

This document is a non-proprietary security policy for RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 (RSA BSAFE Crypto-J JSAFE and JCE Software Module) security software.

This document may be freely reproduced and distributed whole and intact including the copyright notice.

Contents:

Preface	2
References	2
Terminology	2
Document Organization	3
1 The Cryptographic Module	4
1.1 Introduction	4
1.2 Module Characteristics	4
1.3 Module Interfaces	8
1.4 Roles, Services and Authentication	9
1.5 Cryptographic Key Management	13
1.6 Cryptographic Algorithms	16
1.7 Self-tests	18
2 Secure Operation of the Module	19
2.1 Module Configuration	19
2.2 Security Roles, Services and Authentication Operation	20
2.3 Crypto User Guidance	20
2.4 Crypto Officer Guidance	24
2.5 Operating the Cryptographic Module	24
3 Acronyms	25

Preface

This document is a non-proprietary security policy for the RSA BSAFE Crypto-J JSAFE and JCE Software Module from RSA, the Security Division of EMC (RSA).

This security policy describes how the RSA BSAFE Crypto-J JSAFE and JCE Software Module meets the Level 2 security requirements of FIPS 140-2 for Roles, Services and Authentication, Level 3 security requirements of FIPS 140-2 for Design Assurance, and Level 1 security requirements for all other aspects of FIPS 140-2, and how to securely operate it.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2 - Security Requirements for Cryptographic Modules) details the U.S. Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the NIST website.

References

This document deals only with operations and capabilities of the RSA BSAFE Crypto-J JSAFE and JCE Software Module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information on RSA BSAFE Crypto-J JSAFE and JCE Software Module and the entire RSA BSAFE product line is available at:

- http://www.rsa.com/, for information on the full line of products and services.
- http://www.rsa.com/node.aspx?id=1319 for an overview of security tools for Java developers.
- http://www.rsa.com/node.aspx?id=1204 for an overview of the RSA BSAFE product range.

Terminology

In this document, the term RSA BSAFE Crypto-J JSAFE and JCE Software Module denotes the RSA BSAFE Crypto-J JSAFE and JCE Software Module FIPS 140-2 validated Cryptographic Module for Overall Security Level 1 with Level 2 Roles, Services and Authentication and Level 3 Design Assurance.

The RSA BSAFE Crypto-J JSAFE and JCE Software Module is also referred to as:

- The Cryptographic Module
- The Java Crypto Module (JCM)
- The module.

2 Preface

Document Organization

This document explains the RSA BSAFE Crypto-J JSAFE and JCE Software Module features and functionality relevant to FIPS 140-2, and contains the following sections:

- This section, "Preface" on page 2 provides an overview and introduction to the Security Policy.
- "The Cryptographic Module" on page 4, describes the module and how it meets the 140-2 Security Level 2 requirements.
- "Secure Operation of the Module" on page 19, addresses the required configuration for the FIPS140-mode of operation.
- "Acronyms" on page 25, lists the definitions for the acronyms used in this document.

With the exception of the Non-Proprietary *RSA BSAFE Crypto-J JSAFE and JCE Software Module Security Policy*, the FIPS 140-2 Security Level 2 Roles, Services and Authentication, Security Level 3 Design Assurance, Security Level 1 Overall Validation Submission Documentation is EMC Corporation-proprietary and is releasable only under appropriate non-disclosure agreements. For access to the documentation, please contact RSA.

Preface 3

1 The Cryptographic Module

This section provides an overview of the module, and contains the following topics:

- Introduction
- Module Characteristics
- Module Interfaces
- Roles, Services and Authentication
- Cryptographic Key Management
- Cryptographic Algorithms
- Self-tests.

1.1 Introduction

More than a billion copies of the RSA BSAFE technology are embedded in today's most popular software applications and hardware devices. Encompassing one of the most widely-used and rich set of cryptographic algorithms as well as secure communications protocols, RSA BSAFE software is a set of complementary security products relied on by developers and manufacturers worldwide.

The Crypto-J software library relies on the Java Cryptographic Module library. It includes a wide range of data encryption and signing algorithms, including AES, Triple-DES, the RSA Public Key Cryptosystem, the Elliptic Curve Cryptosystem, DSA, and the SHA1 and SHA2 message digest routines. Its software libraries, sample code and complete standards-based implementation enable near-universal interoperability for your networked and e-business applications.

1.2 Module Characteristics

JCM is classified as a FIPS 140-2 multi-chip standalone module. As such, JCM is tested on particular operating systems and computer platforms. The cryptographic boundary includes JCM running on selected platforms that are running selected operating systems.

JCM is validated for FIPS 140-2 Security Level 2 for Roles, Services and Authentication, Security Level 3 for Design Assurance, and overall for Security Level 1 requirements. JCM is packaged in a Java Archive (JAR) file containing all the code for the module.

The JCM API of the JCM module is provided in the jcmFIPS.jar and jcmandroidfips.jar files.

