
www.thalesgroup.com/iss

nShield Security Policy

nShield F2 6000e, nShield F2 1500e, nShield F2
500e and nShield F2 10e

nShield Security Policy

2

Version: 3.4

Date: 12 November 2015

Copyright 2015 Thales e-Security, Inc. All rights reserved.

Copyright in this document is the property of Thales e-Security Limited.
This document is non-proprietary Reproduction is authorised provided the document is copied in its entirety
without modification and including this copyright notice
CodeSafe, KeySafe, nCipher, nFast, nForce, nShield, payShield, and Ultrasign are registered trademarks of
Thales e-Security Limited or nCipher Corporation Limited.
CipherTools, CryptoStor, CryptoStor Tape, keyAuthority, KeyVault, nCore, netHSM, nFast Ultra, nForce Ultra,
nShield Connect, nToken, SafeBuilder, SEE, and Trust Appliance are trademarks of Thales e-Security Limited or
nCipher Corporation Limited.
All other trademarks are the property of the respective trademark holders.
Information in this document is subject to change without notice.
Thales e-Security Limited makes no warranty of any kind with regard to this information, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Thales e-Security Limited shall
not be liable for errors contained herein or for incidental or consequential damages concerned with the
furnishing, performance or use of this material.

Patents

UK Patent GB9714757.3. Corresponding patents/applications in USA, Canada, South Africa, Japan and
International Patent Application PCT/GB98/00142.

nShield Security Policy

3

Versions

To support the range of nShield hardware platforms, multiple variants of this document are
generated from the same source files.

Version Date Comments

N/A 13 August 1998 nFast nF75KM and nF75CA SCSI modules f/w 1.33.1

N/A 18 January 2000 nForce and nShield SCSI and PCI modules f/w 1.54.28

N/A 20 December 2000 nForce and nShield SCSI and PCI modules f/w 1.70

N/A 1 March 2000 nForce and nShield SCSI and PCI modules f/w 1.70

1.0.7 23 May 2001
nForce and nShield SCSI and PCI modules f/w 1.71
Adds SEE

1.0.9 14 September 2001
nForce and nShield SCSI and PCI modules f/w 1.71.91
Adds Remote Operator Card Sets, Foreign Token Access, Feature Enablement

1.1.25 6 May 2002 nForce and nShield SCSI and PCI modules f/w 1.77.96

1.1.30 22 July 2002 nForce and nShield SCSI and PCI modules f/w 2.0.0

1.1.33 4 October 2002 nForce and nShield SCSI and PCI modules f/w 2.1.12

1.2.39 23 June 2003 nCipher PMC module f/w 2.1.32

1.3.3 3 July 2003 nForce and nShield PCI 800 modules f/w 2.0.1

1.3.6 5 September 2003 nForce and nShield SCSI and PCI modules f/w 2.0.2

1.0.24 23 January 2004 nForce and nShield SCSI f/w 2.0.5

1.3.14 18 March 2004
nForce, nShield and Payshield SCSI and PCI modules f/w 2.12
adds nCipher 1600 PCI

1.4.20 5 October 2005 nForce, nShield and Payshield SCSI and PCI modules f/w 2,18

2.0.0 6 April 2006 nShield 500 PCI f/w 2.22.6

1.4.14 9 March 2006
nForce and nShield SCSI f/w 1.77.100 and PCI modules f/w 2.12.9 and 2.18.15
Fix for security issues

1.4.28 15 March 2006
nForce and nShield SCSI f/w 1.77.100 and PCI modules f/w 2.12.9 and 2.18.15
Typographic corrections to above.

2.0.1 11 May 2006
nShield 500, 2000 and 4000 PCI f/w 2.22.6
MiniHSM f/w 2.22.6

2.1.1 14 June 2006 nShield 500, 2000 and 4000 PCI f/w 2.22.34

2.1.2 29 August 2006 MiniHSM build standard B

2.1.3 20 December 2006 nShield 500 PCI f/w 2.22.34

2.2.2 29 April 2008 nShield 500, 2000 and 4000 PCI f/w 2.2.43

2.2.3 24 June 2008 nShield 500 PCI and nShield 500, 2000 and 4000 PCI f/w 2.33.60

2.3.1 15 December 2008 nShield PCI and nShield PCIe f/w 2.33,75

2.4.1 28 August 2009 nShield PCI and nShield PCIe f/w 2.33.82

nShield Security Policy

Version: 3.4

4

2.4.2 10 June 2009 nShield PCI and nShield PCIe f/w 2.38.4

2.5.3 28 January 2010 nShield PCI and nShield PCIe f/w 2.33.82

2.5.4 17 February 2010 nShield PCI and nShield PCIe f/w 2.38.7

3.0 27 March 2012 nShield PCI and nShield PCIe f/w 2.50.17 - Thales branding

3.1 5 March 2013 nShield PCI and nShield PCIe f/w 2.51.10

3.2 11 June 2013 nShield PCI and nShield PCIe f/w 2.51.10, updated RSA certificates

Version Date Comments

3.3 15 September 2015 nShield PCI and nShield PCIe f/w 2.50.16, 2.51.10, 2.50.35 and 2.55.1

3.4 12 November 2015 nShield PCI and nShield PCIe f/w 2.50.16-2, 2.51.10-2, 2.50.35-2 and 2.55.1-2

nShield Security Policy

5

Contents

Chapter 1: Purpose 8

Chapter 2: Excluded Components 10

Chapter 3: Roles 11

Unauthenticated 11
User 11
nCipher Security Officer 11
Junior Security Officer 12

Chapter 4: Services available to each role 13

Chapter 5: Keys 25

nCipher Security Officer's key 25
Junior Security Officer's key 25
Long term signing key 26
Module signing key 26
Module keys 26
Logical tokens 27
Share Key 27
Impath keys 28
Key objects 28
Session keys 29
Archiving keys 29
Certificate signing keys 30
Firmware Integrity Key 30
Firmware Confidentiality Key 31
Master Feature Enable Key 31
DRBG Key 31

nShield Security Policy

Version: 3.4

6

Chapter 6: Rules 32

Identification and authentication 32
Access Control 32
Access Control List 33
Object re-use 33
Error conditions 34
Security Boundary 34
Status information 34

35

Procedures to initialise a module to comply with FIPS 140-2 Level 2 35
Verifying the module is in level 2 mode 35

Operating a level 2 module in FIPS mode 36

To return a module to factory state 37

To create a new operator 38

To authorize the operator to create keys 39

To authorize an operator to act as a Junior Security Officer 40

To authenticate an operator to use a stored key 41

To authenticate an operator to create a new key 42

Chapter 7: Physical security 43

Checking the module 43

Chapter 8: Strength of functions 44

Attacking Object IDs 44
Attacking Tokens 44
Key Blobs 45
Impaths 45
KDP key provisioning 46
Derived Keys 46

Chapter 9: Self Tests 48

Firmware Load Test 49

nShield Security Policy

Version: 3.4

7

Chapter 10: Supported Algorithms 50

FIPS approved and allowed algorithms: 50
Symmetric Encryption 50
Hashing and Message Authentication 50
Signature 51
Key Establishment 51
Other 52

Non-FIPS approved algorithms 53
Symmetric 53
Asymmetric 53
Hashing and Message Authentication 53
Non-deterministic entropy source 54
Other 54

Addresses 55

55

Version: 3.4

8

Chapter 1: Purpose

nShield tamper resistant Hardware Security Modules are multi-tasking hardware modules that
are optimized for performing modular arithmetic on very large integers. The modules also offer
a complete set of key management protocols.

The nShield Hardware Security Modules are defined as multi-chip embedded cryptographic
modules as defined by FIPS PUB 140-2.

The units are identical in operation and only vary in the processing speed and the support
software supplied.

All modules are now supplied at build standard “N” to indicate that they meet the latest EU
regulations regarding ROHS.

Thales also supply modules to third party OEM vendors for use in a range of security products.

The module runs firmware provided by Thales. There is the facility for the administrator to
upgrade this firmware. In order to determine that the module is running the correct version of
firmware they should use the NewEnquiry service which reports the version of firmware
currently loaded.

Unit ID Model Number RTC
NVRAM

SEE Potting EMC Crypto
Accelerator

Overall
level

nShield F2 6000e nC3023E-6K0 Yes No Yes A Broadcom 5825 2

nShield F2 1500e nC3023E-1K5 Yes No Yes A Broadcom 5825 2

nShield F2 500e nC3023E-500 Yes No Yes A Broadcom 5825 2

nShield F2 10e nC3023E-010 Yes No Yes A None 2

The validated firmware versions are 2.50.16-2, 2.51.10-2, 2.50.35-2 and 2.55.1-2.

Version: 3.4

9

The initialization parameters are reported by the NewEnquiry and SignModuleState services. An
operator can determine which mode the module is operating in using the KeySafe GUI or the
command line utilities supplied with the module, or their own code - these operate outside the
security boundary.

The modules must be accessed by a custom written application. Full documentation for the
nCore API can be downloaded from the Thales web site.

nShield modules have on-board non-volatile memory. There are services that enable memory to
be allocated as files. Files have Access Control Lists that determine what operations can be
performed on their contents. nShield modules have on-board Real-time clock.

