IMS Health Diversinet Java Crypto Module Software Version: 2.0

FIPS 140-2 Non-Proprietary Security Policy

FIPS Security Level: 1 Document Version: 1.0

Prepared for:

IMS Health 16720 Route Transcanadienne Kirkland, Quebec H9H 5M3 Canada

Phone: +1 (514) 428-6000 http://www.imshealth.com Prepared by:

Corsec Security, Inc. 13135 Lee Jackson Memorial Hwy., Suite 220 Fairfax, VA 22033 United States of America

> Phone: +1 (703) 267-6050 http://www.corsec.com

Table of Contents

I	INT	RODUCTION	.3
	1.2	REFERENCES	.3
	1.3	DOCUMENT ORGANIZATION	
2	DIV	ERSINET JAVA CRYPTO MODULE	.4
	2.1	Overview	
	2.2	Module Specification	.6
		2.2.1 Physical Cryptographic Boundary	
		2.2.2 Logical Cryptographic Boundary	.7
	2.3	MODULE INTERFACES	.8
	2.4	Roles and Services	.9
		2.4.1 Crypto Officer Role	.9
		2.4.2 User Role	10
	2.5	Physical Security	11
	2.6	OPERATIONAL ENVIRONMENT	11
	2.7	CRYPTOGRAPHIC KEY MANAGEMENT	
	2.8	Self-Tests	14
		2.8.1 Power-Up Self-Tests	
		2.8.2 Conditional Self-Tests	
	2.9	Mitigation of Other Attacks	14
3	SEC	URE OPERATIONI	5
	3.1	Secure Management	
	0.1	3.1.1 Initialization	
		3.1.2 Management	
		3.1.3 Zeroization	
	3.2	User Guidance	
4	ACF	RONYMSI	6

Table of Figures

Figure I – Diversinet MobiSecure® Platform	.5
Figure 2 – GPC Server Block Diagram	.7
Figure 3 – Diversinet Java Crypto Module Logical Block Diagram	.8

List of Tables

Table 1 – Security Level Per FIPS 140-2 Section	5
Table 2 – FIPS 140-2 Logical Interface Mappings	9
TABLE 3 – CRYPTO OFFICER SERVICES	. 10
Table 4 – User Services	. 10
Table 5 – FIPS-Approved Algorithm Implementations	. 12
Table 6 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs	. 13
Table 7 – Acronyms	. 16

I.I Purpose

This is a non-proprietary Cryptographic Module Security Policy for the Diversinet Java Crypto Module from IMS Health. This Security Policy describes how the Diversinet Java Crypto Module meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment Canada (CSEC) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the module. The Diversinet Java Crypto Module is referred to in this document as the Diversinet Java Crypto Module, the crypto-module, or the module.

I.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The IMS Health website (www.imshealthcom) contains information on the full line of products from IMS Health.
- The CMVP website (<u>http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm</u>) contains contact information for individuals to answer technical or sales-related questions for the module.

I.3 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Model document
- Other supporting documentation as additional references

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to IMS Health. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Submission Package is proprietary to IMS Health and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact IMS Health.

2.1 Overview

The Diversinet MobiSecure[®] Platform enables enterprises to rapidly deploy HIPAA¹-compliant mobile health applications to anyone, anywhere, on any mobile device.

MobiSecure® Platform offers convenient and secure management of critical data and personal information, from a mobile phone, using SMS^2 , or a tablet or PC^3 , directly over the Internet and wireless networks, utilizing $SOAP^4$. Furthermore, it provides organizations the necessary tools to deploy customized mobile applications that meet their business and brand needs. MobiSecure® Platform uses two-factor authentication technology for user and device authentication and state-of-the-art encryption techniques for data protection. Its uniqueness and strengths lies in the ability for organizations to securely publish content to a wide range of different mobile phones. In addition, it enables the customization of both the application configuration as well as the user interface over-the-air without the need of re-deployment. Figure 1, below, illustrates the MobiSecure® Platform.