JCM is tested on the following platforms:

- GoogleTM AndroidTM 2.2 ARM (32-bit) JRE 6.0
- Microsoft[®] Windows 7TM (64-bit) with Sun JRE 6.0.

Compliance is maintained on platforms for which the binary executable remains unchanged. This includes (but is not limited to):

- Apple[®]
 - Mac OS[®] X 10.6 Snow Leopard[®], x86 (32-bit), Apple JDK 6.0
 - Mac OS X 10.6 Snow Leopard, x86 64 (64-bit), Apple JDK 6.0.
- CanonicalTM
 - Ubuntu[™] 10.04, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0
 - Ubuntu 10.04, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0.

Google

- Android 2.1 ARM (32-bit) JDK 6.0
- Android 2.2 ARM (32-bit) JDK 6.0
- Android 2.3 ARM (32-bit) JDK 6.0
- Android 4.0 ARM (32-bit) JDK 6.0.

HP

- HP-UX 11.31, PA-RISC 2.0 (32-bit), HP JRE 6.0
- HP-UX 11.31, PA-RISC 2.0W (64-bit), HP JRE 6.0
- HP-UX 11.31, Itanium 2 (32-bit), HP JRE 6.0
- HP-UX 11.31, Itanium 2 (64-bit), HP JRE 6.0.

IBM

- AIX 6.1, PowerPC[®] (32-bit), IBM JRE 6.0
- AIX 6.1, PowerPC (64-bit), IBM JRE 6.0
- AIX 7.1, PowerPC (32-bit), IBM JRE 6.0
- AIX 7.1, PowerPC (64-bit), IBM JRE 6.0.

• Linux[®]

- Novell[®] SUSE[®] 10, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0
- Novell SUSE 10, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0

- Novell SUSE 11 Itanium 64-bit, Oracle JRE 6.0, IBM JRE 6.0/7.0, JRockit 6.0.
- Novell SUSE Linux Enterprise 11, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0
- Novell SUSE Linux Enterprise 11, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0
- Novell SUSE Linux Enterprise Server 10, PowerPC (32-bit), IBM JRE 6.0/7.0
- Novell SUSE Linux Enterprise Server 10, PowerPC (64-bit), IBM JRE 6.0/7.0
- Novell SUSE Linux Enterprise Server 11, PowerPC (32-bit), IBM JRE 6.0/7.0
- Novell SUSE Linux Enterprise Server 11, PowerPC (64-bit), IBM JRE 6.0/7.0
- Red Hat[®] Enterprise Linux AS 5.0, PowerPC (32-bit), IBM JRE 6.0/7.0
- Red Hat Enterprise Linux AS 5.0, PowerPC (64-bit), IBM JRE 6.0/7.0
- Red Hat Enterprise Linux 5.5, Security Enhanced Linux Configuration, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0
- Red Hat Enterprise Linux 5.5, Security Enhanced Linux Configuration, x86 64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0
- Red Hat Enterprise Linux 6.0, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0
- Red Hat Enterprise Linux 6.0, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0
- Red Hat Enterprise Server 5.5, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0
- Red Hat Enterprise Server 5.5, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0.

Microsoft

- Windows XP Professional SP3, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows XP Professional SP3, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows Server 2003 x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows Server 2003 x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows Server 2003 Itanium (64-bit), Oracle JRE 6.0
- Windows Server 2008 x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0

- Windows Server 2008 x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows Server 2008 Itanium (64-bit), Oracle JRE 6.0
- Windows Server 2008 (SSLF configuration) x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows Server 2008 (SSLF configuration) x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows Vista[®] (SSLF configuration) x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows Vista (SSLF configuration) x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows Vista Ultimate x86 (32-bit), Oracle JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows Vista Ultimate x86_64 (64-bit), Oracle JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows 7, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Windows 7, x86 64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0.

Oracle

- SolarisTM 10, SPARC v8+ (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Solaris 10, SPARC v9 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0
- Solaris 10, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0
- Solaris 10, x86 64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0.

For a resolution on the issue of multi-user modes, see the NIST document Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program.

1.3 Module Interfaces

As a multi-chip standalone module, the physical interface to the JCM consists of a keyboard, mouse, monitor, serial ports and network adapters.

The underlying logical interface to the module is the API, documented in the relevant API *Javadoc*. The module provides for Control Input through the API calls. Data Input and Output are provided in the variables passed with API calls, and Status Output is provided in the returns and error codes documented for each call. This is shown in the following diagram.