These modules do not offer SEE, if a customer requires this functionality, they should purchase
an nShield F3 module.

The module can be connected to a computer running one of the following operating systems:

• Windows

• Solaris

• HP-UX

• AIX

• Linux x86

 Windows XP and Solaris were used to test the module for this validation.

Version: 3.4

10

Chapter 2: Excluded Components

The following components are excluded from FIPS 140-2 validation:

• Single lane PCIe bus

• PS-2 Serial connector

• Mode switch

• Reset switch

• Status LED

Version: 3.4

11

Chapter 3: Roles

The module defines the following roles: Unauthenticated, User, nCipher Security Officer and
Junior Security Officer. The nCipher Security Officer and Junior Security Officer roles are
equivalent of FIPS 140-2 Crypto-Officer role.

Unauthenticated

All connections are initially unauthenticated. If the module is initialized in level 3 mode, an
unauthenticated operator is restricted to status commands, and commands required to complete
authorization protocol.

User

An operator enters the user role by providing the required authority to carry out a service. The
exact accreditation required to perform each service is listed in the table of services.

In order to perform an operation on a stored key, the operator must first load the key blob. If the
key blob is protected by a logical token, the operator must first load the logical token by loading
shares from smart cards.

If the module is initialized in level 3 mode, the user role requires a certificate from the nCipher
Security Officer to import or generate a new key. This certificate is linked to a token protected
key.

Once an operator in the user role has loaded a key they can then use this key to perform
cryptographic operations as defined by the Access Control List (ACL) stored with the key.

Each key blob contains an ACL that determines what services can be performed on that key.
This ACL can require a certificate from a nCipher Security Officer authorizing the action. Some
actions including writing tokens always require a certificate.

nCipher Security Officer

The nCipher Security Officer (NSO) is responsible for overall security of the module.

The nCipher Security Officer is identified by a key pair, referred to as KNSO. The hash of the
public half of this key is stored when the unit is initialized. Any operation involving a module
key or writing a token requires a certificate signed by KNSO.

Version: 3.4

12

The nCipher Security Officer is responsible for creating the authentication tokens (smart cards)
for each operator and ensuring that these tokens are physically handed to the correct person.

An operator assumes the role of NSO by loading the private half of KNSO and presenting the
KeyID for this key to authorize a command.

Junior Security Officer

Where the nCipher Security Officer want to delegate responsibility for authorizing an action
they can create a key pair and give this to their delegate who becomes a Junior Security Officer
(JSO). An ACL can then refer to this key, and the JSO is then empowered to sign the certificate
authorizing the action. The JSO's keys should be stored on a key blob protected by a token that
is not used for any other purpose.

In order to assume the role of JSO, the operator loads the JSO key and presents the KeyID of this
key, and if required the certificate signed by KNSO that delegates authority to the key, to
authorize a command.

A JSO can delegate portions of their authority to a new operator in the same way. The new
operator will be a JSO if they have authority they can delegate, otherwise they will assume the
user role.

Version: 3.4

13

Chapter 4: Services available to each role

For more information on each of these services refer to the nShield Developer's Tutorial and
nShield Developer's Reference.

The following services provide authentication or cryptographic functionality. The functions
available depend on whether the operator is in the unauthenticated role, the user or junior
security officer (JSO) roles, or the nCipher Security Officer (NSO) role. For each operation it
lists the supported algorithms. Algorithms in square brackets are not under the operator's
control. Algorithms used in optional portions of a service are listed in italics.

Note Algorithms marked with an asterisk are not approved by NIST. If the module is initialised in
its level 3 mode, these algorithms are disabled. If module is initialized in level 2 mode, the
algorithms are available. However, if you choose to use them, the module is not operating
in FIPS approved mode.

Key
Access

Description

Create Creates a in-memory object, but does not reveal value.

Erase Erases the object from memory, smart card or non-volatile memory without revealing value

Export Discloses a value, but does not allow value to be changed.

Report Returns status information

Set Changes a CSP to a given value

Use Performs an operation with an existing CSP - without revealing or changing the CSP

Version: 3.4

14

Command /
Service

Role Description Key/CSP access Key types

U
n

a
u

th

J
S

O
 /

 U
s

e
r

N
S

O

Bignum
Operation

Yes

Yes

Yes

Performs simple mathematical
operations.

No access to keys
or CSPs

Change Share
PIN

N
o

pass phrase

pass phrase

Updates the pass phrase used to encrypt
a token share. The pass phrase supplied
by the operator is not used directly, it is
first hashed and then combined with the
module key. To achieve this the command
decrypts the existing share using the old
share key derived from old pass phrase,
module key and smart card identity. It
then derives a new share key based on
new pass phrase, module key and smart
card identity, erases old share from
smart card and writes a new share
encrypted under the new share key.

Sets the pass
phrase for a share,
uses module key,
uses share key,
uses module key,
creates share key,
uses new share
key, exports
encrypted share,
erases old share

[SHA-1 and
AES or Triple
DES]

Channel Open

N
o

handle, A
CL

handle, A
CL

Opens a communication channel which
can be used for bulk encryption or
decryption. Channels using DES* or Triple
DES in CBC mode use the Broadcom
5825 to perform the encryption.

Uses a key object

AES, DES*,
Triple DES,
Arc Four*,
Aria*,
Camellia*,
SEED*

Channel Update
N

o

handle

handle

Performs encryption / decryption on a
previously opened channel. The operation
and key are specified in ChannelOpen.

Uses a key object

AES, DES*,
Triple DES,
Arc Four*,
Aria*,
Camellia*,
SEED*

CheckUserACL

N
o

handle

handle

Determines whether the ACL associated
with a key object allows a specific
operator defined action.

Uses a key object

Clear Unit

Yes

Yes

Yes

Zeroises all loaded keys, tokens and
shares. Clear Unit does not erase long
term keys, such as module keys.

Zeroizes objects. All

Create Buffer

N
o

cert [handle]

cert [handle]

Allocates an area of memory to load data.
If the data is encrypted, this service
specifies the encryption key and IV used.
This service is feature enabled. The
decrypt operation is performed by
LoadBuffer

Uses a key object

AES, DES*,
Triple DES,
Arc Four*,
Aria*,
Camellia*,
SEED*

Version: 3.4

15

Decrypt

N
o

handle, A
CL

handle, A
CL

Decrypts a cipher text with a stored key
returning the plain text. Uses a key object

AES, DES*,
Triple DES,
Arc Four*,
Aria*,
Camellia*,
SEED*, RSA*,
ElGamal*,
KCDSA*

Derive Key

N
o

handle, ACL

handle, ACL

The DeriveKey service provides functions
that the FIPS 140-2 standard describes
as key wrapping and split knowledge - it
does not provide key derivation in the
sense understood by FIPS 140-2. Creates
a new key object from a variable number
of other keys already stored on the
module and returns a handle for the new
key. This service can be used to split, or
combine, encryption keys.
This service is used to wrap keys
according to the KDP so that a key server
can distribute the wrapped key to micro-
HSM devices.

Uses a key object,
create a new key
object.

AES, AES key
wrap, RSA,
EC-DH,
EC_MQV,
Triple DES,
PKCS #8*,
TLS key
derivation,
XOR, DLIES
(D/H plus
Triple DES or
D/H plus
AES), Aria*,
Arc Four*,
Camellia*,
DES*, SEED*

Destroy

N
o

handle

handle

Removes an object, if an object has
multiple handles as a result of
RedeemTicket service, this removes the
current handle.

Erases a Impath,
logical token, or any
key object.

All

Duplicate

N
o

handle, ACL

handle, ACL

Creates a second instance of a key object
with the same ACL and returns a handle
to the new instance.

Creates a new key
object. All

Encrypt

N
o

handle, ACL

handle, ACL

Encrypts a plain text with a stored key
returning the cipher text. Uses a key object

AES, DES*,
Triple DES,
RSA*,
ElGamal*, Arc
Four*, Aria*,
Camellia*,
SEED*,
KCDSA*

Erase File

level 2
 only

cert

yes Removes a file, but not a logical token,
from a smart card or software token.

No access to keys
or CSPs

Command /
Service

Role Description Key/CSP access Key types

U
n

a
u

th

J
S

O
 /

 U
s

e
r

N
S

O

Version: 3.4

16

Erase Share

level 2
 only

cert

yes Removes a share from a smart card or
software token. Erases a share

Existing Client

yes

yes

yes Starts a new connection as an existing
client.

No access to keys
or CSPs

Export

N
o

handle, A
CL

handle, A
CL

If the unit is operating in FIPS level 2 mode
this operation is only available for public
keys - see Operating a level 2 module in
FIPS mode on page 36.

Exports a [public]
key object.

Any key type

Feature Enable

N
o

cert

cert

Enables a service.
This requires a certificate signed by the
Master Feature Enable key.

Uses the public half
of the Master
Feature Enable Key

[DSA]

Firmware
Authenticate

yes

yes

yes

Reports firmware version. Performs a
zero knowledge challenge response
protocol based on HMAC that enables a
operator to ensure that the firmware in
the module matches the firmware
supplied by Thales.
The protocol generates a random value to
use as the HMAC key.

