
Security Policy

 18.01.17
RSA BSAFE® Crypto-C Micro Edition
Version 4.1, 4.1.0.1, and 4.1.2
Security Policy Level 1

This is a non-proprietary Security Policy for RSA BSAFE Crypto-C Micro Edition
(Crypto-C ME) 4.1, 4.1.0.1, and 4.1.2. It describes how Crypto-C ME meets the Level 1
security requirements of FIPS 140-2, the Level 3 security requirements of FIPS 140-2 for
the cryptographic module specification and design assurance, and how to securely
operate Crypto-C ME in a FIPS 140-2-compliant manner. This Security Policy is
prepared as part of the FIPS 140-2 Level 1 validation of Crypto-C ME.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2 - Security
Requirements for Cryptographic Modules) details the United States Government
requirements for cryptographic modules. For more information about the FIPS 140-2
standard and validation program, see the FIPS 140-2 page on the NIST Web site at
http://csrc.nist.gov/groups/STM/cmvp/standards.html.

This document may be freely reproduced and distributed whole and intact including
the Copyright Notice.

1 Introduction ... 2

1.1 References ... 2

1.2 Document Organization .. 2

2 Crypto-C ME Cryptographic Toolkit ... 3

2.1 Cryptographic Module ... 3

2.2 Crypto-C ME Interfaces .. 16

2.3 Roles and Services ... 18

2.4 Cryptographic Key Management ... 19

2.5 Cryptographic Algorithms ... 22

2.6 Self Tests .. 24

3 Secure Operation of Crypto-C ME .. 26

3.1 Crypto Officer and Crypto User Guidance 26

3.2 Roles ... 27

3.3 Modes of Operation ... 28

3.4 Operating Crypto-C ME .. 29

3.5 Startup Self-tests ... 29

3.6 Deterministic Random Number Generator 30

4 Services .. 31

5 Acronyms and Definitions ... 37
18 January 2017 Copyright © 2017 EMC Corporation. All rights reserved. Published in the USA. 1

http://csrc.nist.gov/groups/STM/cmvp/standards.html

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
1 Introduction

The Crypto-C ME software development toolkit is designed to enable developers to
incorporate cryptographic technologies into applications. Crypto-C ME security
software helps to protect sensitive data as it is stored, using strong encryption
techniques to ease integration with existing data models. Using the capabilities of
Crypto-C ME software in applications helps provide a persistent level of protection
for data, lessening the risk of internal, as well as external, compromise.

Note: In this document, the term cryptographic module, refers to the
Crypto-C ME FIPS 140-2 Level 1 validated cryptographic module.

1.1 References

This document deals only with the operations and capabilities of the Crypto-C ME
cryptographic module in terms of a FIPS 140-2 cryptographic module security policy.
For more information about Crypto-C ME and the entire RSA BSAFE product line, see
the following:

• Information on the full line of RSA products and services is available at
https://www.rsa.com/en-us.

• RSA BSAFE product overviews, technical information, and answers to
sales-related questions are available at
https://community.rsa.com/community/products/bsafe.

1.2 Document Organization

This Security Policy explains the cryptographic module's FIPS 140-2 relevant features
and functionality. This document comprises the following sections:

• This section, “Introduction” on page 2 provides an overview and introduction to
the Security Policy.

• “Crypto-C ME Cryptographic Toolkit” on page 3 describes Crypto-C ME and
how it meets FIPS 140-2 requirements.

• “Secure Operation of Crypto-C ME” on page 26 specifically addresses the
required configuration for the FIPS 140-2 mode of operation.

• “Services” on page 31 lists the functions of Crypto-C ME.

• “Acronyms and Definitions” on page 37 lists the acronyms and definitions used in
this document.

With the exception of the non-proprietary Security Policy documents, the FIPS 140-2
validation submission documentation is EMC Corporation-proprietary and is
releasable only under appropriate non-disclosure agreements. For access to these
documents, please contact RSA.
2 Introduction

https://www.rsa.com/en-us
https://community.rsa.com/community/products/bsafe

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
2 Crypto-C ME Cryptographic Toolkit

Crypto-C ME is designed with the ability to optimize code for different processors,
and specific speed or size requirements. Assembly-level optimizations on key
processors mean Crypto-C ME algorithms can be used at increased speeds on many
platforms.

Crypto-C ME offers a full set of cryptographic algorithms including asymmetric key
algorithms, symmetric key block and stream algorithms, message digests, message
authentication, and Pseudo Random Number Generator (PRNG) support. Developers
can implement the full suite of algorithms through a single Application Programming
Interface (API) or select a specific set of algorithms to reduce code size or meet
performance requirements.

Note: When operating in a FIPS 140-2-approved manner, the set of available
algorithms cannot be changed.

2.1 Cryptographic Module

Crypto-C ME is classified as a multi-chip standalone cryptographic module for the
purposes of FIPS 140-2. As such, Crypto-C ME must be tested on a specific operating
system and computer platform. The cryptographic boundary includes Crypto-C ME
running on selected platforms running selected operating systems while configured in
“single user” mode. Crypto-C ME is validated as meeting all FIPS 140-2 Level 1
security requirements.

Crypto-C ME is packaged as a set of dynamically loaded modules or shared library
files containing the module's entire executable code. The Crypto-C ME toolkit relies
on the physical security provided by the host PC in which it runs.
Crypto-C ME Cryptographic Toolkit 3

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
The following table lists the certification levels sought for Crypto-C ME for each
section of the FIPS 140-2 specification.

2.1.1 Laboratory Validated Operating Environments

For FIPS 140-2 validation, Crypto-C ME is tested by an accredited FIPS 140-2 testing
laboratory. This section lists the operating environments Crypto-C ME 4.1 and 4.1.2
are tested on.

Crypto-C ME 4.1

Crypto-C ME 4.1 is tested on the following operating environments:

• Apple®:

– Mac® OS X 10.x on x86_64 (64-bit), built with gcc 4.2.1

– iOS 6.x on ARMv7 (32-bit), built with Xcode 5 and clang 500.2.76

• Canonical® Ubuntu® 12.04 Long Term Support (LTS) on ARMv7, built with gcc
4.6 (hard float)

• FreeBSD® 8.3 on x86_64 (64-bit), built with gcc 4.2

• Google® Android®:

– 2.3 (Gingerbread) on ARMv7 (32-bit), built with Android NDK rev 8d and
gcc 4.6.7

– 4.0 (Ice Cream Sandwich) on x86 (32-bit), built with Android NDK rev 8d
and gcc 4.6.7

– 4.1 (Jelly Bean) on ARMv7 (32-bit), built with Android NDK rev 8d and gcc 4.6.7

Table 1 Certification Levels

Section of the FIPS 140-2 Specification Level

Cryptographic Module Specification 3

Cryptographic Module Ports and Interfaces 1

Roles and Services 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 3

Mitigation of Other Attacks 1

Overall 1
4 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
• HP:

– HP-UX 11.31 on:

• PA-RISC 2.0 (32-bit), built with HP ANSI-C 11

• PA-RISC 2.0W (64-bit), built with HP ANSI-C 11

• Itanium (32-bit), built with cc B3910B A.06.12

• Itanium (64-bit), built with cc B3910B A.06.12

• IBM® AIX®:

– v6.1 on:

• PowerPC (32-bit), built with XLC v9.0

• PowerPC (64-bit), built with XLC v9.0

– v7.1 on:

• PowerPC (32-bit), built with XLC v11.1

• PowerPC (64-bit), built with XLC v11.1

• Micro Focus®:

– SUSE® Linux Enterprise Server 11.0 on:

• x86 (32-bit), built with LSB4.0 and gcc 4.4

• x86_64 (64-bit), built with LSB4.0 and gcc 4.4

• PowerPC (32-bit), built with gcc 3.4

• PowerPC (64-bit), built with gcc 3.4

• Microsoft® Windows:

– 7 Enterprise SP1 on:

• x86 (32-bit), built with Visual Studio 2005, no C runtime library (no CRT)

• x86 (32-bit), built with Visual Studio 2010

• x86-64 (64-bit), built with Visual Studio 2005

• x86-64 (64-bit), built with Visual Studio 2010, no CRT

– 8.1 Enterprise, x86-64 (64-bit), built with Visual Studio 2010, no CRT

– Server 2003 Enterprise R2 on:

• x86 (32-bit), built with Visual Studio 2005, no CRT

• x86 (32-bit), built with Visual Studio 2010

• x86_64 (64-bit), built with Visual Studio 2005

• x86_64 (64-bit), built with Visual Studio 2010, no CRT

• Itanium® (64-bit), built with Visual Studio 2005

• Itanium (64-bit), built with Visual Studio 2010, no CRT
Crypto-C ME Cryptographic Toolkit 5

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
– Server 2008 Enterprise R2 on:

• x86 (32-bit), built with Visual Studio 2005, no CRT

• x86 (32-bit), built with Visual Studio 2010

• x86_64 (64-bit), built with Visual Studio 2005

• x86_64 (64-bit), built with Visual Studio 2010, no CRT

• Itanium (64-bit), built with Visual Studio 2005

• Itanium (64-bit), built with Visual Studio 2010, no CRT

– Server 2012 Standard, x86_64 (64-bit), built with Visual Studio 2010

– Server 2012 Standard R2, x86_64 (64-bit), built with Visual Studio 2010, no
CRT

• Oracle® Solaris®:

– 10 on:

• SPARC® v8 (32-bit), built with Sun Studio 10, Sun C 5.8

• x86 (32-bit), built with Sun Studio 10, Sun C 5.8

• x86_64 (64-bit), built with Sun Studio 10, Sun C 5.8

– 11 on:

• SPARC v8+ (32-bit), built with Solaris Studio 12.3, Sun C 5.12

• SPARC v9-T2 (64-bit), built with Solaris Studio 12.3, Sun C 5.12

• SPARC v9-T4 (64-bit), built with Solaris Studio 12.3, Sun C 5.12

• Red Hat®:

– Enterprise Linux® 5.x on:

• x86 (32-bit), built with Linux Standard Base (LSB) 3.0 and gcc 3.4

• x86_64 (64-bit), built with LSB3.0 and gcc 3.4

• Itanium (64-bit), built with LSB3.0 and gcc 3.4

• PowerPC® (32-bit), built with gcc 3.4

• PowerPC (64-bit), built with gcc 3.4

• IBM® S390 (31-bit), built with gcc 4.3

• IBM S390x (64-bit), built with gcc 4.3

– Enterprise Linux 6.x on:

• x86 (32-bit), built with LSB4.0 and gcc 4.4

• x86_64 (64-bit), built with LSB4.0 and gcc 4.4

– Fedora™ 17 on ARMv7, built with gcc 4.6 (soft float)

• WindRiver® VxWorks:

– 6.4 on PowerPC 604 (32-bit), built with gcc version 3.4.4

– 6.7 on PowerPC 604 (32-bit), built with gcc version 4.1.2
6 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
Crypto-C ME 4.1.0.1

• Linaro Linux 3.10.68 on ARMv7 (32-bit), built with gcc version 4.8.3.