Physical Boundary

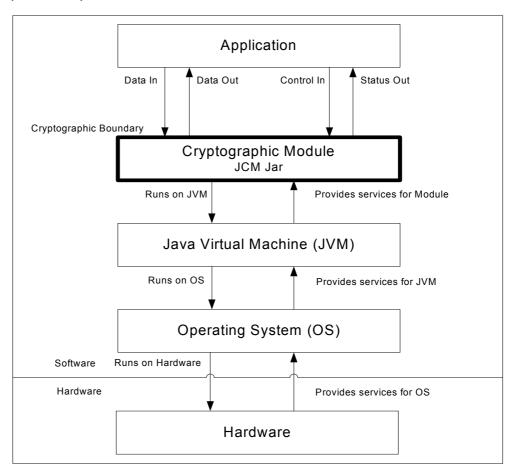


Figure 1 JCM Logical Diagram

1.4 Roles, Services and Authentication

JCM is designed to meet all FIPS140-2 Level 2 requirements for Roles, Services and Authentication, implementing both a Crypto Officer role and a Crypto User role. Role-Based Authentication is used for these roles.

This authentication mechanism uses 512-bit (64 byte) PINs generated using an Approved Random Number Generator, HMAC DRBG. A random attempt to guess the PIN will succeed with a probability of 1 in 2⁵¹².

The PIN is saved as a salted hash in the module configuration file. The salted hash value is computed by combining the PIN and a 512-bit random (salt) value, which is generated using the HMAC DRBG, then hashing the combined value using SHA-512.

The API for control of JCM is through the com.rsa.crypto.ModuleConfig class.

Roles can be assumed by creating a FIPS140Context object which encapsulates a particular FIPS 140-2 Role, and using the object as input to authenticated services. Authentication is required in order to create a FIPS140Context object, and authenticated services cannot be accessed without a FIPS140Context object. The ModuleConfig class contains APIs for PIN initialization and management.

1.4.1 Crypto Officer Role

The Crypto Officer Role is responsible for installation and management of the cryptographic module. During installation of the module, the Crypto Officer Role is assumed. The installation process includes module initialization, which requires initialization of role PINs required for authentication during operation of the module.

After installation and initialization, authentication is required to assume the Crypto Officer Role. An operator can assume the Crypto Officer Role by providing credentials to the Service to be used by the operator.

The Services section provides a list of services available to the Crypto Officer Role.

1.4.2 Crypto User Role

The User Role performs general security services, including cryptographic operations and other approved security functions.

After installation and initialization, authentication is required to assume the User Role. An operator can assume the Crypto User Role by constructing a FIPS140Context object where the role is specified as ModuleConfig.USER_ROLE. The FIPS140Context object can then be input to a Service which is to be used by the Crypto User Role.

The Services section provides a list of services available to the Crypto User Role.

1.4.3 Services

The following table lists the services that must be used to install and initialize the module. These services can be accessed un-authenticated by the Crypto Officer Role.

Table 1 Crypto Officer Installation Services

Crypto Offi	Crypto Officer Role Installation Services	
ModuleLoader.load	ModuleConfig.initFIPS140PINs	

The following table lists the services provided by JCM which may be used by un-authenticated operators after installation, in terms of the module interface. These services do not affect the security of the module since they do not make any use of cryptographic keys or Critical Security Parameters (CSPs).

Table 2 Un-Authenticated Services

Un-Authenticated Services	
ModuleConfig.getEntropySource	ModuleConfig.setEntropySource
ModuleConfig.initFIPS140RolePINs	ModuleConfig.isFIPS140Compliant
ModuleConfig.isFIPS140Level1	ModuleConfig.getSecurityLevel
ModuleConfig.getVersionString	ModuleConfig.getVersionDouble

The following table lists the Services only available to the Crypto Officer Role provided by JCM in terms of the module interface.

Table 3 Services only available to the Crypto Officer Role

Services only Available t	o the Crypto Officer Role
ModuleConfig.resetFIPS140RolePIN	ModuleConfig.setFIPS140RolePIN

The JCM provides services which are available in **both** FIPS and non-FIPS mode. The following table lists the Services available only to the Crypto User Role provided by JCM in terms of the module interface.

Table 4 Services only Available to the Crypto User Role

Services only Available to the Crypto	es only Available to the Crypto User Role, FIPS and non-FIPS mode	
Random Number Generation	SecureRandom	
Encryption/Decryption	SymmCipher Cipher	
Signature Generation/Verification	Signature	

Table 4 Services only Available to the Crypto User Role (continued)

MAC Generation/Verification	MAC
Digest Generation	MessageDigest
Key Establishment Primitives	KeyAgreement
Parameters	AlgInputParams AlgorithmParams DHParams DomainParams DSAParams ECParams ECPoint PQGParams
Parameter Generation	AlgParamGenerator
Key Generation	KeyGenerator KeyPairGenerator
Keys	DHPrivateKey DHPublicKey DSAPrivateKey DSAPublicKey ECPrivateKey ECPublicKey Key Key KeyBuilder KeyPair PasswordKey PrivateKey PublicKey RSAPrivateKey RSAPublicKey SecretKey
Key Derivation	KDF
Other Services	AlgListener AlgorithmStrings BigNum CryptoModule JCMCloneable ModuleConfig ModuleOperations ParamNames PasswordKey SelfTestEvent SelfTestEventListener

The following table lists the Services provided by JCM which may be used by either the Crypto User Role or Crypto Officer Role, in terms of the module interface.