No access to keys
or CSPs HMAC

FormatToken
level 2

 only

cert

yes Formats a smart card or software token
ready for use.

May use a module
key to create
challenge response
value

[AES, Triple
DES]

Generate Key

level 2
 only

cert

yes

Generates a symmetric key of a given type
with a specified ACL and returns a handle.
Optionally returns a certificate containing
the ACL.

Creates a new
symmetric key
object. Sets the
ACL and
Application data for
that object.
Optionally uses
module signing key
and exports the key
generation
certificate.

AES, Triple
DES, Arc
Four*, Aria*,
Camellia*,
DES*, SEED*.

Command /
Service

Role Description Key/CSP access Key types

U
n

a
u

th

J
S

O
 /

 U
s

e
r

N
S

O

Version: 3.4

17

Generate Key
Pair

level 2
 only

cert

yes

Generates a key pair of a given type with
specified ACLs for each half or the pair.
Performs a pair wise consistency check
on the key pair. Returns two key handles.
Optionally returns certificates containing
the ACL.

Creates two new
key objects. Sets
the ACL and
Application data for
those objects.
Optionally uses
module signing key
and exports two
key generation
certificates.

Diffie-
Hellman,
DSA, DSA2,
ECDSA,
ECDSA2, EC-
DH, EC-MQV,
RSA,
ElGamal*,
KCDSA*

Generate KLF

N
o FE FE Generates a new long term key.

Erases the module
long term signing
key, creates new
module long term
signing key.

[DSA and
ECDSA]

Generate Logical
Token

level 2
 only

cert

yes

Creates a new logical token, which can
then be written as shares to smart cards
or software tokens

Uses module key.
Creates a logical
token.

[AES or Triple
DES]

Get ACL

N
o

handle, A
CL

handle, A
CL

Returns the ACL for a given handle. Exports the ACL for
a key object.

Get Application
Data

N
o

handle, A
CL

handle, A
CL

Returns the application information
stored with a key.

Exports the
application data of
a key object.

Get Challenge

yes

yes

yes Returns a random nonce that can be
used in certificates

No access to keys
or CSPs

Get Key Info

N
o

handle

handle

Superseded by GetKeyInfoExtended
retained for compatibility.

Exports the SHA-1
hash of a key object

Get Key Info
Extended

N
o

handle

handle Returns the hash of a key for use in ACLs Exports the SHA-1
hash of a key object

Get Logical Token
Info

N
o

handle

handle

Superseded by GetLogicalTokenInfoExtended

retained for compatibility.

Exports the SHA-1
hash of a logical
token.

[SHA-1]

Get Logical Token
Info Extended

N
o

handle

handle

Returns the token hash and number of
shares for a logical token

Exports the SHA-1
hash of a logical
token.

[SHA-1]

Get Module Keys

yes

yes

yes Returns a hashes of the nCipher Security
Officer's key and all loaded module keys.

Exports the SHA-1
hash of KNSO and
module keys.

[SHA-1]

Command /
Service

Role Description Key/CSP access Key types

U
n

a
u

th

J
S

O
 /

 U
s

e
r

N
S

O

Version: 3.4

18

Get Module Long
Term Key

yes

yes

yes

Returns a handle to the public half of the
module's signing key. this can be used to
verify key generation certificates and to
authenticate inter module paths.

Exports the public
half of the module's
long term signing
key.

[DSA, ECDSA]

Get Module
Signing Key

yes

yes

yes

Returns the public half of the module's
signing key. This can be used to verify
certificates signed with this key.

Exports the public
half of the module's
signing key.

[DSA2]

Get RTC

yes

yes

yes Reports the time according to the on-
board real-time clock

No access to keys
or CSPs

Get Share ACL

yes

yes

yes Returns the access control list for a
share

Exports the ACL for
a token share on a
smart card.

GetSlot Info

yes

yes

yes

Reports status of the physical token in a
slot. Enables an operator to determine if
the correct token is present before
issuing a ReadShare command.
If the token was formatted with a
challenge response value, uses the
module key to authenticate the smart
card.

Uses a module key
if token is
formatted with a
challenge response
value.

[AES, Triple
DES]

Get Slot List

yes

yes

yes Reports the list of slots available from this
module.

No access to keys
or CSPs

GetTicket

N
o

handle

handle

Gets a ticket - an invariant identifier - for a
key. This can be passed to another client
which can redeem it using RedeemTicket to
obtain a new handle to the object,

Uses a key object,
logical token,
Impath.

Hash

yes

yes

yes Hashes a value. No access to keys
or CSPs

HSA-160*,
MD5*,
RIPEMD
160*, SHA-1,
SHA-256,
SHA-384,
SHA-512

Impath Get Info

N
o

handle

handle

Reports status information about an
impath

Uses an Impath,
exports status
information.

Impath Key
Exchange Begin

FE FE FE

Creates a new inter-module path and
returns the key exchange parameters to
send to the peer module.

Creates a set of
Impath keys

[DSA2 or
DSA and
Diffie
Hellman] AES,
Triple-DES

Command /
Service

Role Description Key/CSP access Key types

U
n

a
u

th

J
S

O
 /

 U
s

e
r

N
S

O

Version: 3.4

19

Impath Key
Exchange Finish

N
o

handle

handle

Completes an impath key exchange.
Require the key exchange parameters
from the remote module.

Creates a set of
Impath keys.

[DSA2 or
DSA and
Diffie
Hellman, AES,
Triple-DES]

Impath Receive

N
o

handle

handle

Decrypts data with the Impath decryption
key.

Uses an Impath
key.

[AES or Triple
DES]

Impath Send

N
o

handle

handle

Encrypts data with the impath encryption
key.

Uses an Impath
key.

[AES or Triple
DES]

Import

level 2
 only

cert

yes

Loads a key and ACL from the host and
returns a handle.
If the unit is operating in FIPS mode at
level 2, this operation must only be used
for public keys - see Operating a level 2
module in FIPS mode on page 36

Creates a new key
object to store
imported key, sets
the key value, ACL
and App data.

Any key type

Initialise
init

init

init

Initializes the module, returning it to the
factory state. This clears all NVRAM files,
all loaded keys and all module keys and the
module signing key.

It also generates a new KM0 and module
signing key.
The only key that is not zeroized is the long
term signing key. This key only serves to
provide a cryptographic identity for a
module that can be included in a PKI
certificate chain. Thales may issue such
certificates to indicate that a module is a
genuine nShield module. This key is not
used to encrypt any other data.

Erases keys,
Creates KM0 and
KML

[DSA2]

Load Blob

N
o

handle

handle

Loads a key that has been stored in a key
blob. The operator must first have loaded
the token or key used to encrypt the blob.

Uses module key,
logical token, or
archiving key,
creates a new key
object.

Triple DES
and SHA-1 or
AES, DH, or
RSA plus AES,
SHA-1, and
HMAC SHA-1

Load Buffer

N
o

handle

handle

Loads signed data into a buffer. Several
load buffer commands may be required to
load all the data, in which case it is the
responsibility of the client program to
ensure they are supplied in the correct
order.
Requires the handle of a buffer created by
CreateBuffer.

No access to keys
or CSPs

Command /
Service

Role Description Key/CSP access Key types

U
n

a
u

th

J
S

O
 /

 U
s

e
r

N
S

O

Version: 3.4

20

Load Logical
Token

yes

yes

yes

Allocates space for a new logical token -
the individual shares can then be
assembled using ReadShare or ReceiveShare.
Once assembled the token can be used in
LoadBlob or MakeBlob commands.

Uses module key [AES or Triple
DES]

Make Blob

N
o

handle, ACL

handle, ACL

Creates a key blob containing the key and
returns it. The key object to be exported
may be any algorithm.

Uses module key,
logical token or
archiving key,
exports encrypted
key object.

Triple DES
and SHA-1 or
AES, DH, or
RSA plus AES,
SHA-1, and
HMAC SHA-
256 or SHA-
1

Mod Exp

yes

yes

yes Performs a modular exponentiation on
values supplied with the command.

No access to keys
or CSPs

Mod Exp CRT

yes

yes

yes

Performs a modular exponentiation on
values, supplied with the command using
Chinese Remainder Theorem.

No access to keys
or CSPs

Module Info

yes

yes

yes

Reports low level status information about
the module. This service is designed for
use in Thales's test routines.

No access to keys
or CSPs

NewClient
yes

yes

yes Returns a client id. No access to keys
or CSPs

New Enquiry

yes

yes

yes Reports status information. No access to keys
or CSPs

No Operation

yes

yes

yes

Does nothing, can be used to determine
that the module is responding to
commands.

No access to keys
or CSPs

NVMem Allocate

N
o

cert

yes

Allocates an area of non-volatile memory
as a file and sets the ACLs for this file.
This command can now be used to write
files protected by an ACL to a smart card

No access to keys
or CSPs

NVMem Free

N
o

cert

yes

Frees a file stored in non-volatile memory.
This command can now be used to write
files protected by an ACL to a smart card

No access to keys
or CSPs

NVMem List

yes

yes

yes

Reports a list of files stored in the non-
volatile memory.
This command can now be used to list
files protected by an ACL on a smart card

No access to keys
or CSPs

NVMem
Operation

N
o

cert, A
CL

A
CL

Performs an operation on a file stored in
non-volatile memory. Operations include:
read, write, increment, decrement, etc.
This command can now be used to write
files protected by an ACL to a smart card

No access to keys
or CSPs

Command /
Service

Role Description Key/CSP access Key types

U
n

a
u

th

J
S

O
 /

 U
s

e
r

N
S

O

Version: 3.4

21

Random Number

yes

yes

yes

Generates a random number for use in a
application using the on-board random
number generator.
There are separate services for
generating keys.
The random number services are
designed to enable an application to
access the random number source for its
own purposes - for example an on-line
casino may use GenerateRandom to drive its
applications.