Crypto-C ME 4.1.2

Crypto-C ME 4.1.2 is tested on the following operating environments:

• Apple Mac OS X 10.10 on x86_64 (64-bit), built with Xcode 7

• Canonical Ubuntu 12.04 Long Term Support (LTS) on ARMv7, built with gcc 4.6
(hard float)

• FreeBSD 10 on x86_64 (64-bit), built with gcc 4.2

• Google Android:

– 4.1 on x86 (32-bit), built with Android NDK r10e and gcc 4.9

– 4.4 on ARMv7 (32-bit), built with Android NDK r10e and gcc 4.9

– 5.1 on:

• ARMv7 (32-bit), built with Android NDK r10e and gcc 4.9

• ARM64 (64-bit), built with Android NDK r10e and gcc 4.9

• HP HP-UX 11.31 on:

– PA-RISC 2.0(32-bit), built with HP ANSI-C 11.11.12

– PA-RISC 2.0W (64-bit), built with HP ANSI-C 11.11.12

– Itanium (32-bit) and Itanium (64-bit), built with cc B3910B A.06.12

• IBM AIX:

– v6.1 on PowerPC (32-bit) and PowerPC (64-bit), built with XLC v9.0

– v7.1 on PowerPC (32-bit) and PowerPC (64-bit), built with XLC v11.1

• Micro Focus SUSE Linux Enterprise Server:

– 11 SP4 on:

• x86 (32-bit) and x86_64 (64-bit), built with Linux Standard Base (LSB)
4.0 and gcc 4.4

• PowerPC (32-bit) and Power PC (64-bit), built with gcc 3.4

– 12 on x86 (32-bit) and x86_64 (64-bit) built with LSB 4.0 and gcc 4.4

• Microsoft Windows:

– 7 Enterprise SP1 on:

• x86 (32-bit), built with Visual Studio 2005 (/MT1)

• x86-64 (64-bit), built with Visual Studio 2005 (/MD)

• x86-64 (64-bit), built with Visual Studio 2010 (/MT)

– 8 Enterprise on x86 (32-bit), built with Visual Studio 2013 (/MT)

– 8.1 Enterprise on x86-64 (64-bit), built with Visual Studio 2010 (/MT)

1Multi-threaded dynamic linked runtime library (MD) and multi-threaded static linked runtime library (MT).
Crypto-C ME Cryptographic Toolkit 7

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
– 10 Enterprise on:

• x86 (32-bit), built with Visual Studio 2013 (/MD)

• x86-64 (64-bit), built with Visual Studio 2013 (/MD)

– Server 2008 Enterprise SP2 on:

• x86 (32-bit), built with Visual Studio 2005 (/MT)

• x86 (32-bit), built with Visual Studio 2010 (/MD)

• Itanium (64-bit), built with Visual Studio 2005 (/MD)

• Itanium (64-bit), built with Visual Studio 2010 (/MT)

– Server 2008 Enterprise R2 SP1 on:

• x86-64 (64-bit), built with Visual Studio 2005 (/MD)

• x86-64 (64-bit), built with Visual Studio 2010 (/MT)

– Server 2012 Standard R2 on:

• x86_64 (64-bit), built with Visual Studio 2010 (/MT)

• x86_64 (64-bit), built with Visual Studio 2013 (/MD)

• Oracle Solaris:

– 10 on SPARC v8 (32-bit), built with Sun C 5.8

– 10 Update 11 on:

• SPARC v8 (32-bit), built with Sun C 5.8

• x86 (32-bit), built with Sun C 5.13

• x86_64 (64-bit), built with Sun C 5.13

– 11.2 on:

• SPARC v8+ (32-bit), built with Sun C 5.13

• SPARC v9-T2 (64-bit), built with Sun C 5.13

• SPARC v9-T4 (64-bit), built with Sun C 5.13

• Red Hat:

– Enterprise Linux 5.x on:

• IBM S390 (31-bit), built with gcc 4.3

• IBM S390x (64-bit), built with gcc 4.3

– Enterprise Linux 5.11 on:

• x86 (32-bit) and x86_64 (64-bit), built with LSB3.0 and gcc 3.4

• PowerPC (32-bit) and PowerPC (64-bit), built with gcc 3.4

– Enterprise Linux 6.7 on x86 (32-bit) and x86_64 (64-bit), built with LSB 4.0
and gcc 4.4

– Enterprise Linux 7.1 on x86 (32-bit) and x86_64 (64-bit), built with LSB4.0
and gcc 4.4
8 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
– Fedora™ 20 on ARMv7 (32-bit), built with gcc 4.6 (hard float)

– Fedora 22 on ARM64 (64-bit), built with gcc 4.9

– CentOS 7.2 on x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• Wind River VxWorks:

– 6.4 on PowerPC 604 (32-bit)

– 6.7 on PowerPC 604 (32-bit)

– 6.8 on ARMv4 (32-bit).

2.1.2 Affirmation of Compliance for other Operating
Environments

Affirmation of compliance is defined in Section G.5, “Maintaining Validation
Compliance of Software or Firmware Cryptographic Modules,” in Implementation
Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program.
Compliance is maintained in all operational environments for which the binary
executable remains unchanged.

The Cryptographic Module Validation Program (CMVP) makes no statement as to the
correct operation of the module or the security strengths of the generated keys when so
ported if the specific operational environment is not listed on the validation certificate.

Crypto-C ME 4.1

For Crypto-C ME 4.1, RSA affirms compliance for the following operating
environments:

• Apple:

– Mac OS X 10.x on x86 (32-bit), built with gcc 4.0.1

– iOS 6.x on ARMv7s (32-bit), built with Xcode 5 and clang 500.2.76

• Canonical:

– Ubuntu 11.04 on ARMv7, built with gcc 4.6 (soft float)

– Ubuntu 12.04 LTS on:

• x86 (32-bit), built with LSB 3.0 and gcc 3.4

• x86_64 (64-bit), built with LSB3.0 and gcc 3.4

• x86_64 (64-bit), built with LSB4.0 and gcc 4.4

• HP HP-UX 11.23 on:

– PA-RISC 2.0 (32-bit), built with HP ANSI-C 11

– PA-RISC 2.0W (64-bit), built with HP ANSI-C 11

• IBM AIX v5.3 on:

– PowerPC (32-bit), built with XLC v8.0

– PowerPC (64-bit), built with XLC v8.0
Crypto-C ME Cryptographic Toolkit 9

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
• Micro Focus SUSE Linux Enterprise Server:

– 10 on:

• x86 (32-bit), built with LSB 3.0 and gcc 3.4

• x86_64 (64-bit), built with LSB3.0 and gcc 3.4

• PowerPC (32-bit), built with gcc 3.4

• PowerPC (64-bit), built with gcc 3.4

– 11 on Itanium (64-bit), built with LSB3.0 and gcc 3.4

• Microsoft Windows:

– XP Professional, SP3 on x86 (32-bit), built with Visual Studio 2005 and
Visual Studio 2010, either CRT or no CRT

– XP Professional, SP2 on x86_64 (64-bit), built with Visual Studio 2005 and
Visual Studio 2010, either CRT or no CRT

– Vista Enterprise on x86 (32-bit), built with Visual Studio 2005 and Visual
Studio 2010, either CRT or no CRT

– Vista Enterprise on x86_64 (64-bit), built with Visual Studio 2005 and Visual
Studio 2010, either CRT or no CRT

– 7 Enterprise, SP1 on x86 (32-bit), built with Visual Studio 2005 and Visual
Studio 2010, either CRT or no CRT

– 7 Enterprise, SP1 on x86_64 (64-bit), built with Visual Studio 2005 and
Visual Studio 2010, either CRT or no CRT

– 8.1 Enterprise on x86_64 (64-bit), built with Visual Studio 2010, either CRT
or no CRT

– Server 2003 Enterprise, R2 on Itanium, built with Visual Studio 2005 and
Visual Studio 2010, either CRT or no CRT

– Server 2008 Enterprise, R2 on Itanium, built with Visual Studio 2005 and
Visual Studio 2010, either CRT or no CRT.

– Server 2012 Standard, x86_64 (64-bit), built with Visual Studio 2010, no CRT

– Server 2012 Standard R2, x86_64 (64-bit), built with Visual Studio 2010

• Oracle Solaris:

– 10 on:

• SPARC v8+ (32-bit), built with Solaris Studio 12.3, Sun C 5.12

• SPARC v9-T2 (64-bit), built with Solaris Studio 12.3, Sun C 5.12

• SPARC v9-T4 (64-bit), built with Solaris Studio 12.3, Sun C 5.12

• SPARC v9-T5 (64-bit), built with Solaris Studio 12.3, Sun C 5.12

– 11 on SPARCv9-T5 (64-bit), built with Solaris Studio 12.3, Sun C 5.12.

• Red Hat Enterprise Linux 5.x, Security Enhanced (SE) configuration on:

– x86 (32-bit), built with LSB 3.0 and gcc 3.4

– x86_64 (64-bit), built with LSB3.0 and gcc 3.4

• WindRiver VxWorks 6.8 on ARMv4 (32-bit), built with gcc version 4.1.2.
10 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
Crypto-C ME 4.1.2

For Crypto-C ME 4.1.2, RSA affirms compliance for the following operating
environments:

• Apple Mac OS X:

– 10.10 on x86 (32-bit), built with Xcode 7

– 10.11 on x86 (32-bit) and x86_64 (64-bit), built with Xcode 7

• Canonical Ubuntu 12.04 LTS on:

– x86 (32-bit) and x86_64 (64-bit), built with LSB 3.0 and gcc 3.4

– x86 (32-bit) and x86_64 (64-bit), built with LSB 4.0 and gcc 4.4.

• Google Android 6.0 on ARMv7 (32-bit), built with Android NDK r10e and gcc 4.9

• Micro Focus SUSE Linux Enterprise Server:

– 10 on:

• x86 (32-bit) and x86_64 (64-bit), built with LSB 3.0 and gcc 3.4

• PowerPC (32-bit) and PowerPC (64-bit), built with gcc 3.4

– 11 SP2 on x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

– 11 SP4 on Itanium (64-bit), built with LSB 3.0 and gcc 3.4

• Microsoft:

– Windows Vista Enterprise on x86 (32-bit), built with Visual Studio 2005 or
Visual Studio 2010, either /MD2 or /MT

– Windows Vista Enterprise on x86_64 (64-bit), built with Visual Studio 2005 ,
either /MD or /MT

– Windows Vista Enterprise R2 on x86_64 (64-bit), built with Visual Studio
2010, either /MD or /MT

– Windows 7 Enterprise, SP1 on x86 (32-bit), built with Visual Studio 2005, /MD

– Windows 7 Enterprise, SP1 on x86 (32-bit), built with Visual Studio 2010,
either /MD or /MT

– Windows 7 Enterprise, SP1 on x86_64 (64-bit), built with Visual Studio 2005, /MT

– Windows 7 Enterprise, SP1 on x86_64 (64-bit), built with Visual Studio 2010, /MD

– Windows 8 Enterprise on x86 (32-bit), built with Visual Studio 2013, /MD

– Windows 8 Enterprise on x86_64 (64-bit), built with Visual Studio 2013,
either /MD or /MT

– Windows 8.1 Enterprise on x86_64 (64-bit), built with Visual Studio 2010, /MD

– Windows 8.1 Enterprise on x86_64 (64-bit), built with Visual Studio 2013,
/MD or /MT

– Windows 10 Enterprise on x86 (32-bit), built with Visual Studio 2013, /MT

2Multi-threaded dynamic linked runtime library (MD) and multi-threaded static linked runtime library (MT).
Crypto-C ME Cryptographic Toolkit 11

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
– Windows 10 Enterprise on x86_64 (64-bit), built with Visual Studio 2013, /MD

– Windows Server 2008 Enterprise SP2 on x86 (32-bit), built with Visual
Studio 2005, /MD

– Windows Server 2008 Enterprise SP2 on x86 (32-bit), built with Visual
Studio 2010, /MT

– Windows Server 2008 Enterprise SP2 on Itanium (64-bit), built with Visual
Studio 2005, /MT

– Windows Server 2008 Enterprise SP2 on Itanium (64-bit), built with Visual
Studio 2010, /MD

– Windows Server 2008 Enterprise R2 SP1 on x86_64 (64-bit), built with
Visual Studio 2005, /MT.