Table 5 Services Available to the Crypto User and Crypto Officer Roles

Services Available to the Crypto User and Crypto Officer Roles
--

FIPS140Context

ModuleConfig.getFIPS140Context

For more information on each function, see the relevant API Javadoc.

1.5 Cryptographic Key Management

1.5.1 Key Generation

The module supports the generation of the DSA, RSA, and Diffie-Hellman (DH) and ECC public and private keys. In the FIPS-approved mode, RSA keys can only be generated using the approved 186-3 RSA key generation method.

The module employs a FIPS-approved HMAC Deterministic Random Bit Generator (HMAC DRBG SP 800-90) for generating asymmetric and symmetric keys used in algorithms such as AES, Triple-DES, RSA, DSA, DH and ECC.

1.5.2 Key Protection

All key data resides in internally allocated data structures and can only be output using the JCM API. The operating system and the Java Runtime Environment (JRE) safeguards memory and process space from unauthorized access.

1.5.3 Key Access

An authorized operator of the module has access to all key data created during JCM operation.

The following table lists the different services provided by the module with the type of access to keys or CSPs.

Table 6 Key and CSP Access

Service	Key or CSP	Type of Access
Asymmetric Encryption and Decryption	Asymmetric keys (RSA)	Read/Execute
Encryption and decryption	Symmetric keys (AES, Triple-DES)	Read/Execute
Digital signature and verification	Asymmetric keys (DSA, RSA, ECDSA)	Read/Execute
Hashing	None	N/A
MAC	HMAC keys	Read/Execute
Random number generation	HMAC DRBG entropy, strength, and seed	Read/Write/Execute
Key establishment primitives	Asymmetric keys (DH, ECDH)	Read/Execute
Key generation	Symmetric keys (AES, Triple-DES) Asymmetric keys (DSA, EC DSA, RSA, DH, ECDH) MAC keys (HMAC)	Write

Table 6 Key and CSP Access (continued)

Service	Key or CSP	Type of Access
Self-test	Hard-coded keys, (AES, Triple-DES, RSA, DSA, ECDSA, HMAC) Hard-coded entropy, strength, and seed (HMAC DRBG)	Read/Execute
Show status	None	N/A
Zeroization	All	Read/Write

1.5.4 Key Zeroization

The module stores all its keys and Critical Security Parameters (CSPs) in volatile memory. Users can ensure CSPs are properly zeroized by making use of the <object>.clearSensitiveData() method. All of the module's keys and CSPs are zeroizable. For more information about clearing CSPs, see the relevant API Javadoc.

1.5.5 Key Storage

JCM does not provide long-term cryptographic key storage. Storage of keys is the responsibility of the user of JCM.

The following table shows how the storage of keys and CSPs are handled.

Table 7 Key and CSP Storage

Item	Storage
AES keys	In volatile memory only (plaintext)
Triple-DES keys	In volatile memory only (plaintext)
HMAC with SHA1 and SHA2 keys	In volatile memory only (plaintext)
EC public keys	In volatile memory only (plaintext)
EC private keys	In volatile memory only (plaintext)
DH public key	In volatile memory only (plaintext)
DH private key	In volatile memory only (plaintext)
RSA public key	In volatile memory only (plaintext)
RSA private key	In volatile memory only (plaintext)
DSA public key	In volatile memory only (plaintext)
DSA private key	In volatile memory only (plaintext)

Table 7 Key and CSP Storage (continued)

HMAC DRBG Entropy	In volatile memory only (plaintext)
HMAC DRBG V Value	In volatile memory only (plaintext)
HMAC DRBG Key	In volatile memory only (plaintext)
HMAC DRBG init_seed	In volatile memory only (plaintext)
Crypto User Role PIN	In volatile memory and on disk*
Crypto Officer Role PIN	In volatile memory and on disk*

^{*}In plaintext, output from the module as a salted hash.

1.6 Cryptographic Algorithms

The JCM offers a wide range of cryptographic algorithms. This section describes the algorithms that can be used when operating the module in a FIPS 140-compliant manner.

The following table lists the FIPS 140-approved and FIPS 140-allowed algorithms that can be used when operating the module in a FIPS 140-compliant way.

