F-Secure Corporation

F-Secure Kernel Mode Cryptographic Driver
(Microsoft® Windows™ NT/2000/XP)
FIPS 140-2 Validation Security Policy

Author: Alexey Kirichenko
Module version: 1.1

Document version:
F-Secure,FSCLM,FSCLM_Kernel_Security_Policy.rtf,00@0024

Created: December 2001
Last modified: February 2007

Abstract: This document describes the F-Secure Kernel Mergetographic Driver Security Policy
submitted for validation, in accordance with th@§lpublication 140-2, level 1.

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 2

COPYRIGHT © 2001-2007, F-Secure Corporation. All Ri ghts Reserved.

"F-Secure" is a registered trademark of F-Secure Co rporation and F-Secure product
names and symbols/logos are either trademarks or re gistered trademarks of F-Secure
Corporation. All other product and company names, i f any, are trademarks or
registered trademarks of their respective owners.

This document may be copied without the author’s pe rmission provided that it is
copied in its entirety without any modification

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 3

Introduction

The F-Secure Kernel Mode Cryptographic Driver (hedule) is a software module, implemented as a
32-bit Windows™ *‘NT/2000/XP compatible export dn&SCLM.SYS). When loaded into

computing system memory, it resides at the kerrmelarievel of the Windows Operating System and
provides an assortment of cryptographic servicasalre accessible by other kernel mode drivers
through an Application Programming Interface (API).

In certain cases, it is very important to have asde cryptographic services in the kernel mode. Fo
instance, file and disk encryption products andl@m@ntations of Virtual Private Network (VPN)
concept usually include kernel mode components lwitiake extensive use of cryptographic
functions, such as encryption, hashing, and ranbitsrgeneration. For such a component,
cryptographic service providers residing in therusede are of little help because of a significant
performance penalty associated with calling usedarfanctions from the kernel mode. This penalty is
hardly acceptable in products operating in reagtithis also more error-prone and difficult to user
mode services from the kernel mode in a securediable way. Therefore, the F-Secure Kernel Mode
Cryptographic Driver, whose high performance ARidiions can be directly called from other kernel
mode drivers, may bring considerable value to smféwendors developing real-time data security
products for Microsoft Windows NT, Windows 2000dawindows XP Operating Systems.

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 4

Overall Design and Functionality

The Module is designed and implemented to meeetrad 1 requirements of FIPS publication 140-2.
It is identical for all the operating systems idied in the title of this document.

The Module is written in the “C” programming lan@ea with some small performance-critical
sections written in the assembly language. Thenaslydanguage portions include core transformation
functions of certain symmetric ciphers and hasletions. The most popular of those, such as the
transformation functions of the FIPS-approved Algther and SHA-1 hash function, are tightly
optimized to achieve a very good performance omtbst widely used types of processors.

At the source code level, we use nearly an idelngetaof source files to build cryptographic libes

for a number of platforms, operating systems amkblje options. Almost all platform-dependent code
is clearly separated into a small number of platfspecific files. The F-Secure Kernel Mode
Cryptographic Driver is a dynamically linked crygtaphic library, built in the form of an export
driver, for the kernel mode level of Microsoft Wmals NT, Windows 2000, and Windows XP
Operating Systems. Other examples of our cryptdgcdjbrary “instances” are: user mode DLL and
statically linked library for Windows NT/2000/XP/@8; DLL for Pocket PC 2000 and 2002; DLL for
Symbian OS.

The Module supports the FIPS approved AES, DESTaipte DES (TDES) Modes, and SHA-1 and
HMAC-SHA-1 algorithms. It also provides non-FIPS$apved Blowfish, CAST-128, MD5, HMAC-
MD5, and passphrase-based key derivation (PBKDFEpaesified in PKCS#5) algorithms. The Module
implements a high-quality cryptographically strdPgeudorandom Number Generator (PRNG), which
is compliant with the algorithm specified in Seati®.1, Appendix 3 of theIPS PUB 186-2

document.

All cryptographic services implemented within th@dlile are available onkp kernel mode system
drivers, which are a part of the Windows operatipgtem trusted computer base (TCB). It is
impossible to access any of the Module servicesctyr from user mode programs. This approach is
chosen, in particular, to reduce the risk of adted attack on the Module by malicious code like
Trojans and viruses.

Since the F-Secure Kernel Mode Cryptographic Driser software module that runs on a general-
purpose IBM Compatible PC, no special effort w&etato mitigate power analysis, timing analysis,
fault induction and similar attacks.