The security of MobiSecure® Platform is formed around in-depth security design principles that provide controls at multiple levels of data storage, access and transfer. Although IMS Health's focus and expertise is in designing and implementing high security standards at the software architecture, application and cryptographic levels, IMS Health works with it customers to define the overall security strategy, which includes operations security; communication and network security; access controls; business continuity and disaster recovery; and compliance with privacy regulations.

© 2013 IMS Health

¹ HIPAA – Health Insurance Portability and Accountability Act

² SMS – Short Message Service

³ PC – Personal Computer

⁴ SOAP – Simple Object Access Protocol

Diversinet Java Crypto Module

Figure I – Diversinet MobiSecure® Platform

The Diversinet Java Crypto Module is the FIPS validated module that provides cryptographic functionality for the MobiSecure® Platform. The Diversinet Java Crypto Module is validated at the following FIPS 140-2 Section levels:

Section	Section Title	Level	
I	Cryptographic Module Specification	I	
2	Cryptographic Module Ports and Interfaces	I	
3	Roles, Services, and Authentication	I	
4	Finite State Model	I	
5	Physical Security	N/A	
6	Operational Environment	I	
7	Cryptographic Key Management	I	
8	EMI/EMC ⁵	I	
9	Self-tests	I	
10	Design Assurance	I	
11	Mitigation of Other Attacks	N/A	
14	14 Cryptographic Module Security Policy		

Table I – Security Level per FIPS 140-2 Section

⁵ EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility Diversinet Java Crypto Module

2.2 Module Specification

The Diversinet Java Crypto Module is a software module with a multi-chip standalone embodiment. The overall security level of the module is level 1. The following sections will define the physical and logical boundary of the module.

The cryptographic module is a single Java Archive (JAR) binary, named DvSecurityAPI.jar, that provides cryptographic and secure communication services for other applications developed by IMS Health. In this document, those applications will be referred to as the calling application. The module is a standalone cryptographic library that can be called to provide encryption, decryption, hash generation and verification, certificate generation and verification, random bit generation, and message authentication functions.

2.2.1 Physical Cryptographic Boundary

As a software cryptographic module, there are no physical security mechanisms implemented; the module must rely on the physical characteristics of the host platform. The physical cryptographic boundary of the Diversinet Java Crypto Module is defined by the hard enclosure around the host platform on which it executes. Figure 2 below shows the physical block diagram of the module which runs on a Windows Server 2008 R2 (64-bit) OS^6 with JDK⁷ 1.6 and on a GPC⁸ using an Intel Xeon processor.

Diversinet Java Crypto Module

© 2013 IMS Health This document may be freely reproduced and distributed whole and intact including this copyright notice.

⁶ OS – Operating System

⁷ JDK – Java Development Kit

⁸ GPC – General-Purpose Computer

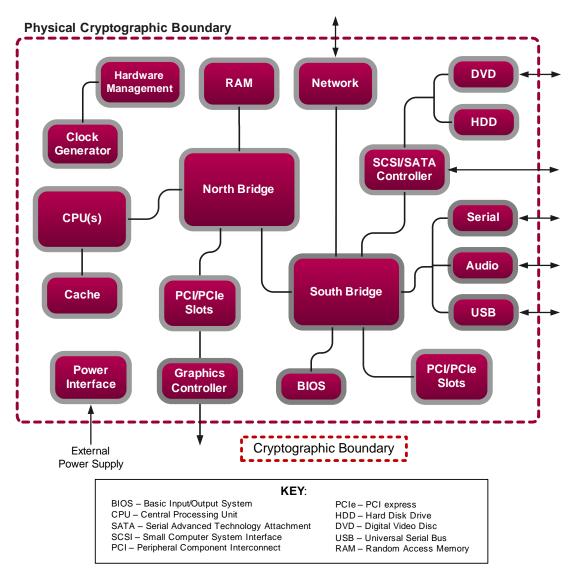


Figure 2 – GPC Server Block Diagram

2.2.2 Logical Cryptographic Boundary

Figure 3, below, shows a logical block diagram of the module. The module's logical cryptographic boundary (also illustrated in Figure 3) encompasses all functionality provided by the module as described in this document. The module takes the form of a single shared library that can be called by calling applications, executing in the JVM⁹, to provide cryptographic services.