Table 8 JCM FIPS 140-approved Algorithms

Algorithm Type	Algorithm	Validation Certificate
Asymmetric Cipher	RSA	Non-Approved (Allowed in FIPS mode for key transport*)
Ley Agreement rrimitives	Diffie-Hellman (primitives only) EC Diffie-Hellman (primitives only) with a cofactor of 1 or higher.	Non-Approved (Allowed in FIPS mode)
Key Derivation	Password-based	Vendor-Approved **
Message Authentication Code	HMAC***	Certificate #1148
lessage Digest	SHA-1, SHA-224, SHA-256, SHA- 384, SHA-512	Certificate #1678
andom Bit enerator	HMAC DRBG	Certificate #160
ignature***	RSA X9.31, PKCS #1 V.1.5, RSASSA-PSS	Certificate #981
	DSA	Certificate #604
	ECDSA	Certificate #271
ymmetric Cipher	AES (ECB, CBC, CFB, OFB, CTR, CCM, GCM, XTS) [128, 192, 256 bit key sizes]	Certificate #1911
	Triple-DES**** (ECB, CBC, CFB, OFB)	Certificate #1243

^{*}The module implements RSA encrypt/decrypt, which is non-approved. A calling application may use this to implement a key transport scheme, which is allowed for use in FIPS mode.

^{**}The module implements PBKDF2 as the PBKDF algorithm as defined in SP800-132. This can be used in FIPS mode when used with a FIPS-approved Symmetric Cipher and Message Digest algorithm. For information on how to use PBKDF, see "Crypto User Guidance" on page 20

^{****}When used with a FIPS-approved Message Digest algorithm.

^{*****}For information on the restrictions applicable to the use of two-key Triple-DES, see "The following restrictions apply to the use of Triple-DES:" on page 22.

The following lists all other available algorithms in the JCM that are not allowable for FIPS 140 usage. These algorithms must not be used when operating the module in a FIPS 140 compliant way.

- DES
- DESX
- ECIES
- Non-approved RNG (FIPS 186-2)
- Dual EC DRBG
- MD2
- MD4
- MD5
- RC2[®] block cipher
- RC4[®] stream cipher
- RC5[®] block cipher
- RSA Keypair Generation MultiPrime (2 or 3 primes)
- RIPEMD160
- HMAC-MD5.

1.7 Self-tests

The module performs power-up and conditional self-tests to ensure proper operation.

If the power-up self-test fails, the module is disabled and throws a SecurityException. The module cannot be used within the current JVM.

If the conditional self-test fails, the module throws a SecurityException and aborts the operation. A conditional self-test failure does NOT disable the module.

1.7.1 Power-up Self-tests

The following FIPS-140 required power-up self-tests are implemented in the module:

- AES KATs
- TDES KATs
- SHA-1 KAT
- SHA-256 KAT
- SHA-512 KAT
- HMAC DRBG KAT
- EC DRBG KAT
- HMAC-SHA1 software integrity check
- DSA Sign/Verify Test
- RSA Sign/Verify Test
- ECDSA Sign/Verify Test
- Non-approved RNG KAT (FIPS 186-2).

Power-up self-tests are executed automatically when the module is loaded into memory.

1.7.2 Conditional Self-tests

The module performs two conditional self-tests:

- Pair-wise Consistency Tests each time the module generates a DSA, RSA or ECDSA key pair.
- Continuous Random Number Generator (CRNG) Test each time the module produces random data, as per the FIPS 140-2 standard. The CRNG test is performed on the following random number generators:
 - EC DRBG
 - HMAC DRBG
 - Non-approved RNG (FIPS 186-2).

2 Secure Operation of the Module

The following guidance must be followed in order to operate the module in a FIPS 140 mode of operation, in conformance with FIPS 140-2 requirements.

2.1 Module Configuration

To operate the module compliance with FIPS 140-2 Level 1 with Level 2 Roles, Services and Authentication requirements, the module must be loaded using the following methods with the specified arguments:

For the Android platform:

com.rsa.crypto.jcm.ModuleLoader.load(File jarFile, int securityLevel, int katStrategy, SelfTestEventListener selfTestListener)

• where jarFile is the module JAR file, securityLevel is the value 2 (specified as the constant ModuleConfig.LEVEL_2) and katStrategy is the value 0 (specified as the constant ModuleConfig.ON_LOAD).

For all other platforms:

com.rsa.crypto.jcm.ModuleLoader.load(int securityLevel, int katStrategy, SelfTestEventListener selfTestListener)

 where securityLevel is the value 2 (specified as the constant ModuleConfig.LEVEL_2) and katStrategy is the value 0 (specified as the constant ModuleConfig.ON_LOAD).

Using the specified securityLevel ensures that the module is loaded for use in compliance with FIPS 140 for Level 2 Roles, Services and Authentication. Using the specified katStrategy value ensures that all module self-tests are run during module start-up, as required by FIPS 140-2.

Once the load method has been successfully called for the first time, the module PINs must be initialized using the initFIPS140RolePINs method in the ModuleConfig class. Please refer to the relevant API *Javadoc* for alternative overloaded options which can be supplied to this method, such as PIN validity period and Cryptographic Module Configuration File location.

Once the PINs have been initialized, the module is operational.

