutdown.

• zlib - A statically linked copy of zlib used for TRNG entropy estimation
• Libcrypt - The OpenSSL cryptographic shared library.
• The logical boundary of Cryptographic Module - consists of ICC Static stub, ICC

shared library, zlib and Libcrypt bounded by the dashed green line in the above
figure. While the signatures of the ICC components used for the integrity check of
the ICC during its initialization are contained in the ICC static stub, all of the validated
cryptographic algorithms are implemented in ICC shared library, zlib and Libcrypt
whose binary object code is enclosed in the dashed red lines in the above Figure.

5. FIPS 140-2 Specifications

5.1 Ports and Interfaces
The ICC meets the requirements of a multi-chip standalone module. Since the ICC is a
software module, its interfaces are defined in terms of the API that it provides. Data
Input Interface is defined as the input data parameters of those API functions that accept,
as their arguments, data to be used or processed by the module. The return value or
arguments of appropriate types, data generated or otherwise processed by the API
functions to the caller constitute Data Output Interface. Control Input Interface is
comprised of the call used to initiate the module and the API functions used to control the
operation of the module as well as environment variables.

Status Output Interface is defined as the API functions ICC_GetStatus and ICC_GetValue
that provide information about the status of the module. The functions ICC_GetStatus and
ICC_GetValue may be called anytime after ICC_Init to indicate the status of the ICC
module.

5.2 Roles, Services and Authentication

5.2.1 Roles and Authentication
The ICC implements the following two roles: Crypto-Officer role and User role (there is no
Maintenance Role). The Operating System (OS) provides functionality to require any user to
be successfully authenticated prior to using any system services. However, the Module
does not support user identification or authentication that would allow for distinguishing

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 10
IBM Crypto for C (ICC) v8.0.0

users between the two supported roles. Only a single operator assuming a particular role
may operate the Module at any particular moment in time. The OS authentication
mechanism must be enabled to ensure that none of the Module’s services are available
to users who do not assume an authorized role.

The Module does not identify nor authenticate any user (in any role) that is accessing
the Module. This is only acceptable for a FIPS 140-2, Security Level 1 validation.

The two roles are defined per the FIPS140-2 standard as follows:

1. Crypto Officer - any entity that can access services implemented in the Module
and, install and initialize the Module

2. User - any entity that can access services implemented in the Module.

Table 1, below, lists the Roles and their associated authentication:

Role Authentication
Type

Authentication
Data

Authentication
Mechanism

Authentication
Strength

Crypto Officer Not required Not required Not required Not required
User Not required Not required Not required Not required

Table 1: Roles and Services

5.2.2 Authorized Services

An operator is implicitly assumed in the User or Cryptographic Officer role based
upon the operations chosen. Both User and Cryptographic Officer can call all services
implemented in the Module as listed in Table 2 below. Only Cryptographic Officer can
install and initialize the Module. If the operator installs and/or initializes the Module,
then he is in the Cryptographic Officer role. Otherwise, the operator is in the User role.

The following table provides a summary of the services and access supported by the
ICC.

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 11
IBM Crypto for C (ICC) v8.0.0

Service Notes Modes FIPS-

Approved
If yes,
Cert #

Cryptographic Keys,
CSPs and access

Symmetric Algorithms
AES 128, 192,or 256 bit

keys (FIPS 197)
Encrypt/Decrypt

CBC,ECB,
CFB1, CFB8,
CFB128, OFB

Yes
Cert # 1318,
1319, 1320,
1321, 1322,
1323, 1324,
1325, 1326,
1327, 1328,
1329, 1330,
1331

AES Symmetric
key

Read/
Write

TDES 168 bit keys
Encrypt/Decrypt

CBC, ECB,
CFB64, OFB

Yes
Cert # 917,
918, 919, 920,
921, 922, 923,
924, 925, 926,
927, 928, 929,
930

TDES Symmetric
key

Read/
Write

Public Key Algorithms
DSA
Key/Parameter
Generation

1024 bit modulus
(FIPS 186-2 key
size)

N/A Yes
Cert # 422,
423, 424, 425,
426, 427, 428,
429, 430, 431,
432, 433, 434,
435

DSA public and
private key

Write

DSA
Key/Parameter
Generation

512-bit, 1536-bit
2048-bit, 3072-bit
modulus

N/A No

DSA public and
private key

Write

DSA Signature
Generation

1024 bit modulus N/A Yes
Cert # 422,
423, 424, 425,
426, 427, 428,
429, 430, 431,
432, 433, 434,
435