Uses DRBG key. [AES]

Random Prime

yes

yes

yes

Generates a random prime. This uses the
same mechanism as is used for RSA and
Diffie-Hellman key generation. The
primality checking conforms to ANSI
X9.31.

Uses DRBG key. [AES]

Read File

level 2

cert

yes

Reads a file, but not a logical token, from a
smart card or software token.
This command can only read files without
ACLs.

Reads a file, but not
a logical token,
from a smart card
or software token.
This command can
only read files
without ACLs.
No access to keys
or CSPs

Read Share

yes

yes

yes

Reads a share from a physical token.

Once sufficient shares have been loaded
recreates token- may require several
ReadShare or ReceiveShare commands.

Uses pass phrase,
module key,
creates share key,
uses share key,
creates a logical
token.

[SHA-1, AES
or Triple DES]

Receive Share

N
o

handle, encrypted share

handle, encrypted share

Takes a share encrypted with SendShare
and a pass phrase and uses them to
recreate the logical token. - may require
several ReadShare or ReceiveShare
commands

Uses an Impath
key, uses pass
phrase, module
key, creates share
key, uses share key,
creates a logical
token

[AES, Triple
DES]

Redeem Ticket

N
o

ticket

ticket

Gets a handle in the current name space
for the object referred to by a ticket
created by GetTicket.

Uses a key object,
logical token,
Impath.

Remove KM

N
o

cert

yes Removes a loaded module key. Erases a module
key

Command /
Service

Role Description Key/CSP access Key types

U
n

a
u

th

J
S

O
 /

 U
s

e
r

N
S

O

Version: 3.4

22

Set ACL

N
o

handle, ACL

handle, ACL

Sets the ACL for an existing key. The
existing ACL for the key must allow the
operation.

Sets the Access
Control List for a
key object

Set Application
Data

N
o

handle, ACL

handle, ACL

Stores information with a key.

Sets the
application data
stored with a key
object

Set KM

N
o

cert

yes Loads a key object as a module key. Uses a key object,
sets a module key

AES, Triple
DES

Set NSO Perm

init

init

N
o

Loads a key hash as the nCipher Security
Officer's Key and sets the security policy
to be followed by the module. This can only
be performed while the unit is in the
initialisation state.

Sets the nCipher
Security officer's
key hash.

[SHA-1 hash
of DSA key]

Set RTC

N
o

cert

yes Sets the real-time clock. No access to keys
or CSPs

Sign

N
o

handle, A
CL

handle, A
CL

Returns the digital signature or MAC of
plain text using a stored key. Uses a key object

RSA, DSA,
DSA2,
ECDSA,
ECDSA2,
Triple DES
MAC, HMAC,
KCDSA*

Sign Module
State

N
o

handle, A
CL

handle, A
CL

Signs a certificate describing the modules
security policy, as set by SetNSOPerm

Uses the module
signing key [DSA]

Send Share

N
o

handle, A
CL

handle, A
CL

Reads a logical token share and encrypts
it under an impath key for transfer to
another module where it can be loaded
using ReceiveShare

Uses an Impath
key, exports
encrypted share.

[AES, Triple
DES]

Statistics
Enumerate Tree

yes

yes

yes Reports the statistics available. No access to keys
or CSPs

Statistic Get
Value

yes

yes

yes Reports a particular statistic. No access to keys
or CSPs

Command /
Service

Role Description Key/CSP access Key types

U
n

a
u

th

J
S

O
 /

 U
s

e
r

N
S

O

Version: 3.4

23

Update Firmware
Service
(Calls
Programming
Begin
Programming
Begin Chunk
Programming
Load Block
Programming
End Chunk
Programming
End)

m
onitor

m
onitor

m
onitor

These commands are used in the update
firmware service.
The individual commands are required to
load the candidate firmware image in
sections small enough to be transported
by the interface.
Thales supply the LoadROM utility for the
administrator to use for this service. This
utility issues the correct command
sequence to load the new firmware.
The module will only be operating in a FIPS
approved mode if you install firmware that
has been validated by NIST / CSEC.
Administrators who require FIPS
validation should only upgrade firmware
after NIST / CSEC issue a new certificate.
The monitor also checks that the Version
Sequence Number (VSN) of the firmware
is as high or higher than the VSN of the
firmware currently installed.

Uses Firmware
Integrity Key and
Firmware
Confidentiality
Keys.
Sets Firmware
Integrity Key and
Firmware
Confidentiality
Keys.

[DSA2, AES]

Verify
N

o

handle, ACL

handle, ACL

Verifies a digital signature using a stored
key. Uses a key object.

RSA, DSA,
DSA2,
ECDSA,
ECDSA2,
Triple DES
MAC, HMAC,
KCDSA*

Write File

level 2

cert

yes

Writes a file, but not a logical token, to a
smart card or software token.
Note these files do not have an ACL, use
the NVMEM commands to create files
with an ACL.

No access to keys
or CSPs

Write Share

N
o

cert handle

handle

Writes a new share to a smart card or
software token. The number of shares
that can be created is specified when the
token is created. All shares must be
written before the token is destroyed.

Sets pass phrase,
uses module key,
creates share,
uses pass phrase
and module key,
creates share key,
uses module key,
uses share key,
exports encrypted
share.

[AES, Triple
DES, SHA-1]

Command /
Service

Role Description Key/CSP access Key types

U
n

a
u

th

J
S

O
 /

 U
s

e
r

N
S

O

Version: 3.4

24

Terminology

Code Description

No The operator can not perform this service in this role.

yes The operator can perform this service in this role without further authorization.

handle

The operator can perform this service if they possess a valid handle for the resource: key,
channel, impath, token, buffers.
The handle is an arbitrary number generated when the object is created.
The handle for an object is specific to the operator that created the object.
The ticket services enable an operator to pass an ID for an object they have created to another
operator.

ACL

The operator can only perform this service with a key if the ACL for the key permits this service.
The ACL may require that the operator present a certificate signed by a Security Officer or
another key.
The ACL may specify that a certificate is required, in which case the module verifies the signature
on the certificate before permitting the operation.

pass
phrase

An operator can only load a share, or change the share PIN, if they possess the pass phrase used
to derive the share. The module key with which the pass phrase was combined must also be
present.

cert
An operator can only perform this service if they are in possession of a certificate from the
nCipher Security Officer. This certificate will reference a key. The module verifies the signature on
the certificate before permitting the operation.

 FE This service is not available on all modules. It must be enabled using the FeatureEnable service
before it can be used.

level 2 only

These services are available to the unauthenticated operator only when the module is initialized in
it FIPS 140-2 level 2 mode. The module can be initialized to comply with FIPS 140-2 level 3 roles
and services and key management by setting the FIPS_level3_compliance flag. If this flag is set:
the Generate Key, Generate Key Pair and Import commands require authorization with a certificate
signed by the nCipher Security Officer.
the Import command fails if you attempt to import a key of a type that can be used to Sign or
Decrypt messages.
the GenerateKey, GenerateKeyPair, Import and DeriveKey operations will not allow you to create an ACL
for a secret key that allows the key to be exported in plain text.

encrypted
share

The ReceiveShare command requires a logical token share encrypted using an Impath key created
by the SendShare command.

ticket The RedeemTicket command requires the ticket generated by GetTicket.

init

These services are used to initialise the module. They are only available when the module is in the
initialisation mode. To put the module into initialisation mode you must have physical access to
the module and put the mode switch into the initialisation setting. In order to restore the module
to operational mode you must put the mode switch back to the Operational setting.

monitor

These services are used to reprogram the module. They are only available when the module is in
the monitor mode. To put the module into monitor mode you must have physical access to the
module and put the mode switch into the monitor setting. In order to restore the module to
operational mode you reinitialize the module and then return it to operational state.

Version: 3.4

25

Chapter 5: Keys

For each type of key used by the nShield modules, the following section describes the access
that a operator has to the keys.

nShield modules refer to keys by their handle, an arbitrary number, or by its SHA-1 hash.

nCipher Security Officer's key

The nCipher Security officer's key must be set as part of the initialisation process. This is a
public / private key pair that the nCipher Security Officer uses to sign certificates to authorize
key management and other secure operations.

The SHA-1 hash of the public half of this key pair is stored in the module EEPROM.

The public half of this key is included as plain text in certificates.

The module treats anyone in possession of the private half of this key as the nCipher Security
Officer.

If you use the standard tools supplied by Thales to initialise the module, then this key is a DSA
key stored as a key blob protected by a logical token on the Administrator Card Set.