2.2 Security Roles, Services and Authentication Operation

The Crypto Officer is responsible for installing and initializing the module for operation, as specified in the 2.1 Module Configuration section. Once this is complete, the module is ready for operation.

During operation, the PINs created during module initialization (via the ModuleConfig.initFIPS140PINs method) must be used to authenticate the operators before performing the authenticated services available to the Crypto Officer Role and the Crypto User Role.

To access PIN management services as the Crypto Officer Role, the Crypto Officer Role PIN must be supplied as input to the service APIs.

To access security services as the Crypto User Role, the User Role PIN must be supplied to create a FIPS140Context object, which is required as input to the ModuleConfig.newCryptoModule method. The returned CryptoModule object provides access to all Crypto User security functions.

2.3 Crypto User Guidance

This section provides guidance to the module user to ensure that the module is used in a FIPS 140-2 compliant way.

Section 2.3.1 provides algorithm-specific guidance. The requirements listed in this section are not enforced by the module and must be ensured by the module user.

Section 2.3.2 provides guidance on obtaining assurances for Digital Signature Applications.

Section 2.3.3 provides general crypto user guidance.

2.3.1 Crypto User Guidance on Algorithms

- The Crypto User must only use algorithms approved for use in a FIPS 140 mode of operation, as listed in Table 8, "JCM FIPS 140-approved Algorithms," on page 16.
- When generating key pairs using the KeyPairGenerator object, the generate (boolean pairwiseConsistency) method must not be invoked with an argument of false. Use of the no-argument generate () method is recommended.
- When using GCM feedback mode for symmetric encryption, the authentication tag length and authenticated data length may be specified as input parameters, but the Initialization Vector (IV) must not be specified. It must be generated internally.
- RSA keys used for signing shall not be used for any other purpose other than digital signatures.
- For RSASSA-PSS, the length of the salt (sLen) shall be 0<=sLen<=hlen where hlen is the length of the hash function output block.

- Bit lengths for the Diffie-Hellman¹ primitives must be between 1024 and 2048 bits. Diffie Hellman shared secret provides between 80 bits and 112 bits of encryption strength.
- Bit lengths for an HMAC key must be one half of the block size.
- For RSA digital signature generation the HMAC DRBG-must be used.
- EC key pairs must have domain parameters from the set of NIST-recommended named curves (P-192, P-224, P-256, P-384, P-521, B-163, B-233, B-283, B-409, B-571, K-163, K-233, K-283, K-409, and K-571). The domain parameters can be specified by name or can be explicitly defined.
- EC Diffie-Hellman primitives must use curve domain parameters from the set of NIST recommended named curves listed above. The domain parameters can be specified by name, or can be explicitly defined. Using the NIST-recommended curves, the computed Diffie-Hellman shared secret provides between 80 bits and 256 bits of encryption strength.
- When using an approved random number generator to generate keys or DSA parameters, the random number generator's requested security strength must be at least as great as the security strength of the key being generated. That means that the HMAC DRBG with an appropriate strength must be used. For more information on requesting the random number generator security strength, see the relevant APL Javadoc.
- When using an approved random number generator the number of bytes of seed key input must be equivalent to or greater than the security strength of the keys the caller wishes to generate. For example, a 256-bit or higher seed key input when generating 256-bit AES keys.
- SHA1 is deprecated for the generation of digital signatures from 2011 to 2013, and will be disallowed after 2013.
- Only FIPS 140 approved random number generators may be used for generation of keys (asymmetric and symmetric).
- RSA keys shall have a modulus of size 1024, 2048 or 3072 bits, and shall have a public exponent of at least 65537.
- RSA key pairs shall be generated according to FIPS 186-3 by specifying a KEY_TYPE parameter of 0. This is the default KEY_TYPE value, so may be omitted as an input parameter (to the KeyPairGenerator.initialize method).
- DSA parameters shall be generated according to FIPS 186-3 by specifying the algorithm string "DSA" when creating the AlgParamGenerator object. The non-approved algorithm specified by the string "PQG" shall not be used.
- The following restrictions apply to the use of PBKDF:
 - Keys generated using PBKDF shall only be used in data storage applications.
 - The minimum password length is 10 characters, which has a strength of approximately 80 bits, assuming a randomly selected password using the extended ASCII printable character set is used.

¹Using the minimum allowed modulus size, the minimum strength of encryption provided is 80 bits.

For random passwords - a string of characters from a given set of characters in which each character is equally likely to be selected - the strength of the password is given by: S = L * (log N/log 2) where N is the number of possible characters (for example, ASCII printable characters N = 95, extended ASCII printable characters N = 218) and L is the number of characters. A password of the strength S can be guessed at random with the probability of $1/2^S$.

