
Security Policy

 18.04.16
RSA BSAFE® Crypto-J JSAFE and JCE
Software Module 6.0 Security Policy Level 1

This document is a non-proprietary security policy for RSA BSAFE Crypto-J JSAFE
and JCE Software Module 6.0 (RSA BSAFE Crypto-J JSAFE and JCE Software
Module) security software.

This document may be freely reproduced and distributed whole and intact including
the copyright notice.

Contents:
Preface .. 2

References .. 2

Terminology ... 2

Document Organization ... 3

1 The Cryptographic Module ... 4

1.1 Introduction ... 4

1.2 Module Characteristics ... 4

1.3 Module Interfaces .. 8

1.4 Roles and Services ... 9

1.5 Cryptographic Key Management ... 11

1.6 Cryptographic Algorithms ... 14

1.7 Self-tests ... 16

2 Secure Operation of the Module .. 17

2.1 Module Configuration .. 17

2.2 Security Roles, Services and Authentication Operation 17

2.3 Crypto User Guidance .. 18

2.4 Crypto Officer Guidance ... 22

2.5 Operating the Cryptographic Module .. 22

3 Acronyms .. 23
23 February 2012 Copyright © 2016 EMC Corporation. All rights reserved. Published in the USA. 1

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
Preface

This document is a non-proprietary security policy for the RSA BSAFE Crypto-J
JSAFE and JCE Software Module from RSA, the Security Division of EMC (RSA).

This security policy describes how the RSA BSAFE Crypto-J JSAFE and JCE
Software Module meets the Level 1 FIPS 140-2 Security validation of the RSA
BSAFE Crypto-J JSAFE and JCE Software Module.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2 - Security
Requirements for Cryptographic Modules) details the U.S. Government requirements
for cryptographic modules. More information about the FIPS 140-2 standard and
validation program is available on the NIST website.

References

This document deals only with operations and capabilities of the RSA BSAFE
Crypto-J JSAFE and JCE Software Module in the technical terms of a FIPS 140-2
cryptographic module security policy. More information on RSA BSAFE Crypto-J
JSAFE and JCE Software Module and the entire RSA BSAFE product line is available
at:

• http://www.rsa.com/, for information on the full line of products and
services.

• http://www.rsa.com/node.aspx?id=1319 for an overview of security tools
for Java developers.

• http://www.rsa.com/node.aspx?id=1204 for an overview of the RSA
BSAFE product range.

Terminology

In this document, the term RSA BSAFE Crypto-J JSAFE and JCE Software Module
denotes the RSA BSAFE Crypto-J JSAFE and JCE Software Module 140-2 Security
Level 1 validated Cryptographic Module.

The RSA BSAFE Crypto-J JSAFE and JCE Software Module is also referred to as:

• The Cryptographic Module

• The Java Crypto Module (JCM)

• The module.
2 Preface

http://csrc.nist.gov/groups/STM/index/html
http://www.rsa.com/
http://www.rsa.com/node.aspx?id=1319
http://www.rsa.com/node.aspx?id=1204

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
Document Organization

This document explains the RSA BSAFE Crypto-J JSAFE and JCE Software Module
features and functionality relevant to FIPS 140-2, and contains the following sections:

• This section, “Preface” on page 2 provides an overview and introduction to the
Security Policy.

• “The Cryptographic Module” on page 4, describes the module and how it meets
the 140-2 Security Level 1 requirements.

• “Secure Operation of the Module” on page 17, addresses the required
configuration for the FIPS140-mode of operation.

• “Acronyms” on page 23, lists the definitions for the acronyms used in this
document.

With the exception of the Non-Proprietary RSA BSAFE Crypto-J JSAFE and JCE
Software Module Security Policy, the FIPS 140-2 Security Level 1 Validation
Submission Documentation is EMC Corporation-proprietary and is releasable only
under appropriate non-disclosure agreements. For access to the documentation, please
contact RSA.
Preface 3

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
1 The Cryptographic Module

This section provides an overview of the module, and contains the following topics:

• Introduction

• Module Characteristics

• Module Interfaces

• Roles and Services

• Cryptographic Key Management

• Cryptographic Algorithms

• Self-tests.

1.1 Introduction

More than a billion copies of the RSA BSAFE technology are embedded in today's
most popular software applications and hardware devices. Encompassing one of the
most widely-used and rich set of cryptographic algorithms as well as secure
communications protocols, RSA BSAFE software is a set of complementary security
products relied on by developers and manufacturers worldwide.

The Crypto-J software library relies on the Java Cryptographic Module library. It
includes a wide range of data encryption and signing algorithms, including AES,
Triple-DES, the RSA Public Key Cryptosystem, the Elliptic Curve Cryptosystem,
DSA, and the SHA1 and SHA2 message digest routines. Its software libraries, sample
code and complete standards-based implementation enable near-universal
interoperability for your networked and e-business applications.