Junior Security Officer's key

Because the nCipher Security Officer's key has several properties, it is good practice to delegate
authority to one or more Junior Security Officers, each with authority for defined operations.

To create a Junior Security Officer (JSO) the NSO creates a certificate signing key for use as
their JSO key. This key must be protected by a logical token in the same manner as any other
application key.

Then to delegate authority to the JSO, the nCipher Security Officer creates a certificate
containing an Access Control List specifying the authority to be delegated and the hash of the
JSO key to which the powers are to be delegated.

The JSO can then authorize the actions listed in the ACL - as if they were the NSO - by
presenting the JSO key and the certificate. If the JSO key is created with the Sign permission in
its ACL, the JSO may delegate parts of their authority to another key. The holder of the delegate
key will need to present the certificate signed by the NSO and the certificate signed by the JSO.
If the JSO key only has UseAsCertificate permissions, then they cannot delegate authority.

Version: 3.4

26

If you use the standard tools supplied by Thales to initialise the module, then this key is a DSA
key stored as a key blob protected by a logical token on the Administrator Card Set.

Long term signing key

The nShield modules store one 160-bit and one 256-bit random number in the EEPROM.

The 160-bit number is combined with a discrete log group stored in the module firmware to
produce a DSA key. The 256-bit number is used as the private exponent of a ECDSA key using
the NIST P521 curve.

This key can be reset to a new random value by the GenerateKLF service. It can be used to sign
a module state certificate using the SignModuleState service and the public value retrieved by
the non-cryptographic service GetLongTermKey.

This is the only key that is not zeroized when the module is initialized.

This key is not used to encrypt any other data. It only serves to provide a cryptographic identity
for a module that can be included in a PKI certificate chain. Thales may issue such certificates
to indicate that a module is a genuine Thales module.

Module signing key

When the nShield module is initialized it automatically generates a 3072-bit DSA2 key pair that
it uses to sign certificates. Signatures with this key use SHA-256. The private half of this pair is
stored internally in EEPROM and never released. The public half is revealed in plaintext, or
encrypted as a key blob. This key is only ever used to verify that a certificate was generated by
a specified module.

Module keys

Module keys are AES or Triple DES used to protect tokens. The nShield modules generates the
first module key KM0 when it is initialized. This module key is guaranteed never to have been
known outside this module. KM0 is an AES key. The nCipher Security Officer can load further
module keys. These can be generated by the module or may be loaded from an external source.
Setting a key as a module key stores the key in EEPROM.

Module keys can not be exported once they have been assigned as module keys. They may only
be exported on a key blob when they are initially generated.

Version: 3.4

27

Logical tokens

A logical token is an AES or Triple DES key used to protect key blobs. Logical tokens are
associated with module keys. The key type depends on the key type of the module key.

When you create a logical token, you must specify parameters, including the total number of
shares, and the number or shares required to recreate the token, the quorum. The total number
can be any integer between 1 and 64 inclusive. The quorum can be any integer from 1 to the
total number.

A logical token is always generated randomly, using the on-board random number generator.

While loaded in the module logical tokens are stored in the object store.

Tokens keys are never exported from the module, except on physical tokens or software tokens.
When a module key is exported the logical token - the Triple DES key plus the token parameters
- is first encrypted with a module key. Then the encrypted token is split into shares using the
Shamir Threshold Sharing algorithm, even if the total number of shares is one. Each share is
then encrypted using a share key and written to a physical token - a smart card - or a software
token. Logical tokens can be shared between one or more physical token. The properties for a
token define how many shares are required to recreate the logical token. Shares can only be
generated when a token is created. The firmware prevents a specific share from being written
more than once.

Logical tokens are not used for key establishment.

Share Key

A share key is used to protect a logical token share when they are written to a smart card or
software token that is used for authentication. The share key is created by creating a message
comprised of a secret prefix, Module key, Share number, smart card unique id and an optional
20 bytes supplied by the operator (expected to be the SHA-1 hash of a pass phrase entered into
the application), and using this as the input to a PRNG function to form a unique key used to
encrypt the share - this is either an AES or Triple DES key depending on the key type of the
logical token which is itself determined by the key type of the module key. This key is not stored
on the module. It is recalculated every time share is loaded. The share data includes a MAC, if
the MAC does not verify correctly the share is rejected.

The share key is not used directly to protect CSPs nor is the Share Key itself considered a CSP.
It is used for authentication only. The logical token needs to be reassembled from the shares
using Shamir Threshold Sharing Scheme and then be decrypted using the module key. Only
then can the logical token be used to decrypt application keys.

Version: 3.4

28

Impath keys

An impath is a secure channel between two modules.

To set up an impath two modules perform a key-exchange, using Diffie-Hellman.

The Diffie Hellman operations has been validated in CVL Cert. #1. The CVL Cert. #1 is not
fully compliant to SP 800-56A as the key derivation function has not been tested.

The key exchange parameters for each module are signed by that module’s signing key. Once
the modules have validated the signatures the module derives four symmetric keys for
cryptographic operations.

Currently symmetric keys are AES or Triple DES. AES is used if both modules use 2.50.16 or
later firmware, Triple DES is used where the other module is running older firmware. The four
keys are used for encryption, decryption, MAC creation, MAC validation. The protocol ensures
that the key Module 1 uses for encryption is used for decryption by module 2.

Key objects

Keys used for encryption, decryption, signature verification and digital signatures are stored in
the module as objects in the object store in RAM. All key objects are identified by a random
identifier that is specific to the operator and session.

All key objects are stored with an Access control List or ACL. The ACL specifies what
operations can be performed with this key. Whenever an operator generates a key or imports a
key in plain text they must specify a valid ACL for that key type. The ACL can be changed
using the SetACL service. The ACL can only be made more permissive if the original ACL
includes the ExpandACL permission.

Key objects may be exported as key blobs if their ACL permits this service. Each blob stores a
single key and an ACL. The ACL specifies what operations can be performed with this copy of
the key. The ACL stored with the blob must be at least as restrictive as the ACL associated with
the key object from which the blob was created. When you load a key blob, the new key object
takes its ACL from the key blob. Working key blobs are encrypted under a logical token. Key
objects may also be exported as key blobs under an archiving key. The key blob can be stored on
the host disk or in the module NVRAM.

Key objects can only be exported in plain text if their ACL permits this operation. If the module
has been initialized to comply with FIPS 140-2 level 3 roles and services and key management
the ACL for a private or secret key cannot include the export as plain service. An operator may
pass a key to another operator using the ticketing mechanism. The GetTicket mechanism takes a
key identifier and returns a ticket. This ticket refers to the key identifier - it does not include any
key data. A ticket can be passed as a byte block to the other operator who can then use the

Version: 3.4

29

RedeemTicket service to obtain a key identifier for the same object that is valid for their session.
As the new identifier refers to the same object the second operator is still bound by the original
ACL.

Session keys

Keys used for a single session are generated as required by the module. They are stored along
with their ACL as objects in the object store. These may be of any supported algorithm.

Archiving keys

It is sometimes necessary to create an archive copy of a key, protected by another key. Keys
may be archived using:

• Three-key Triple DES keys (used for unwrapping legacy keys and wrapping public keys
only).

• A combination of three-key Triple DES and RSA keys (unwrapping legacy keys only).

In this case a random 168-bit Triple DES key is created which is used to encrypt working
key and then this key is wrapped by the RSA key.

• A scheme using RSA.

3072-bit RSA is used to establish a secret from which encryption keys are generated. The
holders of the public and private halves of the RSA key must already exist in the module as
operators.

The keys generated are either AES or Triple-DES keys, for the purpose of protecting other
keys. AES is used by default as of firmware version 2.50.16. (with Triple-DES available for
legacy purposes).

Once the key agreement process is complete, the module uses an additional keyed hashing
process to protect the integrity of the nCore Key object to be archived, which is comprised
of the key type, key value and Access Control List. This process uses HMAC SHA-256 by
default. (with HMAC SHA-1 available for legacy purposes).

• A scheme using Diffie Hellman:

3072-bit Diffie-Hellman, which is allowed for use in the Approved mode, is used to
establish a secret from which encryption keys are generated. Both parties in the Diffie-
Hellman key agreement process exist in the module as operators. The keys generated are
either AES or Triple-DES keys, for the purpose of protecting other keys. AES is used by

Version: 3.4

30

default as of firmware version 2.50.16. (with Triple-DES available for legacy purposes).
Please note that the Diffie-Hellman private key must be stored externally on the smartcard,
if the archived keys are to be retrieved at a later time.

Once the key agreement process is complete, the module uses an additional keyed hashing
process to protect the integrity of the nCore Key object to be archived, which is comprised
of the key type, key value and Access Control List. This process uses HMAC SHA-256 by
default. (with HMAC SHA-1 available for legacy purposes).

Although provided by the firmware, this option is currently not used by any Thales tools.
Other third party applications external to the module, may take advantage of this option, at
the discretion of the developer.

When a key is archived in this way it is stored with its ACL

When you generate or import the archiving key, you must specify the UseAsBlobKey option in
the ACL. The archiving key is treated as any other key object.

When you generate or import the key that you want to archive you must specify the Archival
options in the ACL. This options can specify the hash(es) of the allowed archiving key(s). If you
specify a list of hashes, no other key may be used.