Diversinet Java Crypto Module

⁹ JVM – Java Virtual Machine

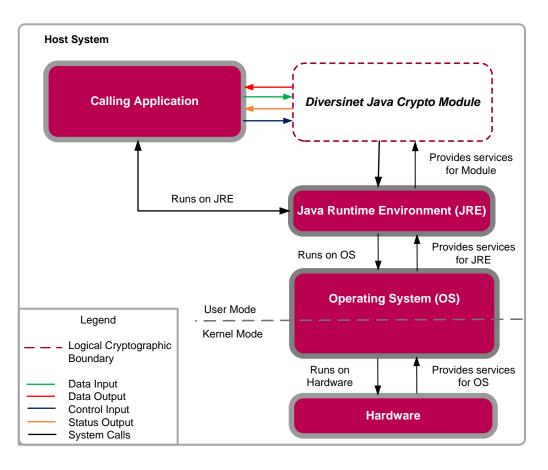


Figure 3 – Diversinet Java Crypto Module Logical Block Diagram

2.3 Module Interfaces

The module's logical interfaces exist at a low level in the software as an Application Programming Interface (API). The module's logical and physical interfaces can be categorized into the following interfaces defined by FIPS 140-2:

- Data input
- Data output
- Control input
- Status output
- Power input

As a software module, the module has no physical characteristics. Thus, the module's manual controls, physical indicators, and physical and electrical characteristics are those of the host platform.

All of these physical interfaces of the host platform are separated into logical interfaces defined by FIPS 140-2, as described in the following table:

Diversinet Java Crypto Module

FIPS 140-2 Interface	Physical Interface	Module Interface (API)		
Data Input	Network port, Serial port, USB ¹⁰ port, DVD ¹¹ , SCSI ¹² /SATA ¹³ Controller	Method calls that accept, as their arguments, data to be used or processed by the module		
Data Output	Network port, Serial port, USB port, SCSI/SATA Controller	Arguments for a method that specify where the result of the method is stored		
Control Input	Network port, Serial port, USB port, Power button	Method calls utilized to initiate the module and the method calls used to control the operation of the module.		
Status Output	Network port, Serial port, USB port, Graphics controller, Audio port	Return status for method calls		
Power Input	Power Switch	Not Applicable		

Table 2 – FIPS 140-2 Logical Interface Mappings

2.4 Roles and Services

There are two roles in the module (as required by FIPS 140-2) that operators may assume: a Crypto Officer role and a User role.

2.4.1 Crypto Officer Role

The Crypto Officer role has the ability to initialize the module, determine module status, and zeroize all module keys and CSPs¹⁴. Descriptions of the services available to the Crypto Officer role are provided in Table 3, below. Please note that the keys and CSPs listed in the table indicate the type of access required using the following notation:

- R Read: The CSP is read.
- W Write: The CSP is established, generated, modified, or zeroized.
- X Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism.

Diversinet Java Crypto Module

© 2013 IMS Health

¹⁰ USB – Universal Serial Bus

¹¹ DVD – Digital Versatile Disc

¹² SCSI – Small Computer Systems Interface

¹³ SATA – Serial Advanced Technology Attachment

¹⁴ CSP – Critical Security Parameter

Service	Description	CSP and Type of Access
Initialize module	Loads module and calls power-up self-tests	Integrity check HMAC ¹⁵ key – X
ModuleIntegrity.isModuleOperative()	Returns the current mode of the module	N/A
Zeroize keys	Format hard-drive of host GPC	AES key – W Triple DES key – W HMAC key – W RSA private key – W RSA public key – W

Table 3 – Crypto Officer Services

Key zeroization by the Crypto-Officer will take the form of a full format of the host GPC's hard-drive. This command is not a part of the module's API. The host GPC's OS provides this service.