1.2 Module Characteristics

JCM is classified as a FIPS 140-2 multi-chip standalone module. As such, JCM is
tested on particular operating systems and computer platforms. The cryptographic
boundary includes JCM running on selected platforms that are running selected
operating systems.

JCM is validated for FIPS 140-2 Security Level 1 requirements. JCM is packaged in a
Java Archive (JAR) file containing all the code for the module.

The JCM API of the JCM module is provided in the jcmFIPS.jar and
jcmandroidfips.jar files.
4 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
JCM is tested on the following platforms:

• Google™ Android™ 2.2 ARM (32-bit) JRE 6.0

• Microsoft® Windows 7™ (64-bit) with Sun JRE 6.0.

Compliance is maintained on platforms for which the binary executable remains
unchanged. This includes (but is not limited to):

• Apple®

– Mac OS® X 10.6 Snow Leopard®, x86 (32-bit), Apple JDK 6.0

– Mac OS X 10.6 Snow Leopard, x86_64 (64-bit), Apple JDK 6.0.

• Canonical™

– Ubuntu™ 10.04, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0

– Ubuntu 10.04, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0,
JRockit 6.0.

• Google

– Android 2.1 ARM (32-bit) JDK 6.0

– Android 2.2 ARM (32-bit) JDK 6.0

– Android 2.3 ARM (32-bit) JDK 6.0

– Android 4.0 ARM (32-bit) JDK 6.0.

• HP

– HP-UX 11.31, PA-RISC 2.0 (32-bit), HP JRE 6.0

– HP-UX 11.31, PA-RISC 2.0W (64-bit), HP JRE 6.0

– HP-UX 11.31, Itanium 2 (32-bit), HP JRE 6.0

– HP-UX 11.31, Itanium 2 (64-bit), HP JRE 6.0.

• IBM

– AIX 6.1, PowerPC® (32-bit), IBM JRE 6.0

– AIX 6.1, PowerPC (64-bit), IBM JRE 6.0

– AIX 7.1, PowerPC (32-bit), IBM JRE 6.0

– AIX 7.1, PowerPC (64-bit), IBM JRE 6.0.

• Linux®

– Novell® SUSE® 10, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0,
JRockit 6.0

– Novell SUSE 10, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0,
JRockit 6.0
The Cryptographic Module 5

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
– Novell SUSE 11 Itanium 64-bit, Oracle JRE 6.0, IBM JRE 6.0/7.0,
JRockit 6.0.

– Novell SUSE Linux Enterprise 11, x86 (32-bit), Sun JRE 6.0/7.0,
IBM JRE 6.0/7.0, JRockit 6.0

– Novell SUSE Linux Enterprise 11, x86_64 (64-bit), Sun JRE 6.0/7.0,
IBM JRE 6.0/7.0, JRockit 6.0

– Novell SUSE Linux Enterprise Server 10, PowerPC (32-bit),
IBM JRE 6.0/7.0

– Novell SUSE Linux Enterprise Server 10, PowerPC (64-bit),
IBM JRE 6.0/7.0

– Novell SUSE Linux Enterprise Server 11, PowerPC (32-bit),
IBM JRE 6.0/7.0

– Novell SUSE Linux Enterprise Server 11, PowerPC (64-bit),
IBM JRE 6.0/7.0

– Red Hat® Enterprise Linux AS 5.0, PowerPC (32-bit), IBM JRE 6.0/7.0

– Red Hat Enterprise Linux AS 5.0, PowerPC (64-bit), IBM JRE 6.0/7.0

– Red Hat Enterprise Linux 5.5, Security Enhanced Linux Configuration,
x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0

– Red Hat Enterprise Linux 5.5, Security Enhanced Linux Configuration,
x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0

– Red Hat Enterprise Linux 6.0, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE
6.0/7.0, JRockit 6.0

– Red Hat Enterprise Linux 6.0, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE
6.0/7.0, JRockit 6.0

– Red Hat Enterprise Server 5.5, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE
6.0/7.0, JRockit 6.0

– Red Hat Enterprise Server 5.5, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE
6.0/7.0, JRockit 6.0.

• Microsoft

– Windows XP Professional SP3, x86 (32-bit), Sun JRE 6.0/7.0,
IBM JRE 6.0, JRockit 6.0

– Windows XP Professional SP3, x86_64 (64-bit), Sun JRE 6.0/7.0,
IBM JRE 6.0, JRockit 6.0

– Windows Server 2003 x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0,
JRockit 6.0

– Windows Server 2003 x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0,
JRockit 6.0

– Windows Server 2003 Itanium (64-bit), Oracle JRE 6.0

– Windows Server 2008 x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0,
JRockit 6.0
6 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
– Windows Server 2008 x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0,
JRockit 6.0

– Windows Server 2008 Itanium (64-bit), Oracle JRE 6.0

– Windows Server 2008 (SSLF configuration) x86 (32-bit), Sun JRE 6.0/7.0,
IBM JRE 6.0, JRockit 6.0