Use of an appropriate synchronization technique@iModule helps ensure that it functions correctly
when simultaneously accessed by multiple threadsalsb want to note that performance
considerations were an important criterion forgkiechronization objects choice.

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 5

The Cryptographic Module and Cryptographic Boundary

In FIPS140-2 terms, the Module is a “multi-chiprstalone module.” The F-Secure Kernel Mode
Cryptographic Driver runs as a kernel mode expovied under any of the Windows NT/2000/XP
Operating Systems installed in a commercially add IBM Compatible PC. A “secure cryptographic
boundary” for the Module is defined as those aplie software and hardware components internal to
a host IBM-compatible PC that is running the Winddwi/2000/XP Operating System (OS).

The OS and the underlying central processing @#{) hardware control access to the non-paged
memory space in such a way that it is accessilieinrihe kernel mode. Being a kernel mode driver,
the Module resides in the non-paged space. Asagyaphic services provided by the Module are
available only to other kernel mode drivers, we edifately see that any data passed between the
Module and its clients can be accessed only iptveged mode of the OS and never leave the
cryptographic boundary.

The module provides no physical security beyontlah#he physical enclosure of a “hosting”
computer system.

The assumption, which we make about the operatimgament of the Module, is that it is installed,
initialized and used by following the rules desedtbelow in section “Roles and Services.”

The Module was internally tested on the followiregdware computing platform:

A Dell OptiPlex GX1 Personal Computer system with:
- an Intel Pentium Il 450 MHz processor,

- 128 MB system RAM (DIMM),

- 2 serial ports and 1 parallel port,

- 4.3 GB hard drive,

under the following operating systems:
- Windows NT 4.0 Workstation Operating System, BerfPack 6a (in single user mode)

- Windows 2000 Workstation Operating System, SerfAack 2 (in single user mode)
- Windows XP Workstation Operating System (in sngger mode)

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 6

Roles and Services

The F-Secure Kernel Mode Cryptographic Driver impéats the following two roles: Crypto-Officer
role and User role. As the OS requires any usbetsuccessfully authenticated prior to using any
system services, the Module relies on the OS atithentication of users. It does not support user
identification or authentication that would alloar fdistinguishing users between the two supported
roles. Only a single operator assuming a partiaale may operate the Module at any particular
moment in time. The OS authentication mechanisraresghat none of the Module’s services are
available to users who do not assume an authorated

The two roles are defined per the FIPS140-2 stahaafollows:

A Useris any entity that can access services implemantéte Module.

A Crypto-Officer is any entity that can access services implemeanttdte Module, install the Module
in a computer system, and configure the computgiesy to ensure proper operating of the Module in
the FIPS 140-2 mode of operation.

There is ndMaintenancerole.

An operator performing a service within any role cead and write security-relevant data only thfoug
the invocation of a service by means of the Mod\ié.

The following operational rules must be followeddry user of the Module.

1. The Module is to be used by a single human opesgd a time and may not be actively shared
among operators at any period of time.

2. In the FIPS 140-2 mode of operation, the Modsiupported on Windows NT 4 SP 6a or later,
Windows 2000 SP 2 or later and Windows XP. The @fiires authentication from the trusted
computer base (TCB) before a user is able to agystsm services.

3. Virtual memory that exists in the computer systenning the Module must be configured to reside
on a local drive, not a network drive.

It is the responsibility of the Crypto-Officer tomfigure the operating system to operate securaly a
prevent remote login. The following action is regdi from the Crypto-Officer to ensure the OS runs i
single user mode:

- disable “Server” and “RunAsService” servicesha tomputer system (unless these are not installed
or have already been disabled). To do that, th@tGrQfficer needs to run the “Services” applethia t
Control Panel of the computer system, select thacess to be disabled from the list one by one, and
set their Startup Type to “Disabled”. Note that @rypto-Officer must have administrative privileges
in the computer system being configured.

It is also recommended that the Crypto-Officer:

- sets the value of “ClearPageFileAtShutdown” todler
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Conth&ession Manager\Memory
Management” key;

- sets the value of “CrashDumpEnabled” to O under
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Conth&rashControl” key (under certain
Operating Systems, this can also be done usinGaohnérol Panel);

- sets the “Interactive:Read” ACL for

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 7

“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\@rrentVersion\Perflib” key (as
opposed to “Everyone:Read” ACL) in the Registry.