DSA private key Read

DSA Signature
Generation

512-bit, 1536-bit,
2048-bit, 3072-bit
modulus

N/A No

DSA private key Read

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 12
IBM Crypto for C (ICC) v8.0.0

DSA Signature
Verification

1024 bit modulus N/A Yes
Cert # 422,
423, 424, 425,
426, 427, 428,
429, 430, 431,
432, 433, 434,
435

DSA public key Read

DSA Signature
Verification

512-bit, 1536-bit
2048-bit, 3072-bit
modulus

N/A No DSA public key Read

ECDSA KeyPair P: 192 to 521
K: 163 to 571
B: 163 to 571

N/A Yes
Cert # 157,
158, 159, 160,
161, 162, 163,
164, 165, 166,
167, 168, 169,
170

ECDSA public and
private key

Write

ECDSA PKV P: 192 to 521
K: 163 to 571
B: 163 to 571

N/A Yes
Cert # 157,
158, 159, 160,
161, 162, 163,
164, 165, 166,
167, 168, 169,
170

ECDSA key
material

Write

ECDSA Signature
Generation

P: 192 to 521
K: 163 to 571
B: 163 to 571

N/A Yes
Cert # 157,
158, 159, 160,
161, 162, 163,
164, 165, 166,
167, 168, 169,
170

ECDSA private
key

Read

ECSDA Signature
Verification

P: 192 to 521
K: 163 to 571
B: 163 to 571

N/A Yes
Cert # 157,
158, 159, 160,
161, 162, 163,
164, 165, 166,
167, 168, 169,
170

ECDSA public key Read

RSA Key
Generation

ANSI X9.31
(1024 to 4096 bits)

N/A Yes
Cert # 630,
631, 632, 633,
634, 635, 636,
637, 638, 639,
640, 641, 642,
643

RSA public and
private key

Write

RSA Signature
Generation

PKCS#1.5
(1024 to 4096 bits)
(SHA-1,SHA-
224,SHA-256,SHA-
384,SHA-512)

N/A Yes
Cert # 630,
631, 632, 633,
634, 635, 636,
637, 638, 639,
640, 641, 642,
643

RSA private key Read

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 13
IBM Crypto for C (ICC) v8.0.0

RSA Signature
Verification

PKCS#1.5 (1024 to
4096 bits)
(SHA-1,SHA-
224,SHA-256,SHA-
384,SHA-512)

N/A Yes
Cert # 630,
631, 632, 633,
634, 635, 636,
637, 638, 639,
640, 641, 642,
643

RSA public key Read

RSA Key
Wrapping

Encrypt / Decrypt
(1024 to 4096 bits)

N/A No RSA public and
private key

Read

Diffie-Hellman
(DH)

1024 to 4096 bits)
modulus

Key agreement
and Key
Generation

No DH public and
private key

Read/
write

ECDH 163 to 571 bits for
curve;
(SP 800-56A)

Key agreement
and Key
Generation

No ECDH public and
private key

Read/
write

Hash Functions
SHA-1 FIPS 180-1 N/A Yes

Cert #
1204,1205,
1206,1207,
1208,1209,
1210,1211,
1212,1213,
1214,1215,
1216,1217

None N/A

SHA-224
SHA-256
SHA-384
SHA-512

FIPS 180-2 -SHA-2
algorithms

N/A Yes
Cert #
1204,1205,
1206,1207,
1208,1209,
1210,1211,
1212,1213,
1214,1215,
1216,1217

None N/A

MD2 N/A No None N/A
MD4 N/A No None N/A
MD5 Only allowed during

TLS handshake
N/A No None N/A

MDC2 N/A No None N/A
RIPEMD N/A No None N/A
Message Authentication Codes (MACs)
HMAC-SHA-1,
HMAC-SHA-224,
HMAC-SHA-256,
HMAC-SHA-384,
HMAC-SHA-512

FIPS 198, 198a N/A Yes
Cert # 766,
767, 768, 769,
770, 771, 772,
773, 774, 775,
776, 777, 778,
779

HMAC-SHA-1 key,
HMAC-SHA-224
key,
HMAC-SHA-256
key,
HMAC-SHA-384
key, HMAC-SHA-
512 key

Write

HMAC-MD5 N/A N/A No HMAC-MD5 key Write

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 14
IBM Crypto for C (ICC) v8.0.0

CMAC-AES-128,
CMAC-AES-192,
CMAC-AES-256

FIPS 197 N/A Yes
Cert # 1318,
1319, 1320,
1321, 1322,
1323, 1324,
1325, 1326,
1327, 1328,
1329, 1330,
1331