– Windows Server 2008 Enterprise R2 SP1 on x86_64 (64-bit), built with
Visual Studio 2010, /MD.

– Windows Server 2012 Standard on x86_64 (64-bit), built with Visual Studio
2010 or Visual Studio 2013, /MD or /MT

– Windows Server 2012 Standard R2 on x86_64 (64-bit), built with Visual
Studio 2010, /MD

– Windows Server 2012 Standard R2 on x86_64 (64-bit), built with Visual
Studio 2013, /MT

• Oracle Solaris:

– 10 Update 11 on:

• SPARC v8+ (32-bit), built with Sun C 5.13

• SPARC v9-T2 (64-bit), built with Sun C 5.13

• SPARC v9-T4 (64-bit), built with Sun C 5.13

• SPARC v9-T5 (64-bit), built with Sun C 5.13

– 11 on SPARCv8 (32-bit), built with Sun C 5.8

• Red Hat:

– Enterprise Linux 5.x Security Enhanced (SE) configuration, x86 (32-bit) and
x86_64 (64-bit), built with LSB 3.0 and gcc 3.4

– Enterprise Linux 6.x on x86 (32-bit) and x86_64 (64-bit), built with LSB 3.0
and gcc 3.4

– Enterprise Linux 7.x on PowerPC (32-bit) and PowerPC (64-bit), built with
and gcc 3.4

– CentOS 6.6 on x86_64 (64-bit), built with LSB 4.0 and gcc 4.4
12 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
2.1.3 Configuring Single User Mode

This section describes how to configure single user mode for the different operating
system platforms supported by Crypto-C ME.

Apple Mac OS X

To configure single user mode for systems running an Apple Mac OS X operating
system:

1. Start a terminal session.

2. Edit /etc/passwd and /etc/master.passwd to remove all the users except
root and the pseudo-users (daemon users). Make sure the password fields in
/etc/master.passwd for the pseudo-users are either a star (*) or double
exclamation mark (!!). This prevents login as the pseudo-users.

3. Disable the following services: exec, ftp, login, shell, telnet, and tftp.
To do this from the command line:

sudo launchctl unload -w /System/Library/LaunchDaemons/
<service_name>.plist

4. Delete user accounts.

a. Run System Preferences.

b. Select Accounts.

c. Click on the lock to make changes and authenticate yourself.

d. Delete all user accounts except your account.

5. Disable services.

a. Run Directory Utility.

b. Select Show Advanced Settings.

c. Select the Service tab.

d. Click on the lock to make changes and authenticate yourself.

e. Disable all services other than Local.

6. Reboot the system for the changes to take effect.

Apple iOS

The Apple iOS operating system is a single user operating system so no steps are
required to configure single user mode.

FreeBSD

To configure single user mode for systems running a FreeBSD operating system:

1. Log in as the root user.

2. Edit /etc/passwd and /etc/shadow to remove all the users except root and
the pseudo-users (daemon users). Make sure the password fields in
/etc/shadow for the pseudo-users are either a star (*) or double exclamation
mark (!!). This prevents login as the pseudo-users.
Crypto-C ME Cryptographic Toolkit 13

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
3. Edit /etc/nsswitch.conf so files is the only option for passwd, group, and
shadow. This disables the Network Information Service (NIS) and other name
services for users and groups.

4. In the /etc/xinetd.d directory, edit rexec, rlogin, rsh, rsync, telnet,
and wu-ftpd, setting the value of disable to yes.

5. Reboot the system for the changes to take effect.

Google Android

The Google Android operating systems are single user operating systems so no steps
are required to configure single user mode.

HP-UX

To configure single user mode for systems running an HP-UX operating system:

1. Log in as the root user.

2. Edit /etc/passwd and remove all the users except root and the pseudo-users.
Make sure the password fields for the pseudo-users are a star (*). This prevents
login as the pseudo-users.

3. Edit /etc/nsswitch.conf so files is the only option for passwd and group.
This disables the Network Information Service (NIS) and other name services for
users and groups.

4. Edit /etc/inetd.conf to remove or comment out the lines for remote login,
remote command execution, and file transfer daemons such as telnetd,
rlogind, remshd, rexecd, ftpd, and tftpd.

5. Reboot the system for the changes to take effect.

IBM AIX

To configure single user mode for systems running an IBM AIX operating system:

1. Log in as the root user.

2. Edit /etc/passwd and remove all the users except root and the pseudo-users.
Make sure the password fields for the pseudo-users are a star (*). This prevents
login as the pseudo-users.

3. Remove all lines beginning with a plus sign (+) or minus sign (-) from
/etc/passwd and /etc/group. This disables the Network Information
Service (NIS) and other name services for users and groups.

4. Edit /etc/inetd.conf to remove or comment out the lines for remote login,
remote command execution, and file transfer daemons such as telnetd,
rlogind, remshd, rexecd, ftpd, and tftpd.

5. Reboot the system for the changes to take effect.
14 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
Microsoft Windows

To configure single user mode for systems running a Microsoft Windows XP
Professional, Windows Vista Enterprise, Windows 7 Enterprise, Windows 8
Enterprise, Windows 2003 Server Enterprise, Windows 2008 Server Enterprise, or
Windows 2012 Server Standard operating system, guest accounts, server services,
terminal services, remote registry services, remote desktop services, and remote
assistance must be disabled. For detailed instructions on how to perform these tasks,
see the Microsoft support site.

Oracle Solaris

To configure single user mode for systems running an Oracle Solaris operating
system:

1. Log in as the root user.

2. Edit /etc/passwd and /etc/shadow to remove all the users except root and
the pseudo-users (daemon users). Make sure the password fields in
/etc/shadow for the pseudo-users are either a star (*) or double exclamation
mark (!!). This prevents login as the pseudo-users.

3. Edit /etc/nsswitch.conf so files is the only option for passwd, group, and
shadow. This disables the Network Information Service (NIS) and other name
services for users and groups.

4. Edit /etc/inet/inetd.conf to remove or comment out the lines for remote
login, remote command execution, and file transfer daemons.

5. Reboot the system for the changes to take effect.

Red Hat Enterprise, Fedora, CentOS, Micro Focus SUSE, Canonical Ubuntu, or
Linaro Linux

To configure single user mode for systems running a Linux operating system:

1. Log in as the root user.

2. Edit /etc/passwd and /etc/shadow to remove all the users except root and
the pseudo-users (daemon users). Make sure the password fields in
/etc/shadow for the pseudo-users are either a star (*) or double exclamation
mark (!!). This prevents login as the pseudo-users.

3. Edit /etc/nsswitch.conf so files is the only option for passwd, group, and
shadow. This disables the Network Information Service (NIS) and other name
services for users and groups.

4. In the /etc/xinetd.d directory, edit rexec, rlogin, rsh, rsync, telnet,
and wu-ftpd, setting the value of disable to yes.

5. Reboot the system for the changes to take effect.

Wind River VxWorks

The Wind River VxWorks operating systems are single user operating systems so no
steps are required to configure single user mode.
Crypto-C ME Cryptographic Toolkit 15

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
2.2 Crypto-C ME Interfaces

Crypto-C ME is validated as a multi-chip standalone cryptographic module. The
physical cryptographic boundary of the module is the case of the general-purpose
computer or mobile device, which encloses the hardware running the module. The
physical interfaces for Crypto-C ME consist of the keyboard, mouse, monitor,
CD-ROM drive, floppy drive, serial ports, USB ports, COM ports, and network
adapter(s).

The logical boundary of the cryptographic module is the set of master and resource
shared library files, and signature files comprising the module:

• Master shared library:

– cryptocme.dll on systems running a Windows operating system

– libcryptocme.so on systems running a Solaris, Linux, AIX, FreeBSD, or
Android, or VxWorks operating system

– libcryptocme.sl on systems running an HP-UX operating system

– libcryptocme.dylib on systems running a Mac OS X or iOS operating
system.

• Resource shared libraries:

– ccme_base.dll, ccme_base_non_fips.dll, ccme_asym.dll,
ccme_aux_entropy.dll, ccme_ecc.dll, ccme_ecc_non_fips.dll,
ccme_ecc_accel_fips.dll, ccme_ecc_accel_non_fips.dll, and
ccme_error_info.dll on systems running a Windows operating system.

– libccme_base.so, libccme_base_non_fips.so, libccme_asym.so,
libccme_aux_entropy.so, libccme_ecc.so,
libccme_ecc_non_fips.so, libccme_ecc_accel_fips.so,
libccme_ecc_accel_non_fips.so, and libccme_error_info.so on
systems running a Solaris, Linux, AIX, FreeBSD, or Android operating system.

– libccme_base.sl, libccme_base_non_fips.sl,
libccme_asym.sl, libccme_aux_entropy.sl, libccme_ecc.sl,
libccme_ecc_non_fips.sl, libccme_ecc_accel_fips.sl,
libccme_ecc_accel_non_fips.sl, and libccme_error_info.sl
on systems running an HP-UX operating system.

– libccme_base.dylib, libccme_base_non_fips.dylib,
libccme_asym.dylib, libccme_aux_entropy.dylib,
libccme_ecc.dylib, libccme_ecc_non_fips.dylib,
libccme_ecc_accel_fips.dylib,
libccme_ecc_accel_non_fips.dylib, and
libccme_error_info.dylib on systems running a Mac OS X or iOS
operating system.

• Signature files: cryptocme.sig and cryptocme_test_on_use.sig.
16 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
The underlying logical interface to Crypto-C ME is the API, documented in the RSA
BSAFE Crypto-C Micro Edition Developers Guide. Crypto-C ME provides for Control
Input through the API calls. Data Input and Output are provided by the variables passed
with the API calls, and Status Output is provided through the returns and error codes
documented for each call. This is illustrated in the following diagram.