– Windows Server 2008 (SSLF configuration) x86_64 (64-bit), Sun
JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0

– Windows Vista® (SSLF configuration) x86 (32-bit), Sun JRE 6.0/7.0,
IBM JRE 6.0, JRockit 6.0

– Windows Vista (SSLF configuration) x86_64 (64-bit), Sun JRE 6.0/7.0,
IBM JRE 6.0, JRockit 6.0

– Windows Vista Ultimate x86 (32-bit), Oracle JRE 6.0/7.0, IBM JRE 6.0,
JRockit 6.0

– Windows Vista Ultimate x86_64 (64-bit), Oracle JRE 6.0/7.0, IBM JRE 6.0,
JRockit 6.0

– Windows 7, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0

– Windows 7, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0.

• Oracle

– Solaris™ 10, SPARC v8+ (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0,
JRockit 6.0

– Solaris 10, SPARC v9 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0, JRockit 6.0

– Solaris 10, x86 (32-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0

– Solaris 10, x86_64 (64-bit), Sun JRE 6.0/7.0, IBM JRE 6.0/7.0, JRockit 6.0.

For a resolution on the issue of multi-user modes, see the NIST document
Implementation Guidance for FIPS PUB 140-2 and the
Cryptographic Module Validation Program.
The Cryptographic Module 7

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
1.3 Module Interfaces

As a multi-chip standalone module, the physical interface to the JCM consists of a
keyboard, mouse, monitor, serial ports and network adapters.

The underlying logical interface to the module is the API, documented in the relevant
API Javadoc. The module provides for Control Input through the API calls. Data
Input and Output are provided in the variables passed with API calls, and Status
Output is provided in the returns and error codes documented for each call. This is
shown in the following diagram.

Figure 1 JCM Logical Diagram

Cryptographic Module
JCM Jar

Java Virtual Machine (JVM)

Operating System (OS)

Hardware

Cryptographic Boundary

Software

Hardware

Runs on JVM

Runs on OS

Runs on Hardware

Provides services for OS

Provides services for JVM

Provides services for Module

Application

Data In Data Out Control In Status Out

Physical Boundary
8 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
1.4 Roles and Services

JCM is designed to meet all FIPS140-2 Level 1 requirements, implementing both a
Crypto Officer role and a Crypto User role. As allowed by FIPS 140-2, JCM does not
require user identification or authentication for these roles.

The API for control of JCM is through the com.rsa.crypto.ModuleConfig
class.

1.4.1 Crypto Officer Role

The Crypto Officer is responsible for installing and loading the module. Once the
module has been installed and is operational, an operator can assume the Crypto
Officer Role by constructing a com.rsa.crypto.FIPS140Context object by
invoking the ModuleConfig.getFIPS140Context(int mode, int role)
method with a role argument of
com.rsa.crypto.FIPS140Context.ROLE_CRYPTO_OFFICER.

The Services section provides a list of services available to the Crypto Officer Role.

1.4.2 Crypto User Role

An operator can assume the Crypto User Role by constructing a
com.rsa.crypto.FIPS140Context object by invoking the
ModuleConfig.getFIPS140Context(int mode, int role) method with a
role argument of com.rsa.crypto.FIPS140Context.ROLE_USER.

The Services section provides a list of services available to the Crypto User Role.

1.4.3 Services

The JCM provides services which are available in both FIPS and non-FIPS mode. The
following table lists the un-authenticated services provided by JCM which may be
used by either Role, in either the FIPS or non-FIPS mode, in terms of the module
interface.

Table 1 Services Available to the Crypto User and Crypto Officer Roles

Services Available to the Crypto User and Crypto Officer Roles

Random Number Generation SecureRandom

Encryption/Decryption SymmCipher
Cipher

Signature Generation/Verification Signature

MAC Generation/Verification MAC

Digest Generation MessageDigest
The Cryptographic Module 9

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
For more information on each function, see the relevant API Javadoc.

Key Establishment Primitives KeyAgreement

Parameters AlgInputParams
AlgorithmParams
DHParams
DomainParams
DSAParams
ECGroup
ECParams
ECPoint

PQGParams

Parameter Generation AlgParamGenerator

Key Generation KeyGenerator
KeyPairGenerator

Keys DHPrivateKey
DHPublicKey
DSAPrivateKey
DSAPublicKey
ECPrivateKey
ECPublicKey
Key

KeyBuilder
KeyPair

PasswordKey
PrivateKey
PublicKey

RSAPrivateKey
RSAPublicKey
SecretKey

Key Derivation KDF

Other Services AlgListener
AlgorithmStrings
BigNum
CryptoModule
JCMCloneable
ModuleConfig
ModuleOperations
ParamNames
PasswordKey
SelfTestEvent
SelfTestEventListener
SensitiveData

Table 1 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
10 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
1.5 Cryptographic Key Management

1.5.1 Key Generation

The module supports the generation of the DSA, RSA, and Diffie-Hellman (DH) and
ECC public and private keys. In the FIPS-approved mode, RSA keys can only be
generated using the approved 186-3 RSA key generation method.