CMAC-AES-128
key,
CMAC-AES-192
key,
CMAC-AES-256
key

Write

CMAC-TDES3
(168-bit)

FIPS 197 CBC Yes
Cert # 917,
918, 919, 920,
921, 922, 923,
924, 925, 926,
927, 928, 929,
930

CMAC-TDES3 key
(168-bit)

Write

AES_CCM FIPS 197, N/A Yes
Cert # 1318,
1319, 1320,
1321, 1322,
1323, 1324,
1325, 1326,
1327, 1328,
1329, 1330,
1331

AES_CCM key Write

AES_GCM (96-bit
IV)

FIPS 197, SP800-
38D

N/A Yes
Cert # 1318,
1319, 1320,
1321, 1322,
1323, 1324,
1325, 1326,
1327, 1328,
1329, 1330,
1331

AES_GCM key Write

Random Number Generation
DRBG 800-90 SP 800-90 HMAC_DRBG

(SHA-1, SHA-
224, SHA-256),
CTR_DRBG
(AES-128-
ECB, AES-
192-ECB,
AES-256-ECB
with/without
derivation
function and
prediction
resistance
supported)

Yes
Cert# 34, 35,
36, 37, 38, 39,
40, 41, 42, 43,
44, 45, 46, 47

Seed Write

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 15
IBM Crypto for C (ICC) v8.0.0

Other functions (Not FIPS Approved – Not allowed in FIPS mode)
Service Notes FIPS-Approved
DES encryption/decryption Cipher algorithm No
CAST encryption/decryption Cipher algorithm No
Camellia Cipher algorithm No
Blowfish Cipher algorithm No
RC4 Cipher algorithm No
RC2 encryption/decryption Cipher algorithm No

Table 2: Services and Access

When operating in FIPS approved mode no unapproved algorithms may be used. There
is an allowance for key establishment and exchange to use any algorithm when
operating in FIPS approved mode (under the phrase “commercially available methods
may be used”). The ICC will not limit the algorithms but in the ICC policy it will list the
FIPS approved algorithms, the allowances/exceptions (e.g. SSL key exchange and
establishment) and the algorithms that are not FIPS approved.

5.2.3 Access Rights Within Services
An operator performing a service within any role can read/write cryptographic keys and
critical security parameters (CSP) only through the invocation of a service by use of the
Cryptographic Module API. Each service within each role can only access the
cryptographic keys and CSPs that the service’s API defines. The following cases exist:

• A cryptographic key or CSP is provided to an API as an input parameter; this
indicates read/write access to that cryptographic key or CSP.

• A cryptographic key or CSP is returned from an API as a return value; this indicates
read access to that cryptographic key or CSP.

The details of the access to cryptographic keys and CSPs for each service are
indicated in the rightmost column of Table 2. The indicated access rights apply to
both the User role and Cryptographic Officer role who invokes services.

5.2.4 Operational Rules and Assumptions
The following operational rules must be followed by any user of the Module:

1. The Module is to be used by a single human operator at a time and may not be
actively shared among operators at any period of time.

2. The OS authentication mechanism must be enabled in order to prevent
unauthorized users from being able to access system services.

3. All keys entered into the module must be verified as being legitimate and
belonging to the correct entity by software running on the same machine as the
module.

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 16
IBM Crypto for C (ICC) v8.0.0

4. Since the ICC runs on a general-purpose processor all main data paths of the
computer system will contain cryptographic material. The following items need to
apply relative to where the ICC will execute:

• Virtual (paged) memory must be secure (local disk or a secure network)
• The system bus must be secure.
• The disk drive that ICC is installed on must be in a secure environment.

5. The above rules must be upheld at all times in order to ensure continued system
security and FIPS 140-2 mode compliance after initial setup of the validated
configuration. If the module is removed from the above environment, it is assumed not
to be operational in the validated mode until such time as it has been returned to the
above environment and re-initialized by the user to the validated condition.

NOTE: It is the responsibility of the Crypto-Officer to configure the operating system to
operate securely and ensure that only a single operator may operate the Module at any
particular moment in time.

The services provided by the Module to a User are effectively delivered through the use of
appropriate API calls. In this respect, the same set of services is available to both the User
and the Crypto-Officer.

When a client process attempts to load an instance of the Module into memory, the
Module runs an integrity test and a number of cryptographic functionality self-tests. If all the
tests pass successfully, the Module makes a transition to “FIPS Operation” state, where the
API calls can be used by the client to obtain desired cryptographic services. Otherwise, the
Module enters to “Error” state and returns an error to the calling application. When the
Module is in “Error” state, no FIPS-approved services should be available, and all of data
input and data output except the status information should be inhibited.