Figure 1 Crypto-C ME Logical Interfaces

Note: Shared libraries for systems running a Mac OS X or iOS operating
system might include Apple code signatures applied by customers. If such a
signature is present, the signature is not included in the logical boundary and is
explicitly excluded from the software signature check.

Master shared library: cryptocme

Cryptographic Boundary

Application

Data In Data Out Control In Status Out

Resource shared libraries:

ccme_base ccme_base_non_fips

Operating System (OS)

Hardware

Software - Runs on Hardware

Hardware

Run on OS

Provides services for OS

Provides
services
for toolkit

Signature files:
cryptocme.sig

and cryptocme_test_on_use.sig

Logical Boundary

ccme_ecc_non_fips ccme_ecc_accel_fips ccme_ecc_accel_non_fips

ccme_ecc

ccme_error_info

ccme_asym ccme_aux_entropy
Crypto-C ME Cryptographic Toolkit 17

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
2.3 Roles and Services

Crypto-C ME meets all FIPS 140-2 Level 1 requirements for roles and services,
implementing both a User (User) role and Crypto Officer (CO) role. As allowed by
FIPS 140-2, Crypto-C ME does not support user identification or authentication for
these roles. Only one role can be active at a time and Crypto-C ME does not allow
concurrent operators.

2.3.1 Crypto Officer Role

The Crypto Officer is responsible for installing and loading the cryptographic module.
After the module is installed and operational, an operator can assume the Crypto
Officer role by calling R_PROV_FIPS140_assume_role() with
R_FIPS140_ROLE_OFFICER. An operator assuming the Crypto Officer role can call
any Crypto-C ME function. For a complete list of functions available to the Crypto
Officer, see “Services” on page 31.

2.3.2 Crypto User Role

An operator can assume the Crypto User role by calling
R_PROV_FIPS140_assume_role() with R_FIPS140_ROLE_USER. An operator
assuming the Crypto User role can use the entire Crypto-C ME API except for
R_PROV_FIPS140_self_test_full(), which is reserved for the Crypto Officer.
For a complete list of Crypto-C ME functions, see “Services” on page 31.
18 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
2.4 Cryptographic Key Management

Cryptographic key management is concerned with generating and storing keys,
managing access to keys, protecting keys during use, and zeroizing keys when they
are not longer required.

2.4.1 Key Generation

Crypto-C ME supports the generation of DSA, RSA, Diffie-Hellman (DH) and Elliptic
Curve Cryptography (ECC) public and private keys. Also, Crypto-C ME uses the CTR
Deterministic Random Bit Generator (CTR DRBG) as the default pseudo-random
number generator (PRNG) for asymmetric and symmetric keys used in algorithms
such as AES, Triple DES, RSA, DSA, Diffie-Hellman, ECC, and HMAC.

2.4.2 Key Storage

Crypto-C ME does not provide long-term cryptographic key storage. If a user chooses
to store keys, the user is responsible for storing keys exported from the module.

The following table lists all keys and CSPs in the module and where they are stored.

Table 2 Key Storage

Key or CSP Generation/Input Storage

Hardcoded DSA public key (2048-bit) Generated when the
module is created

Persistent storage embedded in
the module binary (encrypted)

Hardcoded AES key (128-bit) Generated when the
module is created

Persistent storage embedded in
the module binary (plaintext)

AES keys (128, 192, and 256-bit key sizes) Entered in plaintext
through the API

Volatile memory only (plaintext)

Triple-DES keys (192-bit key size) Entered in plaintext
through the API

Volatile memory only (plaintext)

HMAC with SHA-1 and SHA-2 keys
(greater than 112-bit key size)

Entered in plaintext
through the API

Volatile memory only (plaintext)

Diffie-Hellman public/private keys (2048 to
4096-bit key sizes)

Entered in plaintext
through the API

Volatile memory only (plaintext)

ECC public/private keys (224 to 571-bit key
sizes, less than 224 bits for legacy signature
verification only)

Entered in plaintext
through the API

Volatile memory only (plaintext)

RSA public/private keys (2048 to 4096-bit
key sizes, less than 2048 bits for legacy
signature verification only)

Entered in plaintext
through the API

Volatile memory only (plaintext)
Crypto-C ME Cryptographic Toolkit 19

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
2.4.3 Key Access

An authorized operator of the module has access to all key data created during
Crypto-C ME operation.

Note: The Crypto User and Crypto Officer roles have equal and complete
access to all keys.

The following table lists the different services provided by the toolkit with the type of
access to keys or CSPs.

DSA public/private keys (2048 to 4096-bit
key sizes, less than 2048 bits for legacy
signature verification only)

Entered in plaintext
through the API

Volatile memory only (plaintext)

CTR DRBG entropy (128 bits) Generated internally Volatile memory only (plaintext)

CTR DRBG V value (128 bits) Generated internally Volatile memory only (plaintext)

CTR DRBG key (256 bits) Generated internally Volatile memory only (plaintext)

CTR DRBG init_seed (384 bits) Generated internally Volatile memory only (plaintext)

HMAC DRBG entropy (112 to 256 bits) Generated internally Volatile memory only (plaintext)

HMAC DRBG V value (160 to 512 bits) Generated internally Volatile memory only (plaintext)

HMAC DRBG key (160 to 512 bits) Generated internally Volatile memory only (plaintext)

HMAC DRBG init_seed (440 to 888 bits) Generated internally Volatile memory only (plaintext)

Table 2 Key Storage (continued)

Key or CSP Generation/Input Storage

Table 3 Key and CSP Access

Service Type Key or CSP Type of Access

Encryption and decryption Symmetric keys (AES, Triple-DES) Read/Execute

Digital signature and
verification

Asymmetric keys (DSA, Elliptic Curve DSA (ECDSA),
and RSA)

Read/Execute

Message digest None N/A

MAC HMAC keys Read/Execute

Random number generation CTR DRBG entropy, V, key, and init_seed

HMAC DRBG entropy, V, key, and init_seed

Read/Write/Execute
20 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
2.4.4 Key Protection/Zeroization

All key data resides in internally allocated data structures and can be output only using
the Crypto-C ME API. The operating system protects memory and process space from
unauthorized access. The operator should follow the steps outlined in the RSA BSAFE
Crypto-C Micro Edition Developers Guide to ensure sensitive data is protected by
zeroizing the data from memory when it is no longer needed. All volatile keys and
CSPs listed in Table 2 are zeroized by unloading the module from memory.

Key generation Symmetric keys (AES, Triple-DES)

Asymmetric keys (DSA, ECDSA, RSA, Diffie-Hellman
(DH), and ECDH)

MAC keys (HMAC)

Write

Key establishment primitives Asymmetric keys (RSA, DH, ECDH) Read/Execute

Self-test (Crypto Officer
service)

Hardcoded keys (DSA and AES) Read/Execute

Show status None N/A

Zeroization All Read/Write

Table 3 Key and CSP Access (continued)

Service Type Key or CSP Type of Access
Crypto-C ME Cryptographic Toolkit 21

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
2.5 Cryptographic Algorithms

To achieve compliance with the FIPS 140-2 standard, only FIPS 140-2-approved or
allowed algorithms can be used in an approved mode of operation. The following
table lists the FIPS 140-2-approved and allowed algorithms supported by
Crypto-C ME, with their appropriate standards and validation certificate numbers.

Table 4 Crypto-C ME FIPS 140-2-approved and allowed Algorithms

Algorithm Type Algorithm Standard

Validation Certificate

4.1 4.1.0.1 4.1.2

Symmetric Key AES in CBC, CFB 128-bit, ECB, OFB 128-bit, and CTR
modes (with 128, 192, and 256-bit key sizes)

NIST SP800-38A 2859 3767 3596

AES in CCM modes (with 128, 192, and 256-bit key sizes) NIST SP800-38C

AES in GCM mode with automatic Initialization Vector
(IV) generation (with 128, 192, and 256-bit key sizes).

NIST SP800-38D

AES in XTS mode1 (with 128 and 256-bit key sizes) NIST SP800-38E

Triple-DES2 in ECB, CBC, CFB 64-bit, and OFB 64-bit
modes.

NIST SP800-67 and
SP800-38A

1706 2095 2003

Asymmetric Key DSA (2048 to 4096-bit key sizes) NIST FIPS 186-4 858 1047 999

ECDSA (224 to 571-bit key sizes; curves tested: P-224,
P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233,
B-283, B-409, and B-571)

ECDSA2 Component Test

NIST FIPS 186-4 507

299

810

740

733

621

RSA (2048 to 4096-bit key size)

- Key generation and signature

- Signature, verification only:

RSASP1 Component Test

RSADP Component Test

NIST FIPS 186-4

NIST FIPS 186-2

1499

298

300

1938

716

717

1850

622

620

Key Agreement DH (2048 to 4096-bit key size) and ECDH (224 to 571-bit
key size)

- Parameter generation:

- Key generation:

IEEE P1363 draft
10 Section A.16.1

RSA PKCS #3

Non-approved (Allowed in
FIPS 140-2 mode).

KASECC_(ECC CDH) Primitive Component Test
(curves tested: P-224, P-256, P-384, P-521, K-233, K-283,
K-409, K-571, B-233, B-283, B-409, and B-571)

SP800-56A Section
5.7.1.2

296 715 618

Key Derivation
Functions (KDFs)

X9.63 KDF - Component Test ANSI X9.63 297 714 619

TLS Pseudo-random Function (TLS PRF) - Component Test SP 800-135 rev1 297 714 619

Password-based Key Derivation Function 2 (PBKDF2)3 SP 800-132 Vendor affirmed4

Key Wrap AES key wrap (with 128, 192, and 256-bit key sizes) SP 800-38F Non-approved5 3596

AES padded key wrap (with 128, 192, and 256-bit key sizes) SP 800-38F Non-approved 3596

RSA encrypt and decrypt (2048 to 4096-bit key size)6 PKCS #1 Non-approved (Allowed in
FIPS 140-2 mode for key
transport).
22 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
The following Crypto-C ME algorithms are not FIPS 140-2-approved:

• AES in CFB 64-bit and CTS modes

• AES in BPS mode for format-preserving encryption (FPE)

• DES

• DESX

• DES40

• Camellia

• GOST

• SEED

• RC2

• RC4

• RC5

• RSA with key sizes less than 2048 bits

• DSA with key sizes less than 2048 bits

• ECDSA with key sizes less than 224 bits

• DH with key sizes less than 2048 bits

• ECDH with key sizes less than 224 bits

• MD2

• MD4

Random Number CTR DRBG SP 800-90A rev1 507 1037 931

HMAC DRBG (SHA-1, SHA-224, SHA-256, SHA-384,
and SHA-512)

SP 800-90A rev1 507 1037 931

Message Digest SHA-1, and SHA-224, 256, 384, 512, 512/224, and 512/256 FIPS180-4 2402 3137 2958

Message
Authentication
Code

HMAC-SHA1, SHA224, SHA256, SHA384, SHA512,
SHA512/224, and SHA512/256

FIPS198-1 1799 2467 2293

1AES in XTS mode is only approved for hardware storage applications.
2Two-key Triple-DES encryption is not allowed. Two-key Triple-DES decryption is allowed for legacy-use only.
3As defined in NIST Special Publication 800-132, PBKDF2 can be used in FIPS 140-2 mode when used with FIPS 140-2-approved
symmetric key and message digest algorithms. For more information, see “Crypto Officer and Crypto User Guidance” on page 26.
4Not yet tested by the CAVP, but is approved for use in FIPS 140-2 mode. RSA affirms correct implementation of the algorithm.
5For the 4.1 and 4.1.0.1 validations, CAVP testing was not available for SP800-38F AES key wrap and padded key wrap. Therefore, the AES
key wrap implementations do not have CAVP certification and are considered to be non-approved but allowed in FIPS 140-2 mode for
versions 4.1 and 4.1.0.1 of the module.
6For key wrapping using RSA, the key establishment methodology provides between 112 and 150 bits of encryption strength. Less than 112
bits of security (key sizes less than 2048 bits) is non-compliant.