The services provided by the Module to the Useréfiextively delivered through the use of
appropriate API calls. In this respect, the sam@fksgervices is available to both the User and the
Crypto-Officer.

When the OS loader attempts to load the Modulermeaory, the Module runs an integrity test and a
number of cryptographic functionality self-testsall the tests pass successfully, the Module makes
transition to “User Service” state, where the ABllcan be used by other kernel mode drivers to
obtain desired cryptographic services. Otherwise Module returns to “Uninitialized” state and the
OS reports failure of the attempt to load it intemory.

The Module provides the following FIPS-approved/asss:

1. Cryptographic data hashing using FIPS PUB 18HA-1.

2. MAC computation and verification using FIPS PU# HMAC-SHA-1 algorithm (when key size is
at least half of the algorithm output size).

3. Symmetric data encryption and decryption usifiRSFPUB 197 AES FIPS PUB 46-2 DES
(transitional phase only - valid until May 19, 20@nd TDES.

4. Random number generation using a software-bagedthm as specified in FIPS 186&2igital
Sgnature Sandard (DSS), Appendix 3.1.

Other services provided by the Module include:

5. Cryptographic data hashing using MD5 algorithm.

6. MAC computation and verification using HMAC-MDB#gorithm.

7. Symmetric data encryption and decryption usiAgT-128 and Blowfish block ciphers.
8. Passphrase-based key derivation (PBKDF2 asfigukiri PKCS#5) algorithm.

Non-FIPS-approved services cannot be selecteeé iMbdule is operating in accordance with FIPS
140-2, that is, in so-called FIPS mode of operatfidre exception to this is the Passphrase-based key
derivation service, which is based on the FIPS-@pgut SHA-1 hash function and HMAC-SHA-1
algorithm and provides functionality that is nobperly covered by any of the FIPS-approved
algorithms at present time.

! Note that the Module was re-validated to include AES innBaumode into the list of FIPS-approved functionsE$An
Counter mode was not a FIPS-approved service at the time hd&fodule was originally validated.)

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 8

Key Management

The Module implements a number of functions thatether used internally or exposed in the API to
meet the FIPS140-2 Level 1 requirements for Key &gment.

Key Generation

Keys for symmetric ciphers and HMAC algorithms tengenerated by simply requesting the PRNG

implemented in the Module to return a desired nunobeytes. The PRNG employs a FIPS-approved
algorithm as specified in FIPS 186£2igital Sgnature Sandard (DSS), Appendix 3.1. No other RNGs

are used by the Module.

Intermediate key generation values are never otitpot the Module.
Key Distribution and Storage

All keys are processed, stored, and used in theuldazhly on behalf of and for immediate use by its
clients, which all belong to TCB and run in theteys process.

Since the current version of the Module does nppstt any public key methods, there is no easy way
to use it for electronic key distribution in tharfnes of a NIST-approved key distribution protoaol o
for implementing standard key exchange protocols.

If, nevertheless, someone wants to use the ModBlg@k implementing a key distribution/exchange
algorithm, it is their responsibility to ensure BIR40-2 compliance of protocols and algorithms they
implement.

The Module does not provide long-term cryptograjaig storage. If another program makes use of
the Module services to implement cryptographic &@yage functionality, it is a responsibility ogth
program developers to ensure FIPS 140-2 compliahkey storing techniques they implement.

Zeroization of Keys

Keys and critical security parameters in the Modwdle be divided into two groups: those used by the
Module internally and the ones that actually beltmgs clients.

The Module takes care of zeroizing all its interk&ys and critical security parameters (such as the
PRNG internal state): (1) when those are not neadgdnore, (2) when the OS loader calls the
Module’s “unload” function, and (3) when the Modéeters the error state. Also, as a precaution, the
PRNG internal state gets overwritten when the Mequbcesses unregistration request of its last
client.

For the other group, when a client requests theléotb destroy a data object containing keys or
critical security parameters, the Module alway®zas all such data objects prior to freeing their
memory. Also, when a client calls the “client uniségtion” function, provided by the Module API,
the Module zeroizes and frees memory of all dajaate which are allocated and left unfreed by the
client. Finally, the Module performs so-called “ebis clean-up at exit.” If the OS loader calls the
Module’s “unload” function, we check if there amgyaobjects (like cipher or HMAC contexts)
allocated and not freed by any of the clients,@adzeroize and free all such objects. This is daapigc

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 9

important if a fatal error occurs in the Module some of the clients do not have a chance to take
proper care of cleaning up objects possibly coirigisecret information.