5.3 Operational Environment

Along with the conditions stated above in paragraph 5.2.4 (“Operational Rules and
Assumptions”), the criteria below must be followed in order to achieve, and maintain, a
FIPS 140-2 mode of operation:

5.3.1 Assumptions
The following assumptions are made about the operating environment of the
cryptographic module:

1. The prevention of unauthorized reading, writing, or modification of the module’s
memory space (code and data) by an intruder (human or machine) is assured.

2. The prevention of Replacement or modification of the legitimate cryptographic
module code by an intruder (human or machine) is assured.

3. The module is initialized to the FIPS 140-2 mode of operation

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 17
IBM Crypto for C (ICC) v8.0.0

 5.3.2 Installation and Initialization
The following steps must be performed to install and initialize the module for operating
in a FIPS 140-2 compliant manner:

1. The operating system must be configured to operate securely and to prevent
remote login. This is accomplished by disabling all services (within the
Administrative tools) that provide remote access (e.g. – ftp, telnet, ssh, and server)
and disallowing multiple operators to log in at once.

2. The operating system must be configured to allow only a single user. This is
accomplished by disabling all user accounts except the administrator. This can be
done through the Computer Management window of the operating system.

3. The module must be initialized to operate in FIPS 140-2 mode; this is done by
the following calling sequence:

 ICC_Init to create the crypto module context.
 ICC_SetValue to set the parameter FIPS_APPROVED_MODE to "on"
 ICC_Attach to load the library, perform the self-tests and turn the crypto

module in an operational state

5.4 Cryptographic Key Management

 5.4.1 Implemented Algorithms
The IBM Crypto for C (ICC) version 8.0.0 supports the algorithms (and modes, as
applicable) listed above in Table 2 in section 5.2.2.

5.4.2 Key Generation

Key generation has dependency on random number generator DRBG 800-90, which is
detailed below. DRBG 800-90 is used to generate RSA/DSA/ECDSA/DH/ECDH key pairs
as well as AES keys and TDES keys. Key sizes for AES keys can be 128-bit, 192-bit or
256-bit. Key size for TDES key is 3-key TDES key.

In FIPS mode, RSA key generation is carried out in accordance with the algorithms
described in ANSI X9.31, the code used is the same as that used in the openssl-fips-1.2
sources.

Also in FIPS mode, DSA and ECDSA key generation is carried out in accordance with the
algorithms described in FIPS 186-2 and ANSI X9.62, respectively.

In non-FIPS mode, the normal OpenSSL (PKCS style) RSA key generation is used.

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 18
IBM Crypto for C (ICC) v8.0.0

The ICC provides X9.31 and PKCS#1 compatible algorithms for processing signatures
(creating and verifying) the function of which is available as specified in the API's in this
document. These algorithms are also available for encryption and decryption where it is
used as PKCS#1 compatible.

In addition, there is a set of lower level interfaces for encryption and decryption where the
algorithm can be used as PKCS#1 compatible but it also allows other types of padding
operations to be used. See RSA encryption functions for the definition of the functions and
for the list of padding modes.

The DRBG 800-90 used by default internally will be of 256 bits effective strength.

DRBG 800-90 Random Number Generators

The following describes the random number generation.

• Seed must have an incremental element/quality (time stamp) to it.
• Seed must have an entropy estimate/shutdown on failure. A continuous entropy

estimate of the raw entropy source is obtained by using a compression function. See
EntropyEstimator()

• Generation of seed. See ICC_GenerateRandomSeed()
• Seed is fed to DRBG 800-90. See ICC_RAND_seed()
• The minimum guaranteed entropy is 0.5 bits/bit. See EntropyEstimator()
• The current entropy estimate is available via ICC_GetValue()
• The initial state of the TRNG is time/date mixed with TRNG source and is unique for

each invocation of ICC.
• Previous state of the TRNG is saved as a hash, therefore the previous state is not

obtainable from the residual program image without reversing a (lossy) hash function.
See META_GenerateRandomSeed()

• State of the DRBG 800-90 is cleared on exit. See OpenSSL_Cleanup(),
ICC_RNG_CTX_free()

• State of the TRNG entropy estimation test is cleared on exit. See ICCUnload(),
CleanupEntropyEstimator()

5.4.3 Key Establishment

The ICC uses the following as key establishment methodologies:

• Diffie-Hellman (DH) with 1024-4096 bits key to provide 80-150 bits of security
strength

• Elliptic Curve Diffie-Hellman (ECDH) with 163-571 bits curve to provide 80-256 bits of
security strength

• RSA Encrypt/Decrypt for Key Wrapping with 1024-4096 bits of key to provide 80-150
bits of security strength.