Table 4 Crypto-C ME FIPS 140-2-approved and allowed Algorithms (continued)

Algorithm Type Algorithm Standard

Validation Certificate

4.1 4.1.0.1 4.1.2
Crypto-C ME Cryptographic Toolkit 23

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
• MD5

• HMAC MD5

• ECAES

• ECIES

• Non-deterministic Random Number Generator (NDRNG) (Entropy)

• Non-approved RNG (FIPS 186-2)

• Non-approved RNG (OTP).

For more information about using Crypto-C ME in a FIPS 140-2-compliant manner,
see “Secure Operation of Crypto-C ME” on page 26.

2.6 Self Tests

Crypto-C ME performs a number of power-up and conditional self-tests to ensure
proper operation.

If a power-up self-test fails for one of the resource libraries, all cryptographic services
for the library are disabled. Services for a disabled library can only be re-enabled by
reloading the FIPS 140-2 module. If a conditional self-test fails, the operation fails but
no services are disabled.

For self-test failures (power-up or conditional) the library notifies the user through the
returns and error codes for the API.

2.6.1 Power-up Self-test

Crypto-C ME implements the following power-up self-tests:

• AES in CCM, GCM, GMAC, and XTS mode Known Answer Tests (KATs)
(encrypt/decrypt)

• Triple DES KATs (encrypt/decrypt)

• SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and
SHA-512/256 KATs

• HMAC SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 SHA-512/224, and
SHA-512/256 KATs

• TLS 1.0/1.1 ANSI X9.63 KDF KATs

• RSA sign/verify KATs

• RSA sign/verify test

• DSA sign/verify test

• ECDSA sign/verify test

• DH and ECDH conditional tests
24 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
• PRNG (CTR DRBG and HMAC DRBG) KATs

• Software integrity test using DSA signature verification.

Power-up self-tests are executed automatically when Crypto-C ME loads into memory.

2.6.2 Conditional Self-tests

Crypto-C ME performs two conditional self-tests:

• A pair-wise consistency test each time Crypto-C ME generates a DSA, RSA, or
EC public/private key pair.

• A Continuous Random Number Generation (CRNG) test each time the toolkit
produces random data, as per the FIPS 140-2 standard. The CRNG test is
performed on all approved and non-approved PRNGs (CTR DRBG, HMAC DRBG,
NDRNG (Entropy), non-approved RNG (FIPS 186-2) and non-approved RNG
(OTP)).

2.6.3 Critical Functions Tests

Crypto-C ME performs known answer tests for:

• MD5 and HMAC-MD5, which are available when the
R_MODE_FILTER_FIPS140_SSL and R_MODE_FILTER_JCMVP_SSL mode
filters are set.

• Camellia ECB, CBC, CFB, and OFB for key sizes 128, 192, and 256 bits, which
are available when the R_MODE_FILTER_JCMVP and
R_MODE_FILTER_JCMVP_SSL mode filters are set.

2.6.4 Mitigation of Other Attacks

RSA key operations implement blinding, a reversible way of modifying the input data,
so as to make the RSA operation immune to timing attacks. Blinding has no effect on
the algorithm other than to mitigate attacks on the algorithm. Blinding is implemented
through blinding modes, and the following options are available:

• Blinding mode off.

• Blinding mode with no update, where the blinding value is constant for each
operation.

• Blinding mode with full update, where a new blinding value is used for each
operation.

RSA signing operations implement a verification step after private key operations. This
verification step, which has no effect on the signature algorithm, is in place to prevent
potential faults in optimized Chinese Remainder Theorem (CRT) implementations. For
more information, see https://eprint.iacr.org/2011/388.
Crypto-C ME Cryptographic Toolkit 25

https://eprint.iacr.org/2011/388

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
3 Secure Operation of Crypto-C ME

This section provides an overview of how to securely operate Crypto-C ME in
compliance with the FIPS 140-2 standards.

3.1 Crypto Officer and Crypto User Guidance

The Crypto Officer and Crypto User must only use algorithms approved for use in a
FIPS 140 mode of operation, as listed in Table 4 on page 22. The requirements for
using the approved algorithms in a FIPS 140 mode of operation are as follows:

• Two-key Triple-DES is not allowed for encryption. Two-key Triple-DES
decryption is allowed for legacy-use.

• The length of a DSA key pair for digital signature generation and verification
must be either 2048 or 3072 bits. For digital signature verification, 1024 bits is
allowed for legacy-use.

• The length of an RSA key pair for digital signature generation and verification
must be a multiple of 512 between 2048 and 4096 bits, inclusive. For digital
signature verification, a multiple of 512 greater than or equal to 1024 and less than
2048 bits is allowed for legacy-use.

• The key length for an HMAC generation or verification must be between 112 and
4096 bits, inclusive. For HMAC verification, a key length greater than or equal to
80 and less than 112 is allowed for legacy-use.

• EC key pairs must have named curve domain parameters from the set of
NIST-recommended named curves: P224, P256, P384, P521, B233, B283, B409,
B571, K233, K283, K409, and K571. Named curves P192, B163, and K163 are
allowed for legacy-use.

• When using RSA for key wrapping, the strength of the methodology is between
112 and 150 bits of security.

• The Diffie-Hellman shared secret provides between 112 and 150 bits of security.

• EC Diffie-Hellman primitives must use curve domain parameters from the set of
NIST-recommended named curves. Using NIST-recommended curves, the
computed Diffie-Hellman shared secret provides between 112 and 256 bits of
security.

• When using an approved DRBG to generate keys, the requested security strength
for the DRBG must be at least as great as the security strength of the key being
generated.

• When using GCM feedback mode for symmetric encryption, the authentication
tag length and authenticated data length may be specified as input parameters, but
the Initialization Vector (IV) must not be specified. It must be generated
internally.

• In the case where the module is powered down, a new key must be used for AES
GCM encryption/decryption.
26 Secure Operation of Crypto-C ME

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
• For Password-based Key Derivation, the following restrictions apply:

– Keys generated using PBKDF2 shall only be used in data storage
applications.

– The minimum password length is 14 characters, which has a strength of
approximately 112 bits, assuming a randomly selected password using the
extended ASCII printable character set is used.

For random passwords (that is, a string of characters from a given set of
characters in which each character is equally likely to be selected), the
strength of the password is given by: S=L*(log N/log 2) where N is the
number of possible characters (for example, for the ASCII printable character
set N = 95, for the extended ASCII printable character set N = 218) and L
is the number of characters. A password of the strength S can be guessed at
random with the probability of 1 in 2S.

– The minimum length of the randomly-generated portion of the salt is 16 bytes.

– The iteration count is as large as possible, with a minimum of 1000 iterations
recommended.

– The maximum key length is (232 -1)*b, where b is the digest size of the
message digest function.

– Derived keys can be used as specified in NIST Special Publication 800-132,
Section 5.4, options 1 and 2.

3.2 Roles

If a user of Crypto-C ME needs to operate the toolkit in different roles, then the user
must ensure all instantiated cryptographic objects are destroyed before changing from
the Crypto User role to the Crypto Officer role, or unexpected results could occur.

The following table lists the roles a user can operate in.

Table 5 Crypto-C ME Roles

Role Description

R_FIPS140_ROLE_OFFICER An operator assuming the Crypto Officer role can call any Crypto-C ME
function. The complete list of the functionality available to the Crypto
Officer is outlined in “Services” on page 31.

R_FIPS140_ROLE_USER An operator assuming the Crypto User role can use the entire Crypto-C ME
API except for R_PROV_FIPS140_self_test_full(), which is reserved
for the Crypto Officer. The complete list of Crypto-C ME functions is
outlined in “Services” on page 31.
Secure Operation of Crypto-C ME 27

http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
3.3 Modes of Operation

The following table lists and describes the available mode filters to determine the
mode Crypto-C ME operates in and the algorithms allowed.

In each mode of operation, the complete set of services, which are listed in this
Security Policy, are available to both the Crypto Officer and Crypto User roles (with
the exception of R_FIPS140_self_test_full(), which is always reserved for
the Crypto Officer).

Note: Cryptographic keys must not be shared between modes. For example, a
key generated FIPS 140-2 mode must not be shared with an application
running in a non-FIPS 140-2 mode.

Table 6 Crypto-C ME Mode Filters

Mode Description

R_MODE_FILTER_FIPS140
FIPS 140-2-approved.

Implements FIPS 140-2 mode and provides the cryptographic algorithms
listed in Table 4 on page 22. The default pseudo-random number
generator (PRNG) is CTR DRBG.

R_MODE_FILTER_FIPS140_SSL
FIPS 140-2-approved if used with
TLS protocol implementations.

Implements FIPS 140-2 SSL mode and provides the same algorithms as
R_LIB_CTX_MODE_FIPS140, plus the MD5 message digest algorithm.

This mode can be used in the context of the key establishment phase in
the TLS 1.0 and TLS 1.1 protocol. For more information, see Section D.2,
“Acceptable Key Establishment Protocols,” in Implementation Guidance
for FIPS PUB 140-2 and the Cryptographic Module Validation Program.

The implementation guidance disallows the use of the SSLv2 and SSLv3
versions. Cipher suites including non-FIPS 140-2- approved algorithms
are unavailable.

This mode allows implementations of the TLS protocol to operate
Crypto-C ME in a FIPS 140-2-compliant manner with CTR DRBG as the
default PRNG.

R_MODE_FILTER_JCMVP
Not FIPS 140-2-approved.

Implements Japan Cryptographic Module Validation Program (JCMVP)
mode and provides the cryptographic algorithms approved by the
JCMVP.

R_MODE_FILTER_JCMVP_SSL
Not FIPS 140-2-approved.

Implements JCMVP SSL mode and provides the cryptographic
algorithms approved by the JCMVP, plus the MD5 message digest
algorithm.
28 Secure Operation of Crypto-C ME

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
3.4 Operating Crypto-C ME

Crypto-C ME operates in an unrestricted mode on startup, providing access to all
cryptographic algorithms available from the FIPS 140-2 provider set against the
library context. To restrict the module to a specific set of algorithms, call
R_LIB_CTX_set_mode() with one of the mode filters listed in listed in Table 6 on
page 28.