2.4.2 User Role

The User role has the ability to generate all CSPs supported by the module and perform encryption, decryption, and verification operations with the generated CSPs. Descriptions of the services available to the User role are provided in Table 4, below.

Service	Description	CSP and Type of Access
SHA I Engine.update(), SHA I Engine.complete()	Compute and return a message digest using the SHA ¹⁶ -1 algorithm	None
SHA256Engine.update(). SHA256Engine.complete()	Compute and return a message digest using the SHA-256 algorithm	None
SHA512Engine.update(), SHA512Engine.complete()	Compute and return a message digest using the SHA-512 algorithm	None
ModuleIntegrity.algorithmsTest(), ModuleIntegrity.integrityCheck()	Performs power-up self-tests	Integrity check HMAC key – RX AES key – X Triple DES key – X RSA private key – X RSA public key – X HMAC keys – X DRBG seed/key – X
CTRDRBGEngine.engineNextBytes ()	Generates 128-bit blocks of random bits, up to the requested bit size.	DRBG seed/key – X

Table 4 – User Services

Page **10** of 18

¹⁵ HMAC – (Keyed-)Hash Message Authentication Code

¹⁶ SHA – Secure Hash Algorithm

Diversinet Java Crypto Module

Service	Description	CSP and Type of Access
HMacEngine.update(), HMacEngine.complete()	Compute and return a message authentication code using HMAC SHA-1, HMAC SHA-256, or HMAC SHA-512	HMAC key – RX
DESEngine.process()	Encrypt/decrypt plaintext/ciphertext using Triple- DES algorithm specification	Triple DES key – RX
AESEngine.process()	Encrypt/decrypt plaintext/ciphertext using AES algorithm specification	AES key – RX
RSAPSSEngine.sign()	Generate a signature for the supplied message using the specified key and algorithm	RSA private key – RX
RSAPSSEngine.verify()	Verify the signature on the supplied message using the specified key and algorithm	RSA public key – RX

2.4.3 Authentication

The module does not support any authentication mechanism. Operators of the module implicitly assume a role based on the service of the module being invoked. Since all services offered by the module can only be used by either the Crypto Officer or the User, the roles are mutually exclusive. Thus, when the operator invokes a Crypto Officer role service, he implicitly assumes the Crypto Officer role. When the operator invokes a User role service, he implicitly assumes the User role.

2.5 Physical Security

The Diversinet Java Crypto Module is a software module, which FIPS defines as a multi-chip standalone cryptographic module. As such, it does not include physical security mechanisms. Thus, the FIPS 140-2 requirements for physical security are not applicable.

2.6 Operational Environment

The Diversinet Java Crypto Module was tested and found compliant with the FIPS 140-2 requirements on the following operating system:

• Windows Server 2008 R2 (64-bit) and Java Development Kit (JDK) v1.6, running on an Intel Xeon E5530 processor

All cryptographic keys and CSPs are under the control of the host OS, which protects the keys and CSPs against unauthorized disclosure, modification, and substitution. The module only allows access to keys and CSPs through its APIs. The module performs a Software Integrity Test using a FIPS-Approved message authentication code (HMAC SHA-1).

Diversinet Java Crypto Module

2.7 Cryptographic Key Management

The module implements the FIPS-Approved algorithms listed in Table 5 below.