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 19
IBM Crypto for C (ICC) v8.0.0

5.4.4 Key Entry and Output

The ICC module does not support manual key entry or intermediate key generation key
output. In addition, the ICC module does not produce key output in plaintext format outside
its physical boundary.

5.4.5 Key Storage
The module does not provide any long-term key storage and no keys are ever stored on
the hard disk.

5.4.6 Key Zeroization

ICC modifies the default OpenSSL scrubbing code to zero objects instead of filling with
pseudo random data and adds explicit testing for zeroization.

Key zeroization is performed via the following API calls:

• ICC_BN_clear_free() , ICC_BN_CTX_free() - Low-level arithmetic functions
• ICC_EVP_CIPHER_CTX_free() - Symmetric ciphers
• ICC_RSA_free() - RSA
• ICC_DSA_free() - DSA
• ICC_DH_free() - DH
• ICC_EVP_PKEY_free – Generic asymmetric key contexts (RSA, DSA and DH keys)
• ICC_HMAC_CTX_free() - HMAC
• ICC_EC_KEY_free() – Low-level EC function, as well as ECDSA/ECDH
• ICC_CMAC_CTX_free() - CMAC
• ICC_AES_GCM_CTX_free() - AES-GCM
• ICC_RNG_CTX_free()

 .

5.5 Self-Tests
The ICC implements a number of self-tests to check proper functioning of the module.
This includes power-up self-tests (which are also callable on demand) and conditional
self-tests. The self-test can be initiated by calling the function ICC_SelfTest, which
returns the operational status of the module (after the self-tests are run) and an error
code with description of the error (if applicable). Additionally, when the module is
performing self-tests, no API functions are available and no data output is possible until
the self-tests are successfully completed.

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 20
IBM Crypto for C (ICC) v8.0.0

5.5.1 Show Status
Two functions indicate the status of the ICC module:

• ICC_GetStatus
o Shows the state of the ICC module

• ICC_GetValue

o Get the ICC version
o Inform whether the ICC module is in FIPS / non-FIPS mode
o Current entropy estimate for the DRBG 800-90 seed source

Both functions may be called anytime after ICC_Init.

5.5.2 Startup Tests
The module performs self-tests automatically when the API function ICC_Attach is
called or on demand when the API function ICC_SelfTest is called.

Whenever the startup tests are initiated the module performs the following; if any of
these tests fail, the module enters the error state.

• Integrity Test of Digital Signature: The ICC uses an Integrity test which uses a
2048-bit CAVS-validated RSA public key (PKCS#1.5) and SHA-256 hashing. This
RSA public key is stored inside the static stub and relies on the operating system for
protection.
• Cryptographic algorithm tests:

 At startup, a Known Answer Test (encryption & decryption) is performed for the
following FIPS approved and non-approved algorithms:

- Triple DES – CBC
- AES 256 – CBC
- RSA – PKCS#1.5 signature generation/verification

One way known answer tests are performed for the following FIPS approved
algorithms:

- SHA-1
- SHA-224
- SHA-256
- SHA-384
- SHA-512
- SHA-1 HMAC
- SHA-224 HMAC
- SHA-256 HMAC
- SHA-384 HMAC
- SHA-512 HMAC
- CMAC-AES-256-CBC
- RSA signature generation

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 21
IBM Crypto for C (ICC) v8.0.0

- ECDSA signature generation
- AES_GCM
- AES_CCM
- DRBG 800-90

Signature generation and verification tests with known keys and data are
performed on the following algorithms

- RSA 1024
- DSA 1024
- ECDSA P-384

In FIPS mode a failure occurred during self-tests is considered a fatal error, in non-
FIPS modes the failing algorithms become unavailable. Additionally, if any of the self-
tests fail, the FIPS mode will not be enabled and none of the FIPS-approved
algorithms will be available.

5.5.3 Conditional Tests
Pairwise consistency test for public and private key generation. - The
consistency of the keys is tested by the calculation and verification of a digital
signature. If the digital signature cannot be verified, the test fails. Pairwise
consistency tests are performed on the following algorithms :

- DSA
- ECDSA
- RSA

Continuous RNG test – The module implements a Continuous RNG test as
follows:

 DRBG 800-90

- The DRBG 800-90 generate a minimum of 8 bytes per request. If less
than 8 bytes are requested, excess data is discarded. The first 8 bytes
of every request is compared with the last 8 bytes requested, if the
bytes match an error is generated. For the first request made to any
instantiation of a DRBG 800-90, two internal 8 byte cycles are
performed. The DRBG 800-90 relies on the environment (i.e. proper
shutdown of the shared libraries) for resistance to retrospective
attacks on data. The DRBG 800-90 performs known answer tests
when first instantiated and health checks at intervals as specified in

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 22
IBM Crypto for C (ICC) v8.0.0

the standard.