After setting Crypto-C ME into a FIPS 140-2-approved mode, Crypto-C ME enforces
only the algorithms listed in Table 4 on page 22 are available to operators. To disable
FIPS 140-2 mode, call R_LIB_CTX_set_mode() with NULL to put Crypto-C ME
back into an unrestricted mode.

R_PROV_FIPS140_self_tests_full() is restricted to operation by the Crypto
Officer.

The user of Crypto-C ME links with the ccme_core and ccme_fipsprov static
libraries for their platform. At run time, ccme_fipsprov loads the cryptocme
master shared library, which then loads all of the resource shared libraries. For more
information, see “FIPS 140-2 Operations > FIPS 140-2 Libraries” in the RSA BSAFE
Crypto-C Micro Edition Developers Guide.

The current Crypto-C ME role is determined by calling R_LIB_CTX_get_info()
with R_LIB_CTX_INFO_ID_ROLE. The role is changed by calling
R_PROV_FIPS140_assume_role() with one of the information identifiers listed
in Table 5 on page 27.

3.5 Startup Self-tests

Crypto-C ME provides the ability to configure when power-up self-tests are executed. To
operate Crypto-C ME in a FIPS 140-2-compliant manner, the default shipped
configuration, which executes the self-tests when the module is first loaded, must be used.

For more information about this configuration setting, see the RSA BSAFE
Crypto-C Micro Edition Installation Guide.
Secure Operation of Crypto-C ME 29

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
3.6 Deterministic Random Number Generator

In all modes of operation, Crypto-C ME provides the CTR DRBG as the default
deterministic random number generator (DRNG).

Users can choose to use an approved DRNG other than the default, including the
HMAC DRBG implementations, when creating a cryptographic object and setting this
object against the operation requiring random number generation (for example, key
generation).

Crypto-C ME also includes a non-approved NDRNG (Entropy) used to generate seed
material for the DRNGs.

3.6.1 DRNG Seeding

In the FIPS 140-2 validated library, Crypto-C ME implements DRNGs that can be
called to generate random data. The quality of the random data output from these
DRNGs depends on the quality of the supplied seeding (entropy). Crypto-C ME
provides internal entropy collection (for example, from high precision timers) where
possible. On platforms with limited internal sources of entropy, it is strongly
recommended to collect entropy from external sources.

Additional entropy sources can be added to an application either by:

• Replacing internal entropy by calling R_CR_set_info() with
R_CR_INFO_ID_RAND_ENT_CB and the parameters for an application-defined
entropy collection callback function.

• Adding to internal entropy by calling R_CR_entropy_resource_init() to
initialize an entropy resource structure and then adding this to the library context
by calling R_LIB_CTX_add_resource().

For more information about these functions, see the RSA BSAFE Crypto-C Micro
Edition Developers Guide.

Note: If entropy from external sources is added to an application using
R_CR_set_info() with R_CR_INFO_ID_RAND_ENT_CB or
R_CR_entropy_resource_init(), no assurances are made about the
minimum strength of generated keys.

For more information about seeding DRNGs, see “Randomness Recommendations for
Security” in RFC 1750.
30 Secure Operation of Crypto-C ME

https://www.ietf.org/rfc/rfc1750.txt

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
4 Services

The following is the list of services provided by Crypto-C ME. For more information
about individual functions, see the RSA BSAFE Crypto-C Micro Edition Developers
Guide.

R_add()
BIO_append_filename()
BIO_cb_cmd_to_string()
BIO_cb_post()
BIO_cb_pre()
BIO_CB_return()
BIO_clear_flags()
BIO_clear_retry_flags()
BIO_copy_next_retry()
BIO_ctrl()
BIO_debug_cb()
BIO_dump()
BIO_dump_format()
BIO_dup_chain()
BIO_dup_chain_ef()
BIO_eof()
BIO_f_buffer()
BIO_f_null()
BIO_find_type(
BIO_flags_to_string()
BIO_flush()
BIO_free()
BIO_free_all()
BIO_get_app_data()
BIO_get_buffer_num_lines()
BIO_get_cb()
BIO_get_cb_arg()
BIO_get_close()
BIO_get_flags()
BIO_get_fp()
BIO_get_info_cb()
BIO_get_mem_data()
BIO_get_retry_BIO()
BIO_get_retry_flags()
BIO_get_retry_reason()
BIO_gets()
BIO_method_name()
BIO_method_type()
BIO_new()
BIO_new_ef()
BIO_new_file()
BIO_new_file_ef()
BIO_new_file_w()
BIO_new_file_w_ef()
BIO_new_fp()
BIO_new_fp_ef()

BIO_new_init()
BIO_new_init_ef()
BIO_new_mem()
BIO_new_mem_ef()
BIO_open_file()
BIO_open_file_w()
BIO_pending()
BIO_pop()
BIO_print_hex()
BIO_printf()
BIO_push()
BIO_puts()
BIO_read()
BIO_read_filename()
BIO_reference_inc()
BIO_reset()
BIO_retry_type()
BIO_rw_filename()
BIO_s_file()
BIO_s_mem()
BIO_s_null()
BIO_seek()
BIO_set()
BIO_set_app_data()
BIO_set_bio_cb()
BIO_set_buffer_read_data()
BIO_set_buffer_size()
BIO_set_cb()
BIO_set_cb_arg()
BIO_set_cb_recursive()
BIO_set_close()
BIO_set_flags()
BIO_set_fp()
BIO_set_info_cb()
BIO_set_mem_eof_return()
BIO_set_read_buffer_size()
BIO_set_retry_read()
BIO_set_retry_small_buffer()
BIO_set_retry_special()
BIO_set_retry_write()
BIO_set_write_buffer_size()
BIO_should_io_special()
BIO_should_read()
BIO_should_retry()
BIO_should_small_buffer()
BIO_should_write()
Services 31

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
BIO_tell()
BIO_wpending()
BIO_write()
BIO_write_filename()
R_BASE64_decode()
R_BASE64_decode_checked()
R_BASE64_decode_checked_ef()
R_BASE64_decode_ef()
R_BASE64_encode()
R_BASE64_encode_checked()
R_BASE64_encode_checked_ef()
R_BASE64_encode_ef()
R_BUF_append()
R_BUF_assign()
R_BUF_cmp()
R_BUF_cmp_raw()
R_BUF_consume()
R_BUF_cut()
R_BUF_dup()
R_BUF_free()
R_BUF_get_data()
R_BUF_grow()
R_BUF_insert()
R_BUF_join()
R_BUF_length()
R_BUF_max_length()
R_BUF_new()
R_BUF_prealloc()
R_BUF_reset()
R_BUF_resize()
R_BUF_strdup()
CRYPTOC_ME_library_info()
CRYPTOC_ME_library_version()
R_CR_add_filter()
R_CR_asym_decrypt()
R_CR_asym_decrypt_init()
R_CR_asym_encrypt()
R_CR_asym_encrypt_init()
R_CR_CTX_add_filter()
R_CR_CTX_alg_supported()
R_CR_CTX_free()
R_CR_CTX_get_info()
R_CR_CTX_ids_from_sig_id()
R_CR_CTX_ids_to_sig_id()
R_CR_CTX_new()
R_CR_CTX_new_ef()
R_CR_CTX_reference_inc()
R_CR_CTX_set_info()
R_CR_decrypt()
R_CR_decrypt_final()
R_CR_decrypt_init()
R_CR_decrypt_update()
R_CR_derive_key()
R_CR_derive_key_data()
R_CR_digest()
R_CR_digest_final()

R_CR_digest_init()
R_CR_digest_update()
R_CR_dup()
R_CR_dup_ef()
R_CR_encrypt()
R_CR_encrypt_final()
R_CR_encrypt_init()
R_CR_encrypt_update()
R_CR_entropy_bytes()
R_CR_entropy_gather()
R_CR_entropy_resource_init()
R_CR_export_params()
R_CR_free()
R_CR_generate_key()
R_CR_generate_key_init()
R_CR_generate_parameter()
R_CR_generate_parameter_init()
R_CR_get_detail()
R_CR_get_detail_string()
R_CR_get_error()
R_CR_get_error_string()
R_CR_get_file()
R_CR_get_function()
R_CR_get_function_string()
R_CR_get_info()
R_CR_get_line()
R_CR_get_memory()
R_CR_get_reason()
R_CR_get_reason_string()
R_CR_ID_from_string()
R_CR_ID_sign_to_string()
R_CR_ID_to_string()
R_CR_import_params()
R_CR_key_exchange_init()
R_CR_key_exchange_phase_1()
R_CR_key_exchange_phase_2()
R_CR_keywrap_init()
R_CR_keywrap_unwrap()
R_CR_keywrap_unwrap_init()
R_CR_keywrap_unwrap_PKEY()
R_CR_keywrap_unwrap_SKEY()
R_CR_keywrap_wrap()
R_CR_keywrap_wrap_init()
R_CR_keywrap_wrap_PKEY()
R_CR_keywrap_wrap_SKEY()
R_CR_mac()
R_CR_mac_final()
R_CR_mac_init()
R_CR_mac_update()
R_CR_new()
R_CR_new_ef()
R_CR_next_error()
R_CR_random_bytes()
R_CR_random_init()
R_CR_random_reference_inc()
R_CR_random_seed()
32 Services

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
R_CR_secret_join_final()
R_CR_secret_join_init()
R_CR_secret_join_update()
R_CR_secret_split()
R_CR_secret_split_init()
R_CR_set_info()
R_CR_sign()
R_CR_sign_final()
R_CR_sign_init()
R_CR_sign_update()
R_CR_SUB_from_string()
R_CR_SUB_to_string()
R_CR_TYPE_from_string()
R_CR_TYPE_to_string()
R_CR_validate_parameters()
R_CR_verify()
R_CR_verify_final()
R_CR_verify_init()
R_CR_verify_mac()
R_CR_verify_mac_final()
R_CR_verify_mac_init()
R_CR_verify_mac_update()
R_CR_verify_update()
ERR_STATE_add_error_data()
ERR_STATE_clear_error()
ERR_STATE_error_string()
ERR_STATE_func_error_string()
ERR_STATE_get_error()
ERR_STATE_get_error_line()
ERR_STATE_get_error_line_data()
ERR_STATE_get_next_error_library()
ERR_STATE_get_state()
ERR_STATE_lib_error_string()
ERR_STATE_load_ERR_strings()
ERR_STATE_load_strings()
ERR_STATE_peek_error()
ERR_STATE_peek_error_line()
ERR_STATE_peek_error_line_data()
ERR_STATE_peek_last_error()
ERR_STATE_peek_last_error_line()
ERR_STATE_peek_last_error_line_data()
ERR_STATE_print_errors()
ERR_STATE_print_errors_fp()
ERR_STATE_put_error()
ERR_STATE_reason_error_string()
ERR_STATE_remove_state()
ERR_STATE_set_error_data()
R_ERR_STATE_free()
R_ERR_STATE_get_error()
R_ERR_STATE_get_error_line()
R_ERR_STATE_get_error_line_data()
R_ERR_STATE_new()
R_ERR_STATE_set_error_data()
R_ERROR_EXIT_CODE()
R_FILTER_sort()
R_FORMAT_from_string()