Certificate signing keys

The ACL associated with a key object can call for a certificate to be presented to authorize the
action. The required key can either be the nCipher Security Officer's key or any other key. Keys
are specified in the ACL by an identifying key SHA-1 hash. The key type is also specified in the
ACL although DSA is standard, any signing algorithm may be used, all Thales tools use DSA.

Certain services can require certificates signed by the nCipher Security Officer.

Firmware Integrity Key

All firmware is signed using a 3072-bit DSA2 key pair. Signatures with this key use SHA-256.

The module checks the signature before new firmware is written to flash. A module only installs
new firmware if the signature decrypts and verifies correctly.

The private half of this key is stored at Thales.

The public half is included in all firmware. The firmware is stored in flash memory when the
module is switched off, this is copied to RAM as part of the start up procedure.

Version: 3.4

31

Firmware Confidentiality Key

All firmware is encrypted using AES to prevent casual decompilation.

The encryption key is stored at Thales's offices and is in the firmware.

The firmware is stored in flash memory when the module is switched off, this is copied to RAM
as part of the start up procedure.

Master Feature Enable Key

For commercial reasons not all nShield modules offer all services. Certain services must be
enabled separately. In order to enable a service the operator presents a certificate signed by the
Master Feature Enable Key. This causes the module to set the appropriate bit in the EEPROM.

The Master Feature Enable Key is a DSA key pair. The private half of this key pair is stored at
Thales's offices. The public half of the key pair is included in the firmware. The firmware is
stored in flash memory when the module is switched off, this is copied to RAM as part of the
start up procedure.

DRBG Key

The module uses the CTR_DRBG from SP800-90 with a 256-bit AES key. This key is seeded
from the on board entropy source whenever the module is initialised and is reseeded according
to SP800-90 with a further 512-bits of entropy after every 2048-bytes of output. This key is only
ever used by the DRBG. It is never exposed outside the module.

Version: 3.4

32

Chapter 6: Rules

Identification and authentication

Communication with the nShield modules is performed via a server program running on the
host machine, using standard inter process communication, using sockets in UNIX operating
systems, named pipes under Windows.

In order to use the module the operator must first log on to the host computer and start an
nShield enabled application. The application connects to the hardserver, this connection is given
a client ID, a 32-bit arbitrary number.

Before performing any service the operator must present the correct authorization. Where
several stages are required to assemble the authorization, all the steps must be performed on the
same connection. The authorization required for each service is listed in the section Services
available to each role on page 13. An operator cannot access any service that accesses CSPs
without first presenting a smart card, or software token.

The nShield modules performs identity based authentication. Each individual operator is given a
smart card that holds their authentication data - the logical token share - in an encrypted form.
All operations require the operator to first load the logical token from their smart card.

Access Control

Keys are stored on the host computer's hard disk in an encrypted format, known as a key blob.
In order to load a key the operator must first load the token used to encrypt this blob.

Tokens can be divided into shares. Each share can be stored on a smart card or software token
on the computer's hard disk. These shares are further protected by encryption with a pass phrase
and a module key. Therefore an operator can only load a key if they possess the physical smart
cards containing sufficient shares in the token, the required pass phrases and the module key are
loaded in the module.

Module keys are stored in EEPROM in the module. They can only be loaded or removed by the
nCipher Security Officer, who is identified by a public key pair created when the module is
initialized. It is not possible to change the nCipher Security Officer's key without re initializing
the module, which clears all the module keys, thus preventing access to all other keys.

Version: 3.4

33

The key blob also contains an Access Control List that specifies which services can be
performed with this key, and the number of times these services can be performed. These can be
hard limits or per authorization limits. If a hard limit is reached that service can no longer be
performed on that key. If a per-authorization limit is reached the operator must reauthorize the
key by reloading the token.

All objects are referred to by handle. Handles are cross-referenced to ClientIDs. If a command
refers to a handle that was issued to a different client, the command is refused. Services exist to
pass a handle between ClientIDs.

Access Control List

All key objects have an Access Control List (ACL). The operator must specify the ACL when
they generate or import the key. The ACL lists every operation that can be performed with the
key - if the operation is not in the ACL the module will not permit that operation. In particular
the ACL can only be altered if the ACL includes the SetACL service. The ACL is stored with
the key when it is stored as a blob and applies to the new key object created when you reload the
blob.

The ACL can specify limits on operations - or groups of operations - these may be global limits
or per authorization limits. If a global limit is exceeded then the key cannot be used for that
operation again. If a per authorization limit is exceeded then the logical token protecting the key
must be reloaded before the key can be reused.

An ACL can also specify a certifier for an operation. In this case the operator must present a
certificate signed by the key whose hash is in the ACL with the command in order to use the
service.

An ACL can also specify a host service identifier. In which case the ACL is only met if the
hardserver appends the matching Service name. This feature is designed to provide a limited
level of assurance and relies on the integrity of the host, it offers no security if the server is
compromised or not used.

ACL design is complex - operators will not normally need to write ACLs themselves. Thales
provide tools to generate keys with strong ACLs.

Object re-use

All objects stored in the module are referred to by a handle. The module's memory management
functions ensure that a specific memory location can only be allocated to a single handle. The
handle also identifies the object type, and all of the modules enforce strict type checking. When
a handle is released the memory allocated to it is actively zeroed.

Version: 3.4

34

Error conditions

If the module cannot complete a command due to a temporary condition, the module returns a
command block with no data and with the status word set to the appropriate value. The operator
can resubmit the command at a later time. The server program can record a log of all such
failures.

If the module encounters an unrecoverable error it enters the error state. This is indicated by the
status LED flashing in the Morse pattern SOS. As soon as the unit enters the error state all
processors stop processing commands and no further replies are returned. In the error state the
unit does not respond to commands. The unit must be reset.

Security Boundary

The physical security boundary is the plastic jig that contains the potting on both sides of the
PCB.

All cryptographic components are covered by potting.

Some items are excluded from FIPS 140-2 validation as they are not security relevant see
Excluded Components on page 10.

Status information

The module has a status LED that indicates the overall state of the module.

The module also returns a status message in the reply to every command. This indicates the
status of that command.

There are a number of services that report status information.

Version: 3.4

35

Procedures to initialise a module to comply with FIPS 140-2
Level 2

The nShield enabled application must perform the following services, for more information
refer to the nShield User Guide.

1 Put the mode switch into the initialisation position and restart the module

2 Use either the graphical user interface KeySafe or the command line tool new-world. Using
either tool you must specify the number of cards in the Administrator Card Set and the
encryption algorithm to use, Triple-DES or AES. To ensure that the module is in Level 2
mode you must

- Using Keysafe select the option “Strict FIPS 140 Mode” = No

- Using new-world do NOT specify the -F flag in the command line

3 The tool prompts you to insert cards and to enter a pass phrase for each card.

4 When you have created all the cards, reset the mode switch into the operational position and
restart the module.

Verifying the module is in level 2 mode

An operator can verify the initialisation status of the module as if a module is initialised in level
2 mode:

• Keysafe displays "Strict FIPS 140-2 Mode" = No in the information panel for that module.

• The command line tool Enquiry does NOT include StrictFIPS in the list of flags for the
module

Version: 3.4

36

Operating a level 2 module in FIPS mode

To be operating in Level 2 FIPS Mode, only FIPS Approved cryptography can be used in FIPS
Mode. Use of any Non-FIPS Approved algorithms, except for those for which the CMVP
allowed in FIPS Mode (See Supported Algorithms Section), means that the module would not
be operating in FIPS Mode.

In order to comply with FIPS mode the operator must not generate private or secret keys with
the ExportAsPlain ACL entry; nor should they use the Import service to import such keys in
plain text.

An operator can verify that a key was generated correctly using the nfkmverify utility supplied
by Thales. This utility checks the ACL stored in the key-generation certificate.

Version: 3.4

37

To return a module to factory state

1. Put the mode switch into the initialisation position. Pull the Initialisation pin high and restart
the module.

2. Use the Initialise command to enter the Initialisation state.

3. Load a random value to use as the hash of the nCipher Security Officer's key.

4. Set nCipher Security Officer service to set the nCipher Security Officer's key and the opera-
tional policy of the module.

5. Put the mode switch into the operational position Pull the Initialisation pin low and restart
the module.

6. After this operation the module must be initialized correctly before it can be used in a FIPS
approved mode.

Placing the module in factory state:

• destroys any loaded Logical tokens, Share Keys, Impath keys, Key objects, Session keys

• erases the current Module Signing Key and generates a fresh one.

• erases all current Module Keys, except the Well Known Module Key

• Generates a new Module Key Zero

• sets nCipher Security Officer's key to a known value

• this prevent the module from loading any keys stored a key blobs as it no longer possesses
the decryption key.

Returning the module to factory state does not erase the Firmware Confidentiality Key, the
Long Term Signing Key or the public halves of the Firmware Integrity Key, of the Master
Feature Enable Key: as these provide the cryptographic identity of the module and control
loading firmware.

Thales supply a graphical user interface KeySafe and a command line tool new-world that
automate these steps.