5.5.4 Severe Errors
When severe errors are detected (e.g. self-test failure or a conditional test failure) then all
security related functions shall be disabled and no partial data is exposed through the data
output interface. The only way to transition from the error state to an operational state is
to reinitialize the cryptographic module (from an uninitialized state). The error state can be
retrieved via the status interface (see Section 5.5.1 above).

5.6 Design Assurance
The ICC module design team utilizes IBM’s Configuration Management Version Control
(CMVC) system.

CMVC integrates four facets of the software development process in a distributed
development environment to facilitate project-wide coordination of development
activities across all phases of the product development life cycle:

1. Configuration Management – the process of identifying, managing and controlling
software modules as they change over time.

2. Version Control – the storage of multiple versions of a single file along with
information about each version.

3. Change Control – centralizes the storage of files and controls changes to files
through the process of checking files in and out.

4. Problem Tracking – the process of effectively tracking all reported defects and
proposed design changes through to their resolution and implementation.

Files are stored in a file system on the server by means of a version control system. All
other development data is stored in a relational database on the CMVC server. A CMVC
client is a workstation that runs the CMVC client software (or browser for the web
interface) to access the information and files stored on a CMVC server.
CMVC is used o perform the following tasks:

1. Organizing Development Data
2. Configuring CMVC Processes
3. Reporting Problems and Design Changes
4. Tracking Features and Defects

All source code is tracked using CMVC; documents are available in Lotus Notes
database “Team Rooms” with version numbers assigned by document owner.

CMVC monitors changes with defects, features, and integrated problem tracking. Each of
these restricts file changes so that they are made in a systematic manner. CMVC can

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

 Non-Proprietary FIPS 140-2 Security Policy 23
IBM Crypto for C (ICC) v8.0.0

require users to analyze the time and resources required to make changes, verify
changes, and select files to be changed, approve work to be done, and test the
changes. The requirements for changes are controlled by processes. Family
administrators can create processes for components and releases to use, configuring them
from CMVC sub processes.

Finally, the CMVC administrator policy mandates a regular audit of access check of all
user accounts.

5.7 Mitigation Of Other Attacks
The cryptographic module is not designed to mitigate any specific attacks.

6. API Functions
The module API functions are fully described in the IBM Crypto for C (ICC) Design
Document. The following is the list of the API functions supported:

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

Non-Proprietary FIPS 140-2 Security Policy
IBM Crypto for C (ICC) v8.0.0 24

• ICC_GetStatus

• ICC_Init (CO)

• ICC_SetValue (CO)

• ICC_GetValue

• ICC_Attach (CO)