Protection of Keys

We rely on the OS memory management mechanismstarethat process space of the system
process, including its memory, cannot be accesgehy other process. Keys created within or passed
into the Module for one user are not accessibbntoother user via the Module. It is a responsibof

its clients to protect keys exported from the Medaihd validate keys passed into the Module.

The Module takes care of never exposing its owerinal keys and critical security parameters oujside
and of zeroizing those prior to exiting or freecwresponding portions of memory. In particular, we
mention the PRNG state and intermediate generatiires, whose disclosure or modification may
compromise the security of the Module.

All dynamic memory allocations in the Module aredadrom the non-paged pool to ensure that blocks
containing confidential data never get paged byaBe

F-Secure Kernel Mode Cryptographic Driver Security &oli 10

Module Interfaces

Being a software module, the F-Secure Kernel ModgGgraphic Driver defines its interfaces in

terms of the API that it provides. We define Datput Interface as all those API calls that accapt,

their arguments, data to be used or processecdebyitidule. The API calls that return, by means of
return value or arguments of appropriate types daherated or otherwise processed by the Module to
the caller constitute Data Output Interface. Cdritrput Interface is comprised of the call used to
initiate the Module and the API calls used to cointine operation of the Module. Finally, Status

Output Interface is defined as the API calls whpcbvide information about the status of the Module.

F-Secure Kernel Mode Cryptographic Driver Security &oli 11

Self-Testing

The F-Secure Kernel Mode Cryptographic Driver impégits a number of self-tests to check proper
functioning of the Module. This includes power-ghfgests (which are also callable on-demand) and
conditional self-tests.

Power-up Self-Testing

When the Module starts loading into memory, powesself-testing is initiated automatically. It is
comprised of the software integrity test and kn@amswer tests of cryptographic algorithms. If any of
the tests fail, the Module returns to “Uninitiaki¥estate and the OS reports failure of the attetmpt
load it into memory.

The following known answer tests are implementethéModule:

- AES KAT

- DES KAT

- TDES KAT

- CAST-128 KAT

- Blowfish KAT

- SHA-1 KAT

- HMAC-SHA-1 KAT

- MD5 KAT

The software integrity test computes DAC value pglging the DES-CBC MAC method (FIPS 113)
to data of all sections of disk image of the Modebecept for “FSC_EDC” data segment. The test fails
if the DAC value computed on the disk image of Medule does not match the original value
computed on the Module by a special utility atwkador’s site (F-Secure Corporation) and stored in
“FSC_EDC” data segment inside the Module.

On-Demand Self-Testing

The Module exports an API routine, “fsclm_Selftesthich can be called to initiate the power-up-self
tests plus statistical testing of the PRNG (the tests defined in the FIPS Publication 140-2any of
the tests fail, the Module enters the error stltés error state is unrecoverable; upon enterinpét
Module stops providing cryptographic services tg ahthe clients.

Conditional Self-Testing

This includes continuous PRNG testing. The vest fiutput block generated by the PRNG is never
used for any purpose other than initiating the iomaius PRNG test, which compares every newly
generated block with the previously generated bldtle test fails if the newly generated PRNG output
block matches the previously generated block. tihsucase, the Module enters the unrecoverable
error state.

F-Secure Kernel Mode Cryptographic Driver Security &oli 12

List of the API Functions, Operating Modes, Important Technical Considerations

In this section, we briefly describe the servidest the Module provides and related security asg@s
considerations. In order to guarantee secure angstdunctioning of the Module, it is important tha
the clients follow our recommendations as fully anelcisely as possible.

The following list presents the Module API functsosplit into a number of groups in accordance with
their functionality.

Client registration functions

fsclm_RegisterCaller

Prior to using any of the cryptographic servicdignts must register to the Module. Successful
registration results in a “reference” token retar@ the client. That token should then be passed a
parameter to almost all the API functions the ¢leadls. (A small number of information functions d
not have the “caller reference” argument and candeel without registering.)

fsclm_UnregisterCaller

When the client does not need the Module servingdanger, it must call the unregistration function
Such a call results in freeing the memory assatiadéh the client. All cryptographic objects allded
and not freed by the client will be zeroized arekft by the Module. This helps ensure no confidentia
data will be left in memory.