Algorithm	Certificate Number		
Symmetric Key			
AES: ECB ¹⁷ ,CBC ¹⁸ , and CTR ¹⁹ modes for 128, 192, and 256 bit key sizes	#1965		
Triple DES: CBC mode for I and 2 keying option	#1276		
Asymmetric Key			
RSA PSS ²⁰ signature generation/verification, key wrapping: 1024- , 2048-bit (w/ SHA-1, SHA-256, SHA-512)	#1017		
Secure Hashing Standard (SHS)			
SHA-1, SHA-256, SHA-512	#1723		
Message Authentication			
HMAC SHA-1, HMAC SHA-256, HMAC SHA-512	#1185		
Random Number Generator			
NIST SP800-90 DRBG (Counter-based)	#175		

NOTE: The following security functions have been deemed "deprecated" or "restricted" by NIST. Please refer to NIST Special Publication 800-131A for further details.

• The use of two-key Triple DES for encryption is **restricted** after December 31, 2010.

• The use of key lengths providing 80 bits of security strength for digital signature generation is **deprecated** after December 31, 2010.

Additionally, the module utilizes the following non-FIPS-approved algorithm implementations:

- SecureRandom
 - Non-Approved NDRNG used for entropy gathering
- RSA encrypt/decrypt
 - RSA (key wrapping) provides 80 to 112 bits of encryption strength

Diversinet Java Crypto Module

© 2013 IMS Health

Page **12** of 18

¹⁷ ECB – Electronic Codebook

¹⁸ CBC – Cipher-Block Chaining

¹⁹ CTR – Counter

²⁰ PSS – Probabilistic Signature Scheme

.

The module supports the critical security parameters (CSPs) listed below in Table 6.

Table 6 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs

CSP/Key	CSP/Key Type	Generation / Input	Output	Storage	Zeroization	Use
HMAC Integrity key	HMAC key	Never	Never output from the module	In module binary	N/A	Software integrity check
AES key	AES 128-, 192-, 256- bit key	Input electronically in plaintext	Never output from the module	Plaintext in volatile memory	N/A	Encryption, decryption
Triple DES key	Triple DES 168-bit key	Input electronically in plaintext	Never output from the module	Plaintext in volatile memory	N/A	Encryption, decryption
HMAC key	HMAC key	Input electronically in plaintext	Never output from the module	Plaintext in volatile memory	N/A	Message Authentication with SHS
RSA private key	RSA 1024-, 2048-bit key	Input electronically in plaintext	Never output from the module	Plaintext in volatile memory	N/A	Signature generation, decryption
RSA public key	RSA 1024-, 2048-bit key	Input electronically in plaintext	Never output from the module	Plaintext in volatile memory	N/A	Signature verification, encryption
DRBG seed	1000-bit entropy value	Internally generated from system entropy and SHA-512 hash	Never output from the module	Plaintext in volatile memory	N/A	Used to seed the DRBG
DRBG nonce	64-bit counter value	Internally generated from system entropy	Never output from the module	Plaintext in volatile memory	N/A	Used to seed the DRBG

2.8 Self-Tests

2.8.1 Power-Up Self-Tests

The Diversinet Java Crypto Module performs the following self-tests at power-up:

- Software integrity check (HMAC SHA-1)
- Known Answer Tests (KATs)
 - o AES KAT
 - Triple-DES KAT
 - RSA KAT for sign/verify
 - SHA-1 HMAC KAT
 - SHA-256 HMAC KAT
 - SHA-512 HMAC KAT
 - NIST SP800-90 DRBG KAT

Note that the HMAC KATs with SHA-1, SHA-256, and SHA-512 utilize (and thus test) the full functionality of the SHA-1 and SHA-2s; thus, no independent KATs for SHA-1 and SHA-2s implementations are required.

2.8.2 Conditional Self-Tests

The Diversinet Java Crypto Module performs the following conditional self-tests:

• NIST SP800-90 DRBG Continuous test

2.8.3 Critical Function Tests

The Diversinet Java Crypto Module performs the following critical function tests:

• NIST SP800-90 DRBG health tests

2.9 Mitigation of Other Attacks

This section is not applicable. The modules do not claim to mitigate any attacks beyond the FIPS 140-2 Level 1 requirements for this validation.