• ICC_Cleanup

• ICC_SelfTest

• ICC_GenerateRandomSeed

• ICC_OBJ_nid2sn

• ICC_EVP_get_digestbyname

• ICC_EVP_get_cipherbyname

• ICC_EVP_MD_CTX_new

• ICC_EVP_MD_CTX_free

• ICC_EVP_MD_CTX_init

• ICC_EVP_MD_CTX_cleanup

• ICC_EVP_MD_CTX_copy

• ICC_EVP_MD_type

• ICC_EVP_MD_size

• ICC_EVP_MD_block_size

• ICC_EVP_MD_CTX_md

• ICC_EVP_Digestinit

• ICC_EVP_DigestUpdate

• ICC_EVP_DigestFinal

• ICC_EVP_CIPHER_CTX_new

• ICC_EVP_CIPHER_CTX_free

• ICC_EVP_CIPHER_CTX_init

• ICC_EVP_CIPHER_CTX_cleanup

• ICC_EVP_CIPHER_CTX_set_key_length

• ICC_EVP_CIPHER_CTX_set_padding

• ICC_EVP_CIPHER_block_size

• ICC_EVP_CIPHER_key_length

• ICC_EVP_CIPHER_iv_length

• ICC_EVP_CIPHER_type

• ICC_EVP_CIPHER_CTX_cipher

• ICC_DES_random_key

• ICC_DES_set_odd_parity

• ICC_EVP_EncryptInit

• ICC_EVP_EncryptUpdate

• ICC_EVP_EncryptFinal

• ICC_EVP_DecryptInit

• ICC_EVP_DecryptUpdate

• ICC_EVP_DecryptFinal

• ICC_EVP_OpenInit

• ICC_EVP_OpenUpdate

• ICC_EVP_OpenFinal

• ICC_EVP_SealInit

• ICC_EVP_SealUpdate

• ICC_EVP_SealFinal

• ICC_EVP_SignInit

• ICC_EVP_SignUpdate

• ICC_EVP_SignFinal

• ICC_EVP_VerifyInit

• ICC_EVP_VerifyUpdate

• ICC_EVP_VerifyFinal

• ICC_EVP_ENCODE_CTX_new

• ICC_EVP_ENCODE_CTX_free

• ICC_EVP_EncodeInit

• ICC_EVP_EncodeUpdate

• ICC_EVP_EncodeFinal

• ICC_EVP_DecodeInit

• ICC_EVP_DecodeUpdate

• ICC_EVP_DecodeFinal

• ICC_RAND_bytes

• ICC_RAND_seed

• ICC_EVP_PKEY_decrypt

• ICC_EVP_PKEY_encrypt

• ICC_EVP_PKEY_new

• ICC_EVP_PKEY_free

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

Non-Proprietary FIPS 140-2 Security Policy
IBM Crypto for C (ICC) v8.0.0 25

• ICC_EVP_PKEY_size

• ICC_RSA_new

• ICC_RSA_generate_key

• ICC_RSA_check_key

• ICC_EVP_PKEY_set1_RSA

• ICC_EVP_PKEY_get1_RSA

• ICC_RSA_free

• ICC_RSA_private_encrypt

• ICC_RSA_private_decrypt

• ICC_RSA_public_encrypt

• ICC_RSA_public_decrypt

• ICC_i2d_RSAPrivateKey

• ICC_i2d_RSAPublicKey

• ICC_d2i_PrivateKey

• ICC_d2i_PublicKey

• ICC_EVP_PKEY_set1_DH

• ICC_EVP_PKEY_get1_DH

• ICC_DH_new

• ICC_DH_new_generate_key

• ICC_DH_ check

• ICC_DH_free

• ICC_DH_size

• ICC_DH_compute_key

• ICC_DH_generate_parameters

• ICC_DH_get_PublicKey

• ICC_id2_DHparams

• ICC_d2i_DHparams

• ICC_EVP_PKEY_set1_DSA

• ICC_EVP_PKEY_get1_DSA

• ICC_DSA_dup_DH

• ICC_DSA_sign

• ICC_DSA_verify

• ICC_DSA_size

• ICC_DSA_new

• ICC_DSA_free

• ICC_DSA_generate_key

• ICC_DSA_generate_parameters

• ICC_i2d_DSAPrivateKey

• ICC_d2i_DSAPrivateKey

• ICC_i2d_DSAPublicKey

• ICC_d2i_DSAPublicKey

• ICC_i2d_DSAparams

• ICC_d2i_DSAparams

• ICC_ERR_get_error

• ICC_ERR_peek_error

• ICC_ERR_peek_last_error

• ICC_ERR_error_string

• ICC_ERR_error_string_n

• ICC_ERR_lib_error_string

• ICC_ERR_func_error_string

• ICC_ERR_reason_error_string

• ICC_ERR_clear_error

• ICC_ERR_remove_state

• ICC_BN_bn2bin

• ICC_BN_bin2bn

• ICC_BN_num_bits

• ICC_BN_num_bytes

• ICC_BN_new

• ICC_BN_clear_free

• ICC_RSA_blinding_off

• ICC_EVP_CIPHER_CTX_ctrl

• ICC_RSA_size

• ICC_BN_CTX_new

• ICC_BN_CTX_free

• ICC_BN_mod_exp

• ICC_HMAC_CTX_new

• ICC_HMAC_CTX_free

• ICC_HMAC_Init