Version: 3.4

38

To create a new operator

1 Create a logical token.

2 Write one or more shares of this token onto software tokens.

3 For each key the operator will require, export the key as a key blob under this token.

4 Give the operator any pass phrases used and the key blob.

Thales supply a graphical user interface KeySafe and a command line tool new-world that
automate these steps.

Version: 3.4

39

To authorize the operator to create keys

1 Create a new key, with an ACL that only permits UseAsSigningKey.

2 Export this key as a key blob under the operator's token.

3 Create a certificate signed by the nCipher Security Officer's key that:

• includes the hash of this key as the certifier

• authorizes the action GenerateKey or GenerateKeyPair depending on the type of key
required.

4 if the operator needs to create permanent - as opposed to session - keys, the certificate must
also include an entry that enables the action MakeBlob. The certificate can restrict the
operator to only making blobs protected by their Operator Card Set by including the hash of
its logical token.

5 Give the operator the key blob and certificate.

Thales supply a graphical user interface KeySafe and a command line tool new-world that
automate these steps.

Version: 3.4

40

To authorize an operator to act as a Junior Security Officer

1 Generate a logical token to use to protect the Junior Security Officer's key.

2 Write one or more shares of this token onto software tokens

3 Create a new key pair,

4 Give the private half an ACL that permits Sign and UseAsSigningKey.

5 Give the public half an ACL that permits ExportAsPlainText

6 Export the private half of the Junior Security Officer's key as a key blob under this token.

7 Export the public half of the Junior Security Officer's key as plain text.

8 Create a certificate signed by the nCipher Security Officer's key includes the hash of this
key as the certifier

• authorizes the actions GenerateKey, GenerateKeyPair

• authorizes the actions GenerateLogicalToken, WriteShare and MakeBlob, these may be
limited to a particular module key.

9 Give the Junior Security Officer the software token, any pass phrases used, the key blob and
certificate.

Thales supply a graphical user interface KeySafe and a command line tool new-world that
automate these steps.

Version: 3.4

41

To authenticate an operator to use a stored key

1 Use the LoadLogicalToken service to create the space for a logical token.

2 Use the ReadShare service to read each share from the software token.

3 Use the LoadBlob service to load the key from the key blob.

The operator can now perform the services specified in the ACL for this key.

To assume nCipher Security Officer role load the nCipher Security Officer's key using this
procedure. The nCipher Security Officer's key can then be used in certificates authorising
further operations.

Thales supply a graphical user interface KeySafe and a command line tool new-world that
automate these steps.

Version: 3.4

42

To authenticate an operator to create a new key

1 If you have not already loaded your operator token, load it as above.

2 Use the LoadBlob service to load the authorization key from the key blob.

3 Use the KeyId returned to build a signing key certificate.

4 Present this certificate with the certificate supplied by the nCipher Security Officer with the
GenerateKey, GenerateKeyPair or MakeBlob command.

Thales supply a graphical user interface KeySafe and a command line tool new-world that
automate these steps.

Version: 3.4

43

Chapter 7: Physical security

All security critical components of the module are covered by epoxy resin.

The module has a clear button. Pressing this button put the module into the self-test state,
clearing all stored key objects, logical tokens and impath keys and running all self-tests. The
long term security critical parameters, module keys, module signing key and nCipher Security
Officer's key can be cleared by returning the module to the factory state, as described above.

Checking the module

To ensure physical security, make the following checks regularly:

• Examine the epoxy resin security coating for obvious signs of damage.

• The smart card reader is directly plugged into the module or into a port provided by any
appliance in which the module is integrated and the cable has not been tampered with.
Where the module is in an appliance the security of this connection may be protected by the
seals or other tamper evidence provided by the appliance.

Version: 3.4

44

Chapter 8: Strength of functions

Attacking Object IDs

Connections are identified by a ClientID, a random 32 bit number.

Objects are identified by an ObjectID, again this is a random 32 bit number.

In order to randomly gain access to a key loaded by another operator you would need to guess

two random 32 bit numbers. There are 264 possibilities therefore meets the 1 in a 106
requirement.

The module can process about 216 commands per minute - therefore the chance of succeeding

within a minute is 216 / 264 = 2-48 which is significantly less that the required chance of 1 in 105

(~2-17).

Attacking Tokens

If an operator chooses to use a logical token with only one share, no pass phrase and leaves the
smart card containing the share in the slot than another operator could load the logical token.
The module does not have any idea as to which operator inserted the smart card. This can be
prevented by:

• not leaving the smart card in the reader

if the smart card is not in the reader, they can only access the logical token by correctly
guessing the ClientID and ObjectID for the token.

• requiring a pass phrase

when loading a share requiring a pass phrase the operator must supply the SHA-1 hash of
the pass phrase. The hash is combined with a module key, share number and smart card id to
recreate the key used to encrypt the share. If the attacker has no knowledge of the pass

phrase they would need to make 280 attempts to load the share. The module enforces a five
seconds delay between failed attempts to load a share.

• requiring more than one share

If a logical token requires shares from more than one smart card the attacker would have to
repeat the attack for each share required.

Version: 3.4

45

Logical tokens are either 168-bit Triple DES keys or 256-bit AES keys. Shares are encrypted
under a combination of a module key, share number and card ID. If you could construct a
logical token share of the correct form without knowledge of the module key and the exact
mechanism used to derive the share key the chance that it would randomly decrypt into a valid

token are 2-168 or 2-256.

Key Blobs

Key blobs are used to protect keys outside the module. There are two formats of blob - indirect
and direct.

If the module is configured with AES module key, the blobs used for token and module key
protected keys take a 256 bit AES key and a nonce and uses SHA-1 to derive a AES encryption
key, used for encryption and a HMAC SHA-1 key, used for integrity.

If the module is configured with Triple DES module key, the blobs used for token and module
key protected keys use Triple DES and SHA-1 for encryption and integrity.

If the module is initialised in a fresh security world, the blobs used for key-recovery and for
pass-phrase recovery take the public half of a 3072-bit RSA key and a nonce as the input, and
uses SHA-256 to derive a 256-bit AES encryption key, used for encryption and a HMAC SHA-
256 key, used for integrity.

If the module is enrolled into an old security world created before the release of 2.50.16
firmware, the blobs used for key-recovery and for pass-phrase recovery take the public half of a
1024-bit RSA key and a nonce as the input, and uses SHA-1 to derive a 168-bit triple-DES or
256-bit AES encryption key - depending on the option selected for the module key - and a
HMAC SHA-1 key, used for integrity.

The firmware also supports key blobs based on an integrated encryption scheme using Diffie
Hellman to establish a master secret and HMAC SHA-256 for integrity and AES in CBC mode
for encryption, or HMAC SHA-1 for integrity and Triple DES in CBC mode for encryption.
However, this option is currently not used by any Thales tools.

All schemes used in SP800-131 compliant security worlds offer at least 128-bits of security.
Those used in legacy security worlds offer at least 80-bits of security.

Impaths

Impaths protect the transfer of encrypted shares between modules.

Version: 3.4

46

When negotiating an Impath, provided both modules are configured to be SP800-131 compliant
the module verifies a 3072-bit DSA signatures with SHA-256 hashes to verify the identity of the
other module. It then uses 3072-bit Diffie-Hellman key exchange to negotiate a 256-bit AES
encryption and MAC keys used to protect the channel. This provides a minimum of 128-bits of
security for the encrypted channel.

Otherwise, both modules use 1024-bit DSA signatures to verify the identity of the other module.
Then they perform a 1024-bit Diffie-Hellman key exchange to negotiate a 168-bit triple-DES
encryption keys used to protect the channel. This provides a minimum of 80-bits of security for
the encrypted channel.

Note The shares sent over the channel are still encrypted using their share key, decryption only
takes place on the receiving module.

KDP key provisioning

The KDP protocol used to transfer keys from a module to a micro HSM uses 1024-bit DSA
signatures to identify the end point and a 2048-bit Diffie-Hellman key exchange to negotiate the
Triple-DES or AES keys used to encrypt the keys in transit providing a minimum of 100-bits of
security for the encrypted channel.

Derived Keys

The nCore API provides a range of key derivation and wrapping options that an operator can
choose to make use of in their protocols.

For any key, these mechanisms are only available if the operator explicitly enabled them in the
key's ACL when they generated or imported the key.

The ACL can specify not only the mechanism to use but also the specific keys that may be used
if these are known.

Mechanism Use Notes

Key Splitting
Splits a symmetric key into
separate components for split
knowledge key export

Components are raw byte blocks.

PKCS8 wrapping Encrypts a key using a pass
phrase.

Only available in FIPS 140-2 level 2
mode

PKCS8 unwrapping Decrypts a wrapped key using a
pass phrase.

Only available in FIPS 140-2 level 2
mode

Version: 3.4

47

If the module is initialized in its level 3 mode you can only use key wrapping and key
establishment mechanisms that use approved algorithms.

If the module is initialized in its level 2 mode you can only use key wrapping and key
establishment mechanisms with all supported algorithms.

SSL3 master key derivation Setting up a SSL session Only available in FIPS 140-2 level 2
mode

TLS master key derivation Setting up a TLS session

Key Wrapping
Encrypts one key object with
another to allow the wrapped key
to be exported.

May use any supported encryption
mechanism that accepts a
byteblock. The operator must
ensure that they chose a wrapping
key that has an equivalent strength
to the key being transported.