We strongly recommend to our clients to ensure ghantually unregister with the Module. (Note that
it may be insufficient to simply put the unregisima function in "DriverUnload" function of your
driver, as the latter function does not get callgdhe OS loader when the system is about to be shu
down. Thus, you may want to process "system shuttiowtification sent by the OS to take your
chance to unregister.)

The unregistration routine is always availablen® ¢lient, even if the Module is in the

error state. In fact, we recommend calling it asnsas you found out that the Module had entered the
error state.

M ode of operation and | nformation functions

fsclm_GetModuleVersion
This routine provides the callers with the Moduégsron information.

fsclm_GetModuleMode

This routine returns the current mode of operatibthe Module.

The F-Secure Kernel Mode Cryptographic Driver sufgptovo modes of operation: FIPS 140 mode
and non-FIPS mode. Only FIPS-approved algorithrasagailable to the caller in FIPS 140 mode. Any
attempt to use non-FIPS-approved algorithms in Al®®mode results in an appropriate error code
returned by the Module. It is a responsibility bént drivers developers to design their produets i
such a way that they function properly in the boibdes of operation. We recommend avoiding
schemes and protocols which are based on non-aelecton-FIPS-approved algorithms in any part.

F-Secure Kernel Mode Cryptographic Driver Security &oli 13

fsclm_SetModuleMode

This routine sets the mode of operation of the Medthe two options are:
FSCLM_MODE_NONFIPS - all methods included in thedMte are available to the caller;
FSCLM_MODE_FIPS140 - only FIPS-approved methodsaaeglable to the caller.

Use of "fscim_SetModuleMode" makes it easy to emsiat non-FIPS-approved algorithms are
unavailable, no matter what cryptographic servibesclient drivers request from the Module.

fsclm_GetModuleStatus

This routine returns the current status of the Medtlihere are five states defined in the Modulét&in
State Machine (FSM):

FSCLM_STATUS_UNINITIALIZED

FSCLM_STATUS_SELF_TESTING

FSCLM_STATUS USER_SERVICE

FSCLM_STATUS_UNLOADING

FSCLM_STATUS ERROR

fsclm_GetErrorCode

This function returns "fatal" error code if the Mdd is in the error state, or
FSCLM_ERROR_FATAL_NONE otherwise.

Symmetric encryption functions

The Module implements a number of symmetric cipheduding FIPS-approved AES, DES, and
TDES modes. In the code, we use a layered applmsdd on the internal “cipher API”, which makes
it very easy to exclude existing or add new cipliledesired. The cipher modes of operation are
implemented as a generic layer, so each newlydeccipher can immediately be used in any of the
supported modes. (The Module supports the stari€i@dg] CBC, CFB, and OFB modes as well as
Counter and IWEC modes.)

All the encryption and decryption functions suppartplace” operations, which means that the same
buffer may be used as both source and destinaticanmeters.

fsclm_Cipherinfo
Provides information about the specified cipherisThakes it possible to learn if the cipher is
supported by the Module, if it is FIPS-approved] arnat key and block sizes are supported for it.

fsclm_CipherAlloc

Allocates and initializes the cipher context objectthe specified cipher in the specified mode of
operation and with the specified key. Any allocatgzher object must eventually be freed by calling
"fscim_CipherFree". Cipher objects contain keyinfprmation derived from keys passed to the cipher
allocation function. The Module takes care of nexgrosing contents of cipher objects outside and of
proper zeroizing their memory when appropriate.

fsclm_CipherFree

F-Secure Kernel Mode Cryptographic Driver Security &oli 14

Zeroizes and frees the memory of the specifiedesipbject. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_CipherEncrypt
This encrypts the given input buffer and writes tbgulting ciphertext to the given output buffer.
Encryption mode and other parameters are taken thergiven cipher context object.

fsclm_CipherDecrypt
This decrypts the given input buffer and writes tbgulting plaintext to the given output buffer. déo
of operation and other parameters are taken frengitren cipher context object.

fsclm_CipherEncryptlV

This encrypts the given input buffer and writes tbgulting ciphertext to the given output buffeheT
only difference between this routine and "fsclm_H&gEncrypt” is that the latter takes I1V/counter
information from the cipher object and updategpjtrapriately, while the former uses "iv" value pabs
to it as a parameter and updates that value (lgdViftounter information in the cipher object infac

fsclm_CipherDecryptlV

This decrypts the given input buffer and writes igulting plaintext to the given output buffer.eTh
only difference between this routine and "fsclm_H&ecrypt" is that the latter takes IV/counter
information from the cipher object and updategpjrapriately, while the former uses "iv" value pabs
to it as a parameter and updates that value (lgdViftounter information in the cipher object infac

fsclm_CipherSetlV

This sets encryption or decryption IV/counter valughe specified cipher object. This value wikkth
be used for the subsequent encryption (“fscim_CHpherypt”) or decryption
("fsclm_CipherDecrypt") operation respectively.