R_FORMAT_to_string()
R_ITEM_cmp()
R_ITEM_destroy()
R_ITEM_dup()
R_LIB_CTX_add_filter()
R_LIB_CTX_add_provider()
R_LIB_CTX_add_resource()
R_LIB_CTX_add_resources()
R_LIB_CTX_dup()
R_LIB_CTX_dup_ef()
R_LIB_CTX_free()
R_LIB_CTX_get_detail_string()
R_LIB_CTX_get_error_string()
R_LIB_CTX_get_function_string()
R_LIB_CTX_get_info()
R_LIB_CTX_get_reason_string()
R_LIB_CTX_new()
R_LIB_CTX_new_ef()
R_LIB_CTX_reference_inc()
R_LIB_CTX_set_info()
R_LIB_CTX_set_mode()
R_lock()
R_LOCK_add()
R_lock_ctrl()
R_LOCK_exec()
R_LOCK_free()
R_lock_get_cb()
R_lock_get_name()
R_LOCK_lock()
R_LOCK_new()
R_lock_num()
R_lock_r()
R_lock_set_cb()
R_LOCK_unlock()
R_lock_w()
R_locked_add()
R_locked_add_get_cb()
R_locked_add_set_cb()
R_lockid_new()
R_lockids_free()
R_MEM_clone()
R_MEM_compare()
R_MEM_delete()
R_MEM_free()
R_MEM_get_global()
R_MEM_malloc()
R_MEM_new_callback()
R_MEM_new_default()
R_MEM_realloc()
R_MEM_strdup()
R_MEM_zfree()
R_MEM_zmalloc()
R_MEM_zrealloc()
R_os_clear_sys_error()
R_os_get_last_sys_error()
PRODUCT_DEFAULT_RESOURCE_LIST()
Services 33

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
PRODUCT_FIPS_140_ECC_MODE_RESOURCE_
LIST()
PRODUCT_FIPS_140_MODE_RESOURCE_LIST()
PRODUCT_FIPS_140_SSL_ECC_MODE_RESOURCE_
LIST()
PRODUCT_FIPS_140_SSL_MODE_RESOURCE_
LIST()
PRODUCT_LIBRARY_FREE()
PRODUCT_LIBRARY_INFO()
PRODUCT_LIBRARY_INFO_TYPE_FROM_
STRING()
PRODUCT_LIBRARY_INFO_TYPE_TO_STRING()
PRODUCT_LIBRARY_NEW()
PRODUCT_LIBRARY_VERSION()
PRODUCT_NON_FIPS_140_MODE_RESOURCE_
LIST()
R_PAIRS_add()
R_PAIRS_clear()
R_PAIRS_free()
R_PAIRS_generate()
R_PAIRS_get_info()
R_PAIRS_init()
R_PAIRS_init_ef()
R_PAIRS_new()
R_PAIRS_new_ef()
R_PAIRS_next()
R_PAIRS_parse()
R_PAIRS_parse_allow_sep()
R_PAIRS_reset()
R_PAIRS_set_info()
R_PASSWD_CTX_free()
R_PASSWD_CTX_get_info()
R_PASSWD_CTX_get_passwd()
R_PASSWD_CTX_get_prompt()
R_PASSWD_CTX_get_verify_prompt()
R_PASSWD_CTX_new()
R_PASSWD_CTX_reference_inc()
R_PASSWD_CTX_set_callback()
R_PASSWD_CTX_set_info()
R_PASSWD_CTX_set_old_callback()
R_PASSWD_CTX_set_pem_callback()
R_PASSWD_CTX_set_prompt()
R_PASSWD_CTX_set_verify_prompt()
R_PASSWD_CTX_set_wrapped_callback()
R_passwd_get_cb()
R_passwd_get_passwd()
R_passwd_set_cb()
R_passwd_stdin_cb()
R_PEM_get_LIB_CTX()
R_PEM_get_PASSWD_CTX()
R_PEM_set_PASSWD_CTX()
R_PKEY_cmp()
R_PKEY_copy()
R_PKEY_CTX_add_filter()
R_PKEY_CTX_free()
R_PKEY_CTX_get_info()

R_PKEY_CTX_get_LIB_CTX()
R_PKEY_CTX_get_memory()
R_PKEY_CTX_new()
R_PKEY_CTX_new_ef()
R_PKEY_CTX_reference_inc()
R_PKEY_CTX_set_info()
R_PKEY_decode_pkcs8()
R_PKEY_delete()
R_PKEY_dup()
R_PKEY_dup_ef()
R_PKEY_EC_NAMED_CURVE_from_string()
R_PKEY_EC_NAMED_CURVE_to_string()
R_PKEY_encode_pkcs8()
R_PKEY_FORMAT_from_string()
R_PKEY_FORMAT_to_string()
R_PKEY_free()
R_PKEY_from_binary()
R_PKEY_from_binary_ef()
R_PKEY_from_bio()
R_PKEY_from_bio_ef()
R_PKEY_from_file()
R_PKEY_from_file_ef()
R_PKEY_from_public_key_binary()
R_PKEY_from_public_key_binary_ef()
R_PKEY_generate_simple()
R_PKEY_get_info()
R_PKEY_get_num_bits()
R_PKEY_get_num_primes()
R_PKEY_get_PEM_header()
R_PKEY_get_PKEY_CTX()
R_PKEY_get_type()
R_PKEY_is_matching_public_key()
R_PKEY_iterate_fields()
R_PKEY_load()
R_PKEY_new()
R_PKEY_new_ef()
R_PKEY_PASSWORD_TYPE_from_string()
R_PKEY_PASSWORD_TYPE_to_string()
R_PKEY_print()
R_PKEY_public_cmp()
R_PKEY_public_from_bio()
R_PKEY_public_from_bio_ef()
R_PKEY_public_from_file()
R_PKEY_public_from_file_ef()
R_PKEY_public_get_PEM_header()
R_PKEY_public_to_bio()
R_PKEY_public_to_file()
R_PKEY_reference_inc()
R_PKEY_SEARCH_add_filter()
R_PKEY_SEARCH_free()
R_PKEY_SEARCH_init()
R_PKEY_SEARCH_new()
R_PKEY_SEARCH_next()
R_PKEY_set_info()
R_PKEY_set_provider_filter()
R_PKEY_signhash()
34 Services

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
R_PKEY_store()
R_PKEY_to_binary()
R_PKEY_to_bio()
R_PKEY_to_file()
R_PKEY_to_public_key_binary()
R_PKEY_TYPE_from_string()
R_PKEY_TYPE_public_to_PEM_header()
R_PKEY_TYPE_to_PEM_header()
R_PKEY_TYPE_to_string()
R_PKEY_verifyhash()
R_PROV_ctrl()
R_PROV_FIPS140_assume_role()
R_PROV_FIPS140_authenticate_role()
R_PROV_FIPS140_authenticate_role_with_
token()
R_PROV_FIPS140_free()
R_PROV_FIPS140_get_default_resource_
list()
R_PROV_FIPS140_get_info()
R_PROV_FIPS140_get_reason()
R_PROV_FIPS140_init_roles()
R_PROV_FIPS140_load()
R_PROV_FIPS140_load_ef()
R_PROV_FIPS140_load_env()
R_PROV_FIPS140_new()
R_PROV_FIPS140_reason_string()
R_PROV_FIPS140_ROLE_from_string()
R_PROV_FIPS140_ROLE_to_string()
R_PROV_FIPS140_self_tests_full()
R_PROV_FIPS140_self_tests_short()
R_PROV_FIPS140_set_info()
R_PROV_FIPS140_set_path()
R_PROV_FIPS140_set_path_w()
R_PROV_FIPS140_set_pin()
R_PROV_FIPS140_set_pin_with_token()
R_PROV_FIPS140_set_roles_file()
R_PROV_FIPS140_set_roles_file_w()
R_PROV_FIPS140_STATUS_to_string()
R_PROV_free()
R_PROV_get_default_resource_list()
R_PROV_get_info()
R_PROV_PKCS11_clear_quirks()
R_PROV_PKCS11_close_token_sessions()
R_PROV_PKCS11_get_cryptoki_version()
R_PROV_PKCS11_get_description()
R_PROV_PKCS11_get_driver_name()
R_PROV_PKCS11_get_driver_path()
R_PROV_PKCS11_get_driver_path_w()
R_PROV_PKCS11_get_driver_version()
R_PROV_PKCS11_get_flags()
R_PROV_PKCS11_get_info()
R_PROV_PKCS11_get_manufacturer_id()
R_PROV_PKCS11_get_quirks()
R_PROV_PKCS11_get_slot_count()
R_PROV_PKCS11_get_slot_description()

R_PROV_PKCS11_get_slot_firmware_
version()
R_PROV_PKCS11_get_slot_flags()
R_PROV_PKCS11_get_slot_hardware_
version()
R_PROV_PKCS11_get_slot_ids()
R_PROV_PKCS11_get_slot_info()
R_PROV_PKCS11_get_slot_manufacturer_
id()
R_PROV_PKCS11_get_token_default_pin()
R_PROV_PKCS11_get_token_flags()
R_PROV_PKCS11_get_token_info()
R_PROV_PKCS11_get_token_label()
R_PROV_PKCS11_get_token_login_pin()
R_PROV_PKCS11_get_token_manufacturer_
id()
R_PROV_PKCS11_get_token_model()
R_PROV_PKCS11_get_token_serial_
number()
R_PROV_PKCS11_init_token()
R_PROV_PKCS11_init_user_pin()
R_PROV_PKCS11_load()
R_PROV_PKCS11_new()
R_PROV_PKCS11_set_driver_name()
R_PROV_PKCS11_set_driver_path()
R_PROV_PKCS11_set_driver_path_w()
R_PROV_PKCS11_set_info()
R_PROV_PKCS11_set_login_cb()
R_PROV_PKCS11_set_quirks()
R_PROV_PKCS11_set_slot_info()
R_PROV_PKCS11_set_token_login_pin()
R_PROV_PKCS11_set_user_pin()
R_PROV_PKCS11_unload()
R_PROV_PKCS11_update_full()
R_PROV_PKCS11_update_only()
R_PROV_reference_inc()
R_PROV_set_info()
R_PROV_setup_features()
R_PROV_SOFTWARE_add_resources()
R_PROV_SOFTWARE_get_default_fast_
resource_list()
R_PROV_SOFTWARE_get_default_small_
resource_list()
R_PROV_SOFTWARE_new()
R_PROV_SOFTWARE_new_default()
R_RW_LOCK_free()
R_RW_LOCK_new()
R_RW_LOCK_read()
R_RW_LOCK_read_exec()
R_RW_LOCK_unlock()
R_RW_LOCK_write()
R_RW_LOCK_write_exec()
R_SELECT_ctrl()
R_SELECT_dup()
R_SELECT_free()
R_SELECT_get_info()
Services 35