Mechanism Use Notes

Version: 3.4

48

Chapter 9: Self Tests

When power is applied to the module it enters the self test state. The module also enters the self
test state whenever the unit is reset, by pressing the clear button.

In the self test state the module clears the main RAM, thus ensuring any loaded keys or
authorization information is removed and then performs its self test sequence, which includes:

• An operational test on hardware components

• An integrity check on the firmware, verification of a SHA-1 hash.

• A statistical check on the random number generator

• Known answer and pair-wise consistency checks on all approved and allowed algorithms in
all approved modes and of the DRBG

• Verification of a MAC on EEPROM contents to ensure it is correctly initialized.

This sequence takes a few seconds after which the module enters the Pre-Maintenance,
Pre-Initialisation, Uninitialised or Operational state; depending on the position of the mode
switch and the validity of the EEPROM contents.

While it is powered on, the module continuously monitors the temperature recorded by its
internal temperature sensor. If the temperature is outside the operational range it enters the error
state.

The module also continuously monitors the hardware entropy source and the approved
AES-256 based DRBG. If either fail it enters the error state.

When firmware is updated, the module verifies a DSA signature on the new firmware image
before it is written to flash.

In the error state, the module’s LED repeatedly flashes the Morse pattern SOS, followed by a
status code indicating the error. All other inputs and outputs are disabled.

Version: 3.4

49

Firmware Load Test

When an administrator loads new firmware, the module reads the candidate image into working
memory. It then performs the following tests on the image before it replaces the current
application:

• The image contains a valid signature which the module can verify using the Firmware
Integrity Key

• The image is encrypted with the Firmware Confidentiality Key stored in the module.

• The Version Security Number for the image is at least as high as the stored value.

Only if all three tests pass is the new firmware written to permanent storage.

Updating the firmware clears the nCipher Security Officer's key and all stored module keys. The
module will not re-enter operational mode until the administrator has correctly re-initialized it.

Version: 3.4

50

Chapter 10: Supported Algorithms

FIPS approved and allowed algorithms:

Symmetric Encryption

• AES

#397 CBC mode (Channel Open and Channel Update Services only - these are offloaded to
the Broadcom processor)

Certificate #1579 (all other services)

ECB, CBC GCM and CMAC modes

• Triple-DES

Certificate #435

CBC mode (Channel Open and Channel Update Services only - these are offloaded to the
Broadcom processor)

Certificate #1035 (all other services)

ECB and CBC mode

Hashing and Message Authentication

• AES CMAC

AES Certificate #1579

• AES GMAC

AES Certificate #1579

• HMAC SHA-1, HMAC SHA-224, HMAC SHA-256, HMAC SHA-384 and
HMAC SHA-512

Certificate #925

• SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512

Certificate #1398

• Triple-DES MAC

Triple-DES Certificate #1035 vendor affirmed

Version: 3.4

51

Signature

• DSA

Certificate #487

FIPS 186-2 and FIPS 186-3 signature generation and verification

Modulus 1024-bits Sub-group 160-bits SHA-1

Modulus 2048-bits Sub-group 224-bits SHA-224

Modulus 2048-bits Sub-group 256-bits SHA-256

Modulus 3072-bits Sub-group 256-bits SHA-256

• ECDSA

Certificate #192

FIPS186-2: Signature Generation and Verification

P-192 P-224 P-256 P-384 P-521 K-163 K-233 K-283 K-409 K-571 B-163 B-233 B-283
B-409 and B-571 Curves

• RSA

Firmware 2.50.16, 2.50.35: Certificate #770; Firmware 2.51.10, 2.55.1: Certificate #1092
FIPS 186-2: RSASSA-PKCS1_V1_5 signature generation and verification
FIPS 186-3: Key generation; RSASSA-PKCS1_V1_5 and RSASSA-PSS signature
generation and verification

Key Establishment

• Diffie-Hellman
(CVL Cert. #1, key agreement; key establishment methodology provides between 80 and
256 bits of encryption strength)

• Elliptic Curve Diffie-Hellman
(CVL Cert. #1, key agreement; key establishment methodology provides between 80 and
256 bits of encryption strength)

• EC-MQV
(key establishment methodology provides between 80 and 256 of encryption strength)

• RSA
(key wrapping, key establishment methodology provides between 80 and 256 bits of
encryption strength)

• AES
(AES Certificate #1579, key wrapping; key establishment methodology provides between

Version: 3.4

52

128 and 256 bits of encryption strength)
AES Key Wrap, AES CMAC Counter mode according to SP800-108, AES CBC mode

• Triple DES
(Triple DES Certificate #1035, key wrapping; key establishment methodology provides 80
or 112 bits of encryption strength)
CBC mode

Other

• Deterministic Random Bit Generator

Certificate #72

SP 800-90 using Counter mode of AES-256

Version: 3.4

53

Non-FIPS approved algorithms

Note Algorithms marked with an asterisk are not approved by NIST. If the module is initialised in
its level 3 mode, these algorithms are disabled. If module is initialized in level 2 mode, the
algorithms are available. However, if you choose to use them, the module is not operating
in FIPS approved mode.

Symmetric

• Aria*

• Arc Four (compatible with RC4)*

• Camellia*

• CAST 6 (RFC2612)*

• DES*

• SEED (Korean Data Encryption Standard) - requires Feature Enable activation*

Asymmetric

• El Gamal * (encryption using Diffie-Hellman keys)

• KCDSA (Korean Certificate-based Digital Signature Algorithm) - requires Feature Enable

activation*

• RSA encryption and decryption*

Hashing and Message Authentication

• HAS-160 - requires Feature Enable activation*

• MD5 - requires Feature Enable activation*

• RIPEMD 160*

• Tiger*

• HMAC (MD5, RIPEMD160, Tiger)*

Version: 3.4

54

Non-deterministic entropy source

Non-deterministic entropy source, used to seed approved random bit generator.

Other

• SSL*/TLS master key derivation

• PKCS #8 padding*.

Note TLS key derivation is approved for use by FIPS 140-2 validated modules - though there is as
yet no validation test. MD5 may be used within TLS key derivation.

Version: 3.4

55

Addresses

Internet addresses

Americas
900 South Pine Island Road,
Suite 710
Plantation
Florida 33324
USA

Tel: +1 888 744 4976
or + 1 954 888 6200

sales@thalesesec.com

Asia Pacific
Units 4101
41/F 248 Queen’s Road East,
Wanchai
Hong Kong
PRC

Tel: + 852 2815 8633

asia.sales@thales-esecurity.com

Australia
103-105 Northbourne Avenue
Turner
ACT 2601
Australia

Tel: +61 2 6120 5148

sales.australasia@thales-esecurity.com

Europe, Middle East, Africa
Meadow View House
Long Crendon
Aylesbury
Buckinghamshire HP18 9EQ
UK

Tel: + 44 (0)1844 201800

emea.sales@thales-esecurity.com

Web site: http://www.thales-esecurity.com/

Support: http://www.thales-esecurity.com/en/Support.aspx

Online documentation: http://www.thales-esecurity.com/Resources.aspx

International sales offices: http://www.thales-esecurity.com/en/Company/Contact%20Us.aspx

http://www.thalesgroup.com/iss
http://iss.thalesgroup.com/en/Support.aspx
http://iss.thalesgroup.com/Resources.aspx
http://iss.thalesgroup.com/en/Company/Contact%20Us.aspx

	Versions
	Contents
	Chapter 1: Purpose
	Chapter 2: Excluded Components
	Chapter 3: Roles
	Unauthenticated
	User
	nCipher Security Officer
	Junior Security Officer

	Chapter 4: Services available to each role
	Chapter 5: Keys
	nCipher Security Officer's key
	Junior Security Officer's key
	Long term signing key
	Module signing key
	Module keys
	Logical tokens
	Share Key
	Impath keys
	Key objects
	Session keys
	Archiving keys
	Certificate signing keys
	Firmware Integrity Key
	Firmware Confidentiality Key
	Master Feature Enable Key
	DRBG Key

	Chapter 6: Rules
	Identification and authentication
	Access Control
	Access Control List
	Object re-use
	Error conditions
	Security Boundary
	Status information

	Procedures to initialise a module to comply with FIPS 140-2 Level 2
	Verifying the module is in level 2 mode

	Operating a level 2 module in FIPS mode
	To return a module to factory state
	To create a new operator
	To authorize the operator to create keys
	To authorize an operator to act as a Junior Security Officer
	To authenticate an operator to use a stored key
	To authenticate an operator to create a new key

	Chapter 7: Physical security
	Checking the module

	Chapter 8: Strength of functions
	Attacking Object IDs
	Attacking Tokens
	Key Blobs
	Impaths
	KDP key provisioning
	Derived Keys

	Chapter 9: Self Tests
	Firmware Load Test

	Chapter 10: Supported Algorithms
	FIPS approved and allowed algorithms:
	Symmetric Encryption
	Hashing and Message Authentication
	Signature
	Key Establishment
	Other

	Non-FIPS approved algorithms
	Symmetric
	Asymmetric
	Hashing and Message Authentication
	Non-deterministic entropy source
	Other

	Addresses