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

Non-Proprietary FIPS 140-2 Security Policy
IBM Crypto for C (ICC) v8.0.0 26

• ICC_HMAC_Update

• ICC_HMAC_Final

• ICC_BN_div

• ICC_d2i_DSA_PUBKEY

• ICC_i2d_DSA_PUBKEY

• ICC_ECDSA_SIG_new

• ICC_ECDSA_SIG_free

• ICC_i2d_ECDSA_SIG

• ICC_d2i_ECDSA_SIG

• ICC_ECDSA_sign

• ICC_ECDSA_verify

• ICC_ECDSA_size

• ICC_EVP_PKEY_set1_EC_KEY

• ICC_EVP_PKEY_get1_EC_KEY

• ICC_EC_KEY_new_by_curve_name

• ICC_EC_KEY_new

• ICC_EC_KEY_free

• ICC_EC_KEY_generate_key

• ICC_EC_KEY_get0_group

• ICC_EC_METHOD_get_field_type

• ICC_EC_GROUP_method_of

• ICC_EC_POINT_new

• ICC_EC_POINT_free

• ICC_EC_POINT_get_affine_coordinates_
GFp

• ICC_EC_POINT_set_affine_coordinates_
GFp

• ICC_EC_POINT_get_affine_coordinates_
GF2m

• ICC_EC_POINT_set_affine_coordinates_
GF2m

• ICC_EC_KEY_get0_public_key

• ICC_EC_KEY_set_public_key

• ICC_EC_KEY_get0_private_key

• ICC_EC_KEY_set_private_key

• ICC_ECDH_compute_key

• ICC_d2i_ECPrivateKey

• ICC_i2d_ECPrivateKey

• ICC_d2i_ECParameters

• ICC_i2d_ECParameters

• ICC_EC_POINT_is_on_curve

• ICC_EC_POINT_is_at_infinity

• ICC_EC_KEY_check_key

• ICC_EC_POINT_mul

• ICC_EC_GROUP_get_order

• ICC_EC_POINT_dup

• ICC_PKCS5_pbe_set

• ICC_PKCS5_pbe2_set

• ICC_PKCS12_pbe_crypt

• ICC_X509_ALGOR_free

• ICC_OBJ_txt2nid

• ICC_EVP_EncodeBlock

• ICC_EVP_DecodeBlock

• ICC_CMAC_CTX_new

• ICC_CMAC_CTX_free

• ICC_CMAC_Init

• ICC_CMAC_Update

• ICC_CMAC_Final

• ICC_AES_GCM_CTX_new

• ICC_AES_GCM_CTX_free

• ICC_AES_GCM_CTX_ctrl

• ICC_AES_GCM_Init

• ICC_AES_GCM_EncryptUpdate

• ICC_AES_GCM_DecryptUpdate

• ICC_AES_GCM_EncryptFinal

• ICC_AES_GCM_DecryptFinal

• ICC_AES_GCM_GenerateIV

• ICC_GHASH

• ICC_AES_CCM_Encrypt

IBM® Crypto for C (ICC), Version 8.0.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.2

December 6, 2010

Non-Proprietary FIPS 140-2 Security Policy
IBM Crypto for C (ICC) v8.0.0 27

• ICC_AES_CCM_Decrypt

• ICC_get_RNGbyname

• ICC_RNG_CTX_new

• ICC_RNG_CTX_free

• ICC_RNG_CTX_Init

• ICC_RNG_Generate

• ICC_RNG_ReSeed

• ICC_RNG_CTX_ctrl

• ICC_RSA_sign

• ICC_RSA_verify

• ICC_EC_GROUP_get_degree

• ICC_EC_GROUP_get_curve_GFp

• ICC_EC_GROUP_get_curve_GF2m

• ICC_EC_GROUP_get0_generator

• ICC_i2o_ECPublicKey

• ICC_o2i_ECPublicKey

• ICC_BN_cmp

• ICC_BN_add

• ICC_BN_sub

• ICC_BN_mod_mul

• ICC_EVP_PKCS82PKEY

• ICC_EVP_PKEY2PKCS8

• ICC_PKCS8_PRIV_KEY_INFO_free

• ICC_d2i_PKCS8_PRIV_KEY_INFO

• ICC_i2d_PKCS8_PRIV_KEY_INFO

• ICC_d2i_ECPKParameters

• ICC_i2d_ECPKParameters

• ICC_EC_GROUP_free

• ICC_EC_KEY_set_group

• ICC_EC_KEY_dup

• ICC_SP800_108_get_KDFbyname

• ICC_SP800_108_KDF

• ICC_DSA_SIG_new

• ICC_DSA_SIG_free

• ICC_d2i_DSA_SIG

• ICC_i2d_DSA_SIG

• ICC_RSA_X931_derive_ex

• ICC_Init

• ICC_lib_init (non-FIPS mode)

• ICC_lib_cleanup (non-FIPS mode)

• ICC_MemCheck_start (non-FIPS mode)

• ICC_MemCheck_stop (non-FIPS mode)

The functions marked with (CO) are crypto officer functions.
The functions marked with (non-FIPS mode) are not allowed to be called when running in
FIPS mode. They may be usable only in development or test conditions.