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
R_SELECT_new()
R_SELECT_set_info()
R_SKEY_delete()
R_SKEY_dup()
R_SKEY_dup_ef()
R_SKEY_free()
R_SKEY_generate()
R_SKEY_get_info()
R_SKEY_load()
R_SKEY_new()
R_SKEY_new_ef()
R_SKEY_SEARCH_add_filter()
R_SKEY_SEARCH_free()
R_SKEY_SEARCH_init()
R_SKEY_SEARCH_new()
R_SKEY_SEARCH_next()
R_SKEY_set_info()
R_SKEY_set_provider_filter()
R_SKEY_store()
R_STATE_cleanup()
R_STATE_disable_cpu_features()
R_STATE_init()
R_STATE_init_defaults()
R_STATE_init_defaults_mt()
R_SYNC_get_method()
R_SYNC_METH_default()
R_SYNC_METH_pthread()
R_SYNC_METH_solaris()
R_SYNC_METH_vxworks()
R_SYNC_METH_windows()
R_SYNC_set_method()
STACK_cat()
STACK_clear()
STACK_clear_arg()
STACK_data()
STACK_delete()
STACK_delete_all()
STACK_delete_all_arg()
STACK_delete_ptr()
STACK_dup()
STACK_dup_ef()
STACK_find()
STACK_for_each()
STACK_free()
STACK_insert()
STACK_lfind()
STACK_move()
STACK_new()
STACK_new_ef()
STACK_num()
STACK_pop()
STACK_pop_free()
STACK_pop_free_arg()
STACK_push()
STACK_set()
STACK_set_cmp_func()

STACK_shift()
STACK_unshift()
STACK_value()
STACK_zero()
R_THREAD_create()
R_thread_id()
R_THREAD_id()
R_thread_id_get_cb()
R_thread_id_set_cb()
R_THREAD_init()
R_THREAD_self()
R_THREAD_wait()
R_THREAD_yield()
R_time()
R_TIME_cmp()
R_time_cmp()
R_TIME_CTX_free()
R_TIME_CTX_new()
R_TIME_CTX_new_ef()
R_TIME_dup()
R_TIME_dup_ef()
R_time_export()
R_TIME_export()
R_TIME_export_timestamp()
R_TIME_free()
R_time_free()
R_time_from_int()
R_time_get_cmp_func()
R_time_get_export_func()
R_time_get_func()
R_time_get_import_func()
R_time_get_offset_func()
R_time_import()
R_TIME_import()
R_TIME_import_timestamp()
R_TIME_new()
R_time_new()
R_time_new_ef()
R_TIME_new_ef()
R_TIME_offset()
R_time_offset()
R_time_set_cmp_func()
R_time_set_export_func()
R_time_set_func()
R_time_set_import_func()
R_time_set_offset_func()
R_time_size()
R_TIME_time()
R_time_to_int()
R_unlock()
R_unlock_r()
R_unlock_w()
36 Services

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
5 Acronyms and Definitions

The following table lists and describes the acronyms and definitions used throughout
this document.

Table 7 Acronyms and Definitions

Term Definition

AES Advanced Encryption Standard. A fast symmetric key algorithm with a 128-bit block, and
keys of lengths 128, 192, and 256 bits. Replaces DES as the US symmetric encryption
standard.

API Application Programming Interface.

BPS Brier, Peyrin and Stern. An encryption mode of operation used with the AES and Triple DES
symmetric key algorithms for format-preserving encryption (FPE).

Attack Either a successful or unsuccessful attempt at breaking part or all of a cryptosystem. Various
attack types include an algebraic attack, birthday attack, brute force attack, chosen ciphertext
attack, chosen plaintext attack, differential cryptanalysis, known plaintext attack, linear
cryptanalysis, and middle person attack.

Camellia A symmetric key algorithm with a 128-bit block, and keys of lengths 128, 192, and 256 bits.
Developed jointly by Mitsubishi and NTT.

CBC Cipher Block Chaining. A mode of encryption in which each ciphertext depends upon all
previous ciphertexts. Changing the Initialization Vector (IV) alters the ciphertext produced
by successive encryptions of an identical plaintext.

CFB Cipher Feedback. A mode of encryption producing a stream of ciphertext bits rather than a
succession of blocks. In other respects, it has similar properties to the CBC mode of
operation.

CMVP Cryptographic Module Validation Program

CRNG Continuous Random Number Generation.

CTR Counter mode of encryption, which turns a block cipher into a stream cipher. It generates the
next keystream block by encrypting successive values of a counter.

CTR DRBG Counter mode Deterministic Random Bit Generator.

CTS Cipher text stealing mode of encryption, which enables block ciphers to be used to process
data not evenly divisible into blocks, without the length of the ciphertext increasing.

DES Data Encryption Standard. A symmetric encryption algorithm with a 56-bit key. See also
Triple DES.

DESX A variant of the DES symmetric key algorithm intended to increase the complexity of a brute
force attack.
Acronyms and Definitions 37

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
Diffie-Hellman The Diffie-Hellman asymmetric key exchange algorithm. There are many variants, but
typically two entities exchange some public information (for example, public keys or random
values) and combines them with their own private keys to generate a shared session key. As
private keys are not transmitted, eavesdroppers are not privy to all of the information
comprising the session key.

DSA Digital Signature Algorithm. An asymmetric algorithm for creating digital signatures.

DRBG Deterministic Random Bit Generator.

EC Elliptic Curve.

ECAES Elliptic Curve Asymmetric Encryption Scheme.

ECB Electronic Codebook. A mode of encryption, which divides a message into blocks and
encrypts each block separately.

ECC Elliptic Curve Cryptography.

ECDH Elliptic Curve Diffie-Hellman.

ECDSA Elliptic Curve Digital Signature Algorithm.

ECIES Elliptic Curve Integrated Encryption Scheme.

Encryption The transformation of plaintext into an apparently less readable form (called ciphertext)
through a mathematical process. The ciphertext can be read by anyone who has the key and
decrypts (undoes the encryption) the ciphertext.

FIPS Federal Information Processing Standards.

FPE Format-preserving encryption. Encryption where the ciphertext output is in the same format
as the plaintext input. For example, encrypting a 16-digit credit card number produces
another 16-digit number.

GCM Galois/Counter Mode. A mode of encryption combining the Counter mode of encryption
with Galois field multiplication for authentication.

GMAC Galois Message Authentication Code. An authentication only variant of GCM.

GOST GOST symmetric key encryption algorithm developed by the USSR government. There is
also the GOST message digest algorithm.

HMAC Keyed-Hashing for Message Authentication Code.

HMAC DRBG HMAC Deterministic Random Bit Generator.

IV Initialization Vector. Used as a seed value for an encryption operation.

JCMVP Japan Cryptographic Module Validation Program.

KAT Known Answer Test.

Table 7 Acronyms and Definitions

Term Definition
38 Acronyms and Definitions

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
Key A string of bits used in cryptography, allowing people to encrypt and decrypt data. Can be
used to perform other mathematical operations as well. Given a cipher, a key determines the
mapping of the plaintext to the ciphertext. The types of keys include distributed key, private
key, public key, secret key, session key, shared key, subkey, symmetric key, and weak key.

MD2 A message digest algorithm, which hashes an arbitrary-length input into a 16-byte digest.
MD2 is no longer considered secure.

MD4 A message digest algorithm, which hashes an arbitrary-length input into a 16-byte digest.

MD5 A message digest algorithm, which hashes an arbitrary-length input into a 16-byte digest.
Designed as a replacement for MD4.

NDRNG Non-deterministic random number generator.

NIST National Institute of Standards and Technology. A division of the US Department of
Commerce (formerly known as the NBS) which produces security and cryptography-related
standards.

OFB Output Feedback. A mode of encryption in which the cipher is decoupled from its ciphertext.

OS Operating System.

PBKDF1 Password-based Key Derivation Function 1. A method of password-based key derivation,
which applies a message digest (MD2, MD5, or SHA-1) to derive the key. PBKDF1 is not
recommended for new applications because the message digest algorithms used have known
vulnerabilities, and the derived keys are limited in length.

PBKDF2 Password-based Key Derivation Function 2. A method of password-based key derivation,
which applies a Message Authentication Code (MAC) algorithm to derive the key.

PC Personal Computer.

PDA Personal Digital Assistant.

PPC PowerPC.

privacy The state or quality of being secluded from the view or presence of others.

private key The secret key in public key cryptography. Primarily used for decryption but also used for
encryption with digital signatures.

PRNG Pseudo-random Number Generator.

RC2 Block cipher developed by Ron Rivest as an alternative to the DES. It has a block size of 64
bits and a variable key size. It is a legacy cipher and RC5 should be used in preference.

RC4 Symmetric algorithm designed by Ron Rivest using variable length keys (usually 40-bit or
128-bit).

RC5 Block cipher designed by Ron Rivest. It is parameterizable in its word size, key length, and
number of rounds. Typical use involves a block size of 64 bits, a key size of 128 bits, and
either 16 or 20 iterations of its round function.

Table 7 Acronyms and Definitions

Term Definition
Acronyms and Definitions 39

RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy
Level 1
RNG Random Number Generator.

RSA Public key (asymmetric) algorithm providing the ability to encrypt data and create and verify
digital signatures. RSA stands for Rivest, Shamir, and Adleman, the developers of the RSA
public key cryptosystem.

SEED SEED symmetric key encryption algorithm developed by the Korean Information Security
Agency.

SHA Secure Hash Algorithm. An algorithm, which creates a unique hash value for each possible
input. SHA takes an arbitrary input, which is hashed into a 160-bit digest.

SHA-1 A revision to SHA to correct a weakness. It produces 160-bit digests. SHA-1 takes an
arbitrary input, which is hashed into a 20-byte digest.

SHA-2 The NIST-mandated successor to SHA-1, to complement the Advanced Encryption
Standard. It is a family of hash algorithms (SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, and SHA-512/256), which produce digests of 224, 256, 384, 512, 224, and
256 bits respectively.

SEED A symmetric key algorithm developed by the Korean Information Security Agency.

Triple DES A variant of DES, which uses three 56-bit keys.

XTS XEX-based Tweaked Codebook mode with ciphertext stealing. A mode of encryption used
with AES.

Table 7 Acronyms and Definitions

Term Definition
40 Acronyms and Definitions

	RSA BSAFE Crypto-C Micro Edition 4.1, 4.1.0.1, and 4.1.2 Security Policy Level 1
	1 Introduction
	1.1 References
	1.2 Document Organization

	2 Crypto-C ME Cryptographic Toolkit
	2.1 Cryptographic Module
	2.2 Crypto-C ME Interfaces
	2.3 Roles and Services
	2.4 Cryptographic Key Management
	2.5 Cryptographic Algorithms
	2.6 Self Tests

	3 Secure Operation of Crypto-C ME
	3.1 Crypto Officer and Crypto User Guidance
	3.2 Roles
	3.3 Modes of Operation
	3.4 Operating Crypto-C ME
	3.5 Startup Self-tests
	3.6 Deterministic Random Number Generator

	4 Services
	5 Acronyms and Definitions