- The length of the randomly-generated portion of the salt shall be at least 16 bytes.²
- The iteration count shall be selected as large as possible, a minimum of 1000 iterations is recommended.²
- The maximum key length is $(2^{32} 1) * b$, where b is the digest size of the hash function.
- The key derived using PBKDF can be used as referred to in SP800-132, Section 5.4, option 1 and 2^2 .
- The following restrictions apply to the use of Triple-DES:
 - The use of three-key Triple-DES is approved beyond 2013 without restriction.
 - The use of two-key Triple-DES is approved beyond 2013. Until 31 December 2015, two-key Triple-DES is allowed with the restriction that at most 2²⁰ blocks of data can be encrypted with the same key.
 - The use of two-key Triple-DES is disallowed beyond 2015. Two-key Triple-DES can be used to decrypt ciphertext for legacy use after 2015.

For more information about the use of two-key Triple-DES, see NIST Special Publication 800-131A "Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths".

²For more information see nist-sp800-132.pdf

2.3.2 Crypto User Guidance on Obtaining Assurances for Digital Signature Applications

The module has added support for the FIPS 186-3 standard for digital signatures. The following gives an overview of the assurances required by FIPS 186-3.

NIST Special Publication 800-89: "Recommendation for Obtaining Assurances for Digital Signature Applications" provides the methods to obtain these assurances.

The tables below describe the FIPS 186-3 requirements for signatories and verifiers and the corresponding module capabilities and recommendations.

Table 9 Signatory Requirements

FIPS 186-3 Requirement	Module Capabilities and Recommendations
Obtain appropriate DSA and ECDSA parameters when using DSA or ECDSA.	The generation of DSA parameters is in accordance with the FIPS 186-3 standard for the generation of probable primes. For ECDSA, use the NIST recommended curves as defined in section 2.3.1.
Obtain assurance of the validity of those parameters.	The module provides APIs to validate DSA parameters for probable primes as described in FIPS 186-3. For the JCM API, com.rsa.crypto.AlgParamGenerator.verify() For ECDSA, use the NIST recommended curves as defined in section 2.3.1.
Obtain a digital signature key pair that is generated as specified for the appropriate digital signature algorithm.	The module generates the digital signature key pair according to the required standards. Choose a FIPS-approved random number generator like HMAC DRBG to generate the key pair.
Obtain assurance of the validity of the public key.	The module provides APIs to explicitly validate the public key according to NIST Special Publication 800-89. For the JCM API, com.rsa.crypto.PublicKey.isValid(com.rsa.crypto.SecureRandom)
Obtain assurance that the signatory actually possesses the associated private key.	The module verifies the signature created using the private key, but all other assurances are outside the scope of the module.

Table 10 Verifier Requirements

FIPS 186-3 Requirement	Module Capabilities and Recommendations
Obtain assurance of the signatory's claimed identity	The module verifies the signature created using the private key, but all other assurances are outside the scope of the module.
Obtain assurance of the validity of the domain parameters for DSA and ECDSA.	The module provides APIs to validate DSA parameters for probable primes as described in FIPS 186-3. For the JCM API, com.rsa.crypto.AlgParamGenerator.verify() For ECDSA, use the NIST recommended curves as defined in section 2.3.1.
Obtain assurance of the validity of the public key	The module provides APIs to explicitly validate the public key according to NIST Special Publication 800-89. For the JCM API, com.rsa.crypto.PublicKey.isValid(com.rsa.crypto.SecureRandom)
Obtain assurance that the claimed signatory actually possessed the private key that was used to generate the digital signature at the time that the signature was generated	Outside the scope of the module.

For more details on the requirements, see the FIPS 186-3 and NIST Special Publication 800-89.

2.3.3 General Crypto User Guidance

JCM users should take care to zeroize CSPs when they are no longer needed. For more information on clearing sensitive data, see section 1.5.4 and the relevant API *Javadoc*.

2.4 Crypto Officer Guidance

The Crypto Officer is responsible for installing the module. Installation instructions are provided in the RSA BSAFE Crypto-J Installation Guide.

The Crypto Officer is also responsible for loading the module, as specified in section 2.1 Module Configuration.

The Crypto Officer is responsible for configuring the PINs for their own role and the Crypto User role.

2.5 Operating the Cryptographic Module

Both FIPS and non-FIPS algorithms are available to the operator. In order to operate the module in the FIPS-approved mode, all rules and guidance provided in "Secure Operation of the Module" on page 19 must be followed by the module operator. The module does not enforce the FIPS140 mode of operation.

3 Acronyms

The following table lists the acronyms used with JCM and their definitions.