The module employs a FIPS-approved HMAC Deterministic Random Bit Generator
(HMAC DRBG SP 800-90) for generating asymmetric and symmetric keys used in
algorithms such as AES, Triple-DES, RSA, DSA, DH and ECC.

1.5.2 Key Protection

All key data resides in internally allocated data structures and can only be output using
the JCM API. The operating system and the Java Runtime Environment (JRE)
safeguards memory and process space from unauthorized access.

1.5.3 Key Access

An authorized operator of the module has access to all key data created during JCM
operation.

Note: The User and Officer roles have equal and complete access to all keys.

The following table lists the different services provided by the module with the type
of access to keys or CSPs.

Table 2 Key and CSP Access

Service Key or CSP Type of Access

Asymmetric
Encryption and Decryption

Asymmetric keys (RSA) Read/Execute

Encryption and decryption Symmetric keys (AES, Triple-DES) Read/Execute

Digital signature and
verification

Asymmetric keys (DSA, RSA, ECDSA) Read/Execute

Hashing None N/A

MAC HMAC keys Read/Execute

Random number generation HMAC DRBG entropy, strength, and seed Read/Write/Execute

Key establishment primitives Asymmetric keys (DH, ECDH) Read/Execute

Key generation Symmetric keys (AES, Triple-DES)
Asymmetric keys (DSA, EC DSA, RSA, DH, ECDH)
MAC keys (HMAC)

Write
The Cryptographic Module 11

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
1.5.4 Key Zeroization

The module stores all its keys and Critical Security Parameters (CSPs) in volatile
memory. Users can ensure CSPs are properly zeroized by making use of the
<object>.clearSensitiveData() method. All of the module’s keys and CSPs
are zeroizable. For more information about clearing CSPs, see the relevant API
Javadoc.

1.5.5 Key Storage

JCM does not provide long-term cryptographic key storage. Storage of keys is the
responsibility of the user of JCM.

The following table shows how the storage of keys and CSPs are handled. The Crypto
User and Crypto Officer roles have equal and complete access to all keys and CSPs.

Self-test Hard-coded keys,
(AES, Triple-DES, RSA, DSA, ECDSA, HMAC)

Hard-coded entropy, strength, and seed
(HMAC DRBG)

Read/Execute

Show status None N/A

Zeroization All Read/Write

Table 3 Key and CSP Storage

Item Storage

AES keys In volatile memory only (plaintext)

Triple-DES keys In volatile memory only (plaintext)

HMAC with SHA1 and SHA2 keys In volatile memory only (plaintext)

EC public keys In volatile memory only (plaintext)

EC private keys In volatile memory only (plaintext)

DH public key In volatile memory only (plaintext)

DH private key In volatile memory only (plaintext)

RSA public key In volatile memory only (plaintext)

RSA private key In volatile memory only (plaintext)

DSA public key In volatile memory only (plaintext)

Table 2 Key and CSP Access (continued)

Service Key or CSP Type of Access
12 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
DSA private key In volatile memory only (plaintext)

HMAC DRBG Entropy In volatile memory only (plaintext)

HMAC DRBG V Value In volatile memory only (plaintext)

HMAC DRBG Key In volatile memory only (plaintext)

HMAC DRBG init_seed In volatile memory only (plaintext)

Table 3 Key and CSP Storage (continued)
The Cryptographic Module 13

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
1.6 Cryptographic Algorithms

The JCM offers a wide range of cryptographic algorithms. This section describes the
algorithms that can be used when operating the module in a FIPS 140-compliant
manner.

The following table lists the FIPS 140-approved and FIPS 140-allowed algorithms
that can be used when operating the module in a FIPS 140-compliant way.

Table 4 JCM FIPS 140-approved Algorithms

Algorithm Type Algorithm Validation Certificate

Asymmetric Cipher RSA Non-Approved
(Allowed in FIPS mode for key
transport*)

*The module implements RSA encrypt/decrypt, which is non-approved. A calling application may use this to implement a key transport
scheme, which is allowed for use in FIPS mode.

Key Agreement
Primitives

Diffie-Hellman (primitives only)

EC Diffie-Hellman (primitives only) with a
cofactor of 1 or higher.

 Non-Approved
(Allowed in FIPS mode)

Key Derivation Password-based Vendor-Approved **

**The module implements PBKDF2 as the PBKDF algorithm as defined in SP800-132. This can be used in FIPS mode when used with a
FIPS-approved Symmetric Cipher and Message Digest algorithm. For information on how to use PBKDF, see “Crypto User Guidance” on
page 18

Message
Authentication Code

HMAC***

***When used with a FIPS-approved Message Digest algorithm.

Certificate #1148

Message Digest SHA-1, SHA-224, SHA-256, SHA- 384,
SHA-512

Certificate #1678

Random Bit
Generator

HMAC DRBG Certificate #160

Signature*** RSA X9.31, PKCS #1 V.1.5, RSASSA-PSS Certificate #981

DSA Certificate #604

ECDSA Certificate #271

Symmetric Cipher AES (ECB, CBC, CFB, OFB, CTR, CCM,
GCM, XTS) [128, 192, 256 bit key sizes]

Certificate #1911

Triple-DES**** (ECB, CBC, CFB, OFB)

****For information on the restrictions applicable to the use of two-key Triple-DES, see “The following restrictions apply to the use of
Triple-DES:” on page 20.

Certificate #1243
14 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
The following lists all other available algorithms in the JCM that are not allowable for
FIPS 140 usage. These algorithms must not be used when operating the module in a
FIPS 140 compliant way.

• DES

• DESX

• ECIES

• Non-approved RNG (FIPS 186-2)

• Dual EC DRBG

• MD2

• MD4

• MD5

• RC2® block cipher

• RC4® stream cipher

• RC5® block cipher

• RSA Keypair Generation MultiPrime (2 or 3 primes)

• RIPEMD160

• HMAC-MD5.
The Cryptographic Module 15

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
1.7 Self-tests

The module performs power-up and conditional self-tests to ensure proper operation.

If the power-up self-test fails, the module is disabled and throws a
SecurityException. The module cannot be used within the current JVM.

If the conditional self-test fails, the module throws a SecurityException and
aborts the operation. A conditional self-test failure does NOT disable the module.

1.7.1 Power-up Self-tests

The following FIPS-140 required power-up self-tests are implemented in the module:

• AES KATs

• TDES KATs

• SHA-1 KAT

• SHA-256 KAT

• SHA-512 KAT

• HMAC DRBG Self-Test

• EC DRBG Self-Test

• HMAC-SHA1 software integrity check

• DSA Sign/Verify Test

• RSA Sign/Verify Test

• ECDSA Sign/Verify Test

• Non-approved RNG KAT (FIPS 186-2).

Power-up self-tests are executed automatically when the module is loaded into
memory.

1.7.2 Conditional Self-tests

The module performs two conditional self-tests:

• Pair-wise Consistency Tests each time the module generates a DSA, RSA or
ECDSA key pair.

• Continuous Random Number Generator (CRNG) Test each time the module
produces random data, as per the FIPS 140-2 standard. The CRNG test is
performed on the following random number generators:

– EC DRBG

– HMAC DRBG

– Non-approved RNG (FIPS 186-2).
16 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
2 Secure Operation of the Module

The following guidance must be followed in order to operate the module in a FIPS
140 mode of operation, in conformance with FIPS 140-2 requirements.

2.1 Module Configuration

To operate the module compliance with FIPS 140-2 Level 1 requirements, the module
must be loaded using the following methods with the specified arguments:

For the Android platform:

com.rsa.crypto.jcm.ModuleLoader.load(File jarFile, int
securityLevel, int katStrategy, SelfTestEventListener
selfTestListener)

• where jarFile is the module JAR file, securityLevel is the value 1
(specified as the constant ModuleConfig.LEVEL_1) and katStrategy is the
value 0 (specified as the constant ModuleConfig.ON_LOAD).

For all other platforms:

com.rsa.crypto.jcm.ModuleLoader.load(int securityLevel, int
katStrategy, SelfTestEventListener selfTestListener)

• where securityLevel is the value 1 (specified as the constant
ModuleConfig.LEVEL_1) and katStrategy is the value 0 (specified as the
constant ModuleConfig.ON_LOAD).

Using the specified securityLevel ensures that the module is loaded for use in a
FIPS 140 Level 1 compliant way. Using the specified katStrategy value ensures
that all module self-tests are run during module start-up, as required by FIPS 140-2.

Once the load method has been successfully called, the module is operational.

2.2 Security Roles, Services and Authentication Operation

To assume a role once the module is operational, construct a FIPS140Context object
for the desired role using the FIPS140Context.getFIPS140Context(int
mode, int role) method. This object can then be used to perform cryptographic
operations using the module.

The available role values are the constants
FIPS140Context.ROLE_CRYPTO_OFFICER and
FIPS140Context.ROLE_USER.

The mode argument must be the value FIPS140Context.MODE_FIPS140.

No role authentication is required for operation of the module in Security Level 1
mode. When in Security Level 1 mode, invocation of methods which are particular to
Security Level 2 Roles, Services and Authentication will result in an error.
Secure Operation of the Module 17

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
2.3 Crypto User Guidance

This section provides guidance to the module user to ensure that the module is used in
a FIPS 140-2 compliant way.

Section 2.3.1 provides algorithm-specific guidance. The requirements listed in this
section are not enforced by the module and must be ensured by the module user.

Section 2.3.2 provides guidance on obtaining assurances for Digital Signature
Applications.

Section 2.3.3 provides general crypto user guidance.

2.3.1 Crypto User Guidance on Algorithms

• The Crypto User must only use algorithms approved for use in a FIPS 140 mode
of operation, as listed in Table 4, “JCM FIPS 140-approved Algorithms,” on
page 14.

• When generating key pairs using the KeyPairGenerator object, the
generate(boolean pairwiseConsistency) method must not be invoked
with an argument of false. Use of the no-argument generate() method is
recommended.

• When using GCM feedback mode for symmetric encryption, the authentication
tag length and authenticated data length may be specified as input parameters, but
the Initialization Vector (IV) must not be specified. It must be generated
internally.

• RSA keys used for signing shall not be used for any other purpose other than
digital signatures.

• For RSASSA-PSS, the length of the salt (sLen) shall be 0<=sLen<=hlen
where hlen is the length of the hash function output block.

• Bit lengths for the Diffie-Hellman1 primitives must be between 1024 and 2048
bits. Diffie Hellman shared secret provides between 80 bits and 112 bits of
encryption strength.

• Bit lengths for an HMAC key must be one half of the block size.

• For RSA digital signature generation the HMAC DRBG must be used.

• EC key pairs must have domain parameters from the set of NIST-recommended
named curves (P-192, P-224, P-256, P-384, P-521, B-163, B-233, B-283, B-409,
B-571, K-163, K-233, K-283, K-409, and K-571). The domain parameters can be
specified by name or can be explicitly defined.

• EC Diffie-Hellman primitives must use curve domain parameters from the set of
NIST recommended named curves listed above. The domain parameters can be
specified by name, or can be explicitly defined. Using the NIST-recommended
curves, the computed Diffie-Hellman shared secret provides between 80 bits and
256 bits of encryption strength.

1Using the minimum allowed modulus size, the minimum strength of encryption provided is 80 bits.
18 Secure Operation of the Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
• When using an approved random number generator to generate keys or DSA
parameters, the random number generator’s requested security strength must be at
least as great as the security strength of the key being generated. That means that
the HMAC DRBG with an appropriate strength must be used. For more
information on requesting the random number generator security strength, see the
relevant API Javadoc.

• When using an approved random number generator the number of bytes of seed
key input must be equivalent to or greater than the security strength of the keys the
caller wishes to generate. For example, a 256-bit or higher seed key input when
generating 256-bit AES keys.

• SHA1 is deprecated for the generation of digital signatures from 2011 to 2013,
and will be disallowed after 2013.

• Only FIPS 140 approved random number generators may be used for generation
of keys (asymmetric and symmetric).

• RSA keys shall have a modulus of size 1024, 2048 or 3072 bits, and shall have a
public exponent of at least 65537.

• RSA key pairs shall be generated according to FIPS 186-3 by specifying a
KEY_TYPE parameter of 0. This is the default KEY_TYPE value, so may be
omitted as an input parameter (to the KeyPairGenerator.initialize
method).

• DSA parameters shall be generated according to FIPS 186-3 by specifying the
algorithm string “DSA” when creating the AlgParamGenerator object. The
non-approved algorithm specified by the string “PQG” shall not be used.

• The following restrictions apply to the use of PBKDF:

– Keys generated using PBKDF shall only be used in data storage applications.

– The minimum password length is 10 characters, which has a strength of
approximately 80 bits, assuming a randomly selected password using the
extended ASCII printable character set is used.
For random passwords - a string of characters from a given set of characters in
which each character is equally likely to be selected - the strength of the
password is given by: S = L * (log N/log 2) where N is the number of possible
characters (for example, ASCII printable characters N = 95, extended ASCII
printable characters N = 218) and L is the number of characters. A password
of the strength S can be guessed at random with the probability of 1/2S.

– The length of the randomly-generated portion of the salt shall be at least 16
bytes.2

– The iteration count shall be selected as large as possible, a minimum of 1000
iterations is recommended.2

– The maximum key length is (232 -1) * b, where b is the digest size of the hash
function.

– The key derived using PBKDF can be used as referred to in SP800-132,
Section 5.4, option 1 and 23.

2For more information see nist-sp800-132.pdf
Secure Operation of the Module 19

http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
• The following restrictions apply to the use of Triple-DES:

– The use of three-key Triple-DES is approved beyond 2013 without restriction.

– The use of two-key Triple-DES is approved beyond 2013. Until 31 December
2015, two-key Triple-DES is allowed with the restriction that at most 220
blocks of data can be encrypted with the same key.

– The use of two-key Triple-DES is disallowed beyond 2015. Two-key
Triple-DES can be used to decrypt ciphertext for legacy use after 2015.

For more information about the use of two-key Triple-DES, see NIST Special
Publication 800-131A “Transitions: Recommendation for Transitioning the
Use of Cryptographic Algorithms and Key Lengths”.

3For more information see nist-sp800-132.pdf
20 Secure Operation of the Module

http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
2.3.2 Crypto User Guidance on Obtaining Assurances for
Digital Signature Applications

The module has added support for the FIPS 186-3 standard for digital signatures. The
following gives an overview of the assurances required by FIPS 186-3.

NIST Special Publication 800-89: “Recommendation for Obtaining Assurances for
Digital Signature Applications” provides the methods to obtain these assurances.

The tables below describe the FIPS 186-3 requirements for signatories and verifiers
and the corresponding module capabilities and recommendations.

Table 5 Signatory Requirements

FIPS 186-3 Requirement Module Capabilities and Recommendations

Obtain appropriate DSA and ECDSA
parameters when using DSA or ECDSA.

The generation of DSA parameters is in accordance with the FIPS
186-3 standard for the generation of probable primes.

For ECDSA, use the NIST recommended curves as defined in
section 2.3.1.

Obtain assurance of the validity of those
parameters.

The module provides APIs to validate DSA parameters for
probable primes as described in FIPS 186-3.

For the JCM API,
com.rsa.crypto.AlgParamGenerator.verify()
For ECDSA, use the NIST recommended curves as defined in
section 2.3.1.

Obtain a digital signature key pair that is
generated as specified for the appropriate
digital signature algorithm.

The module generates the digital signature key pair according to
the required standards.

Choose a FIPS-approved random number generator like HMAC
DRBG to generate the key pair.

Obtain assurance of the validity of the
public key.

The module provides APIs to explicitly validate the public key
according to NIST Special Publication 800-89.
For the JCM API,
com.rsa.crypto.PublicKey.isValid(com.rsa.crypto.
SecureRandom secureRandom)

Obtain assurance that the signatory
actually possesses the associated private
key.

The module verifies the signature created using the private key, but
all other assurances are outside the scope of the module.
Secure Operation of the Module 21

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
For more details on the requirements, see the FIPS 186-3 and NIST Special
Publication 800-89.

2.3.3 General Crypto User Guidance

JCM users should take care to zeroize CSPs when they are no longer needed. For more
information on clearing sensitive data, see section 1.5.4 and the relevant API Javadoc.

2.4 Crypto Officer Guidance

The Crypto Officer is responsible for installing the module. Installation instructions
are provided in the RSA BSAFE Crypto-J Installation Guide.

The Crypto Officer is also responsible for loading the module, as specified in section
2.1 Module Configuration.

2.5 Operating the Cryptographic Module

Both FIPS and non-FIPS algorithms are available to the operator. In order to operate
the module in the FIPS-approved mode, all rules and guidance provided in “Secure
Operation of the Module” on page 17 must be followed by the module operator. The
module does not enforce the FIPS140 mode of operation.

Table 6 Verifier Requirements

FIPS 186-3 Requirement Module Capabilities and Recommendations

Obtain assurance of the signatory's
claimed identity

The module verifies the signature created using the private key, but
all other assurances are outside the scope of the module.

Obtain assurance of the validity of the
domain parameters for DSA and ECDSA.

The module provides APIs to validate DSA parameters for
probable primes as described in FIPS 186-3.
For the JCM API,
com.rsa.crypto.AlgParamGenerator.verify()
For ECDSA, use the NIST recommended curves as defined in
section 2.3.1.

Obtain assurance of the validity of the
public key

The module provides APIs to explicitly validate the public key
according to NIST Special Publication 800-89.
For the JCM API,
com.rsa.crypto.PublicKey.isValid(com.rsa.crypto.
SecureRandom secureRandom)

Obtain assurance that the claimed
signatory actually possessed the private
key that was used to generate the digital
signature at the time that the signature
was generated

Outside the scope of the module.
22 Secure Operation of the Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
3 Acronyms

The following table lists the acronyms used with JCM and their definitions.

Table 7 Acronyms used with JCM

Acronym Definition

3DES Refer to Triple-DES

AES Advanced Encryption Standard. A fast block cipher with a 128-bit
block, and keys of lengths 128, 192 and 256 bits. This will replace
DES as the US symmetric encryption standard.

API Application Programming Interface.

Attack Either a successful or unsuccessful attempt at breaking part or all of
a cryptosystem. Attack types include an algebraic attack, birthday
attack, brute force attack, chosen ciphertext attack, chosen plaintext
attack, differential cryptanalysis, known plaintext attack, linear
cryptanalysis, middleperson attack and timing attack.

CBC Cipher Block Chaining. A mode of encryption in which each
ciphertext depends upon all previous ciphertexts. Changing the IV
alters the ciphertext produced by successive encryptions of an
identical plaintext.

CFB Cipher Feedback. A mode of encryption that produces a stream of
ciphertext bits rather than a succession of blocks. In other respects,
it has similar properties to the CBC mode of operation.

CRNG Continuous Random Number Generation.

CSP Critical Security Parameters.

DES Data Encryption Standard. A symmetric encryption algorithm with
a 56-bit key.

Diffie-Hellman The Diffie-Hellman asymmetric key exchange algorithm. There are
many variants, but typically two entities exchange some public
information (for example, public keys or random values) and
combines them with their own private keys to generate a shared
session key. As private keys are not transmitted, eavesdroppers are
not privy to all of the information that composes the session key.

DPK Data Protection Key

DRBG Deterministic Random Bit Generator.

DSA Digital Signature Algorithm. An asymmetric algorithm for creating
digital signatures.

EC Elliptic Curve.
Acronyms 23

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
ECB Electronic Code Book. A mode of encryption in which identical
plaintexts are encrypted to identical ciphertexts, given the same key.

ECC Elliptic Curve Cryptography.

ECDH Elliptic Curve Diffie-Hellman.

ECDHC Elliptic Curve Diffie-Hellman with Components.

ECDSA Elliptic Curve Digital Signature Algorithm.

ECIES Elliptic Curve Integrated Encryption Scheme.

Encryption The transformation of plaintext into an apparently less readable
form (called ciphertext) through a mathematical process. The
ciphertext may be read by anyone who has the key that decrypts
(undoes the encryption) the ciphertext.

FIPS Federal Information Processing Standards.

HMAC Keyed-Hashing for Message Authentication Code.

IV Initialization Vector.
Used as a seed value for an encryption operation.

JCE Java Cryptography Extension.

JVM Java Virtual Machine.

KAT Known Answer Test.

KDF Key Derivation Function. Derives one or more secret keys from a
secret value, such as a master key, using a pseudo-random function.

Key A string of bits used in cryptography, allowing people to encrypt
and decrypt data. Can be used to perform other mathematical
operations as well. Given a cipher, a key determines the mapping of
the plaintext to the ciphertext. Various types of keys include:
distributed key, private key, public key, secret key, session key,
shared key, subkey, symmetric key, and weak key.

MD4 A message digest algorithm which implements a cryptographic hash
function, created by Rivest.

MD5 A secure hash algorithm created by Ron Rivest. MD5 hashes an
arbitrary-length input into a 16-byte digest.

NIST National Institute of Standards and Technology. A division of the
US Department of Commerce (formerly known as the NBS) which
produces security and cryptography-related standards.

OFB Output Feedback. A mode of encryption in which the cipher is
decoupled from its ciphertext.

Table 7 Acronyms used with JCM (continued)

Acronym Definition
24 Acronyms

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
OS Operating System.

PBE Password-Based Encryption.

PBKDF Password-Based Key Derivation Function.

PC Personal Computer.

private key The secret key in public key cryptography. Primarily used for
decryption but also used for encryption with digital signatures.

PRNG Pseudo-random Number Generator.

RC2 Block cipher developed by Ron Rivest as an alternative to the DES.
It has a block size of 64 bits and a variable key size. It is a legacy
cipher and RC5 should be used in preference.

RC4 Symmetric algorithm designed by Ron Rivest using variable length
keys (usually 40 bit or 128 bit).

RC5 Block cipher designed by Ron Rivest. It is parameterizable in its
word size, key length and number of rounds. Typical use involves a
block size of 64 bits, a key size of 128 bits and either 16 or 20
iterations of its round function.

RSA Public key (asymmetric) algorithm providing the ability to encrypt
data and create and verify digital signatures. RSA stands for Rivest,
Shamir, and Adleman, the developers of the RSA public key
cryptosystem.

SHA Secure Hash Algorithm. An algorithm which creates a hash value
for each possible input. SHA takes an arbitrary input which is
hashed into a 160-bit digest.

SHA-1 A revision to SHA to correct a weakness. It produces 160-bit
digests. SHA-1 takes an arbitrary input which is hashed into a
20-byte digest.

SHA-2 The NIST-mandated successor to SHA-1, to complement the
Advanced Encryption Standard. It is a family of hash algorithms
(SHA-256, SHA-384 and SHA-512) which produce digests of 256,
384 and 512 bits respectively.

TDES Refer to Triple-DES

Triple-DES A symmetric encryption algorithm which uses either two or three
DES keys. The two key variant of the algorithm provides 80 bits of
security strength while the three key variant provides 112 bits of
security strength.

Table 7 Acronyms used with JCM (continued)

Acronym Definition
Acronyms 25

	RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.0 Security Policy Level 1
	Preface
	References
	Terminology
	Document Organization

	1 The Cryptographic Module
	1.1 Introduction
	1.2 Module Characteristics
	1.3 Module Interfaces
	1.4 Roles and Services
	1.5 Cryptographic Key Management
	1.6 Cryptographic Algorithms
	1.7 Self-tests

	2 Secure Operation of the Module
	2.1 Module Configuration
	2.2 Security Roles, Services and Authentication Operation
	2.3 Crypto User Guidance
	2.4 Crypto Officer Guidance
	2.5 Operating the Cryptographic Module

	3 Acronyms