The Diversinet Java Crypto Module meets Level 1 requirements for FIPS 140-2. The sections below describe how to place and keep the module in FIPS-approved mode of operation.

3.1 Secure Management

The Diversinet Java Crypto Module is distributed only as part of IMS Health's system applications and is <u>not</u> distributed as a separate binary.

3.1.1 Initialization

When the module is installed and initialized the module runs in a FIPS mode of operation. This is achieved by calling a single initialization method. Upon initialization of the module, the module runs its power-up self-tests which includes software integrity test that checks the integrity of the module by using an HMAC SHA-1 digest. If the integrity check succeeds, then the module performs power-up self-tests. When the module passes the integrity test, the module is in its FIPS-Approved mode of operation. If any self-test fails, the module enters a critical error state, ceasing all cryptographic functionality, and throws an exception. The module must be reinstalled to leave the critical error state.

Power-up self-tests can also be performed on demand by invoking the ModuleIntegrity.algorithmsTest() methods or by cycling the power on the host platform.

The module is loaded by applications which make calls to the module as a cryptographic library.

3.1.2 Management

Since the Crypto-Officer cannot directly interact with the module, no specific management activities are required to ensure that the module runs securely; the module only executes in a FIPS-Approved mode of operation. If any irregular activity is noticed or the module is consistently reporting errors, then IMS Health Customer Support should be contacted.

3.1.3 Zeroization

The module does not persistently store any keys or CSPs. All ephemeral keys used by the module are zeroized upon reboot, or session termination.

3.2 User Guidance

In order to ensure compliance with NIST SP800-90, the Crypto-Officer must set a method, setMaxTestTimeBetweenInstantiations() to 0 (seconds). This will require that the DRBG health tests be run on every instantiation.Only the module's cryptographic functionalities are available to the User. Users are responsible to use only the services that are listed in Table 4 above. Although the User does not have any ability to modify the configuration of the module, they should report to the Crypto Officer if any irregular activity is noticed.

Diversinet Java Crypto Module

© 2013 IMS Health This document may be freely reproduced and distributed whole and intact including this copyright notice.

4 Acronyms

This section describes the acronyms.

Table 7 – Acronyms

Acronym	Definition			
AES	Advanced Encryption Standard			
ΑΡΙ	Application Programming Interface			
СВС	Cipher-Block Chaining			
CMVP Cryptographic Module Validation Program				
CSEC	Communications Security Establishment Canada			
CSP	Critical Security Parameter			
CTR	Counter			
DVD	Digital Versatile Disc			
DRBG	Deterministic Random Bit Generator			
ECB	Electronic Codebook			
EMC	Electromagnetic Compatibility			
EMI	Electromagnetic Interference			
FIPS	Federal Information Processing Standard			
HIPAA	Health Insurance Portability and Accountability Act			
HMAC (Keyed-)Hash Message Authentication Code				
GPC General-Purpose Computer				
JAR Java Archive				
JDK	Java Development Kit			
JVM Java Virtual Machine				
KAT Known Answer Test				
NIST	National Institute of Standards and Technology			
OS	Operating System			
PC	Personal Computer			
PSS	Probabilistic Signature Scheme			
RSA Rivest, Shamir, and Adleman				
SATA Serial Advanced Technology Attachment				
SCSI	SI Small Computer System Interface			
SHA	Secure Hash Algorithm			
SMS	Short Message Service			
SOAP Simple Object Access Protocol				

Diversinet Java Crypto Module

© 2013 IMS Health This document may be freely reproduced and distributed whole and intact including this copyright notice. .

Acronym	Definition
Triple DES	Triple Data Encryption Standard
USB	Universal Serial Bus

Prepared by: **Corsec Security, Inc.**

13135 Lee Jackson Memorial Highway Suite 220 Fairfax, VA 22033 United States of America

> Phone: (703) 267-6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>