Note that the same cipher object can be used tbrdytcryption and decryption operations, thus we
maintain separate encryption and decryption IV/¢eumformation in the cipher object.

fsclm_CipherGetlV
This copies the current encryption or decryptiofcbdnter value in the specified cipher object ® th
caller-supplied buffer.

fscim_CipherComputelV

Certain modes of operation of block ciphers maleafsounter value. In such modes, processing of a
particular block of input depends on the initialueaof counter and index (or offset) of the bloCkwo
examples supported by the Module are Counter ari€ld\Whodes.) If you want to perform encryption
or decryption operation starting with theéh block, you would need to know the correspondiagnter
value, and this is what this routine helps yougieen the initial counter value and the block ingdiéx
computes and writes to the caller-supplied bufierdounter value for the block.

Note that counter-based modes provide you witmedam read-write access to large streams of
encrypted data, the property that CBC, CFB, and @®Bes do not enjoy.

fsclm_CipherEncryptBuffer

F-Secure Kernel Mode Cryptographic Driver Security &oli 15

This routine performs one-pass encryption of amiveffer, which can be a useful shortcut in certain
cases. It encapsulates a number of other APIttaflave the application developer effort. Roughly,
this call is equivalent to the following sequence:

fscim_CipherAlloc

fsclm_CipherEncryptlV

fscim_CipherFree

fsclm_CipherDecryptBuffer

This routine performs one-pass decryption of amiveffer, which can be a useful shortcut in certain
cases. It encapsulates a number of other APIttaflave the application developer effort. Roughly,
this call is equivalent to the following sequence:

fsclm_CipherAlloc

fsclm_CipherDecryptlV

fsclm_CipherFree

Hash functions

The Module currently implements two hash functidA$S-approved SHA-1 and non-FIPS-approved
MDS5. In the code, we use a layered approach basdidedinternal “hash API”, which makes it very
easy to exclude existing or add new hash funciiomssired.

fsclm_Hashinfo

Provides information about the specified hash fienciThis makes it possible to learn if the hash
function is supported by the Module, if it is FIRBproved, and what its output (digest) and bloz&ssi
are.

fsclm_HashAlloc

Allocates and initializes the hash context objectte specified hash function. Any allocated hash
object must eventually be freed by calling "fsclnasHFree".

Hash objects may contain confidential informatibhe Module takes care of never exposing contents
of hash objects outside and of proper zeroizing themory when appropriate.

fsclm_HashFree
Zeroizes and frees the memory of the specified bagdct. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_HashReset

This resets the given hash context object so theduld look like a newly allocated and initialized
one. It is useful when you want to use the samb haxtion for computing hash values (also called
digests) of multiple data blocks.

The "reset" operation also zeroizes all remnante@previous processing.

fsclm_HashUpdate

This updates the given hash context with the gimpnt.

When you need to compute digest of a data streaichvdlomes in a number of portions (or when you
want to split a very long stream in a number otps), you can simply feed such portions to

F-Secure Kernel Mode Cryptographic Driver Security &oli 16

"fsclm_HashUpdate" one by one. The resulting digakie will be identical to what you would get if
passing the entire stream as a single buffer.

Note that in order to obtain digest value of yoatad any sequence of calls to "fsclm_HashUpdate"
must eventually be followed by a call to "fsclm_Hamal".

fsclm_HashFinal

This function completes computation of hash value data stream, which has been processed by calls
to "fsclm_HashUpdate" function. The resulting digeswritten to a caller-supplied buffer.

Note that after "fsclm_HashFinal" has been caledafhash object, the object should not be used for
any further operations until you call "fscim_HaskB® for it. After resetting, you may start
computation of hash value for a new data stream.

fsclm_HashOfBuffer

This routine computes digest of a given buffer,chitan be a useful shortcut in certain cases. It
encapsulates a number of other API calls to savapiplication developer effort. Roughly, this ¢sll
equivalent to the following sequence:

fsclm_HashAlloc

fsclm_HashUpdate

fsclm_HashFinal

fsclm