Table 11 Acronyms used with JCM

Acronym	Definition
3DES	Refer to Triple-DES
AES	Advanced Encryption Standard. A fast block cipher with a 128-bit block, and keys of lengths 128, 192 and 256 bits. This will replace DES as the US symmetric encryption standard.
API	Application Programming Interface.
Attack	Either a successful or unsuccessful attempt at breaking part or all of a cryptosystem. Attack types include an algebraic attack, birthday attack, brute force attack, chosen ciphertext attack, chosen plaintext attack, differential cryptanalysis, known plaintext attack, linear cryptanalysis, middleperson attack and timing attack.
CBC	Cipher Block Chaining. A mode of encryption in which each ciphertext depends upon all previous ciphertexts. Changing the IV alters the ciphertext produced by successive encryptions of an identical plaintext.
CFB	Cipher Feedback. A mode of encryption that produces a stream of ciphertext bits rather than a succession of blocks. In other respects, it has similar properties to the CBC mode of operation.
CRNG	Continuous Random Number Generation.
CSP	Critical Security Parameters.
DES	Data Encryption Standard. A symmetric encryption algorithm with a 56-bit key.
Diffie-Hellman	The Diffie-Hellman asymmetric key exchange algorithm. There are many variants, but typically two entities exchange some public information (for example, public keys or random values) and combines them with their own private keys to generate a shared session key. As private keys are not transmitted, eavesdroppers are not privy to all of the information that composes the session key.
DPK	Data Protection Key
DRBG	Deterministic Random Bit Generator.
DSA	Digital Signature Algorithm. An asymmetric algorithm for creating digital signatures.
EC	Elliptic Curve.

Acronyms 25

Table 11 Acronyms used with JCM (continued)

Acronym	Definition
ECB	Electronic Code Book. A mode of encryption in which identical plaintexts are encrypted to identical ciphertexts, given the same key.
ECC	Elliptic Curve Cryptography.
ECDH	Elliptic Curve Diffie-Hellman.
ECDHC	Elliptic Curve Diffie-Hellman with Components.
ECDSA	Elliptic Curve Digital Signature Algorithm.
ECIES	Elliptic Curve Integrated Encryption Scheme.
Encryption	The transformation of plaintext into an apparently less readable form (called ciphertext) through a mathematical process. The ciphertext may be read by anyone who has the key that decrypts (undoes the encryption) the ciphertext.
FIPS	Federal Information Processing Standards.
HMAC	Keyed-Hashing for Message Authentication Code.
IV	Initialization Vector. Used as a seed value for an encryption operation.
JCE	Java Cryptography Extension.
JVM	Java Virtual Machine.
KAT	Known Answer Test.
KDF	Key Derivation Function. Derives one or more secret keys from a secret value, such as a master key, using a pseudo-random function.
Key	A string of bits used in cryptography, allowing people to encrypt and decrypt data. Can be used to perform other mathematical operations as well. Given a cipher, a key determines the mapping of the plaintext to the ciphertext. Various types of keys include: distributed key, private key, public key, secret key, session key, shared key, subkey, symmetric key, and weak key.
MD4	A message digest algorithm which implements a cryptographic hash function, created by Rivest.
MD5	A secure hash algorithm created by Ron Rivest. MD5 hashes an arbitrary-length input into a 16-byte digest.
NIST	National Institute of Standards and Technology. A division of the US Department of Commerce (formerly known as the NBS) which produces security and cryptography-related standards.
OFB	Output Feedback. A mode of encryption in which the cipher is decoupled from its ciphertext.

26 Acronyms

Table 11 Acronyms used with JCM (continued)

Acronym	Definition
OS	Operating System.
PBE	Password-Based Encryption.
PBKDF	Password-Based Key Derivation Function.
PC	Personal Computer.
private key	The secret key in public key cryptography. Primarily used for decryption but also used for encryption with digital signatures.
PRNG	Pseudo-random Number Generator.
RC2	Block cipher developed by Ron Rivest as an alternative to the DES. It has a block size of 64 bits and a variable key size. It is a legacy cipher and RC5 should be used in preference.
RC4	Symmetric algorithm designed by Ron Rivest using variable length keys (usually 40 bit or 128 bit).
RC5	Block cipher designed by Ron Rivest. It is parameterizable in its word size, key length and number of rounds. Typical use involves a block size of 64 bits, a key size of 128 bits and either 16 or 20 iterations of its round function.
RSA	Public key (asymmetric) algorithm providing the ability to encrypt data and create and verify digital signatures. RSA stands for Rivest, Shamir, and Adleman, the developers of the RSA public key cryptosystem.
SHA	Secure Hash Algorithm. An algorithm which creates a hash value for each possible input. SHA takes an arbitrary input which is hashed into a 160-bit digest.
SHA-1	A revision to SHA to correct a weakness. It produces 160-bit digests. SHA-1 takes an arbitrary input which is hashed into a 20-byte digest.
SHA-2	The NIST-mandated successor to SHA-1, to complement the Advanced Encryption Standard. It is a family of hash algorithms (SHA-256, SHA-384 and SHA-512) which produce digests of 256, 384 and 512 bits respectively.
TDES	Refer to Triple-DES
Triple-DES	A symmetric encryption algorithm which uses either two or three DES keys. The two key variant of the algorithm provides 80 bits of security strength while the three key variant provides 112 bits of security strength.

Acronyms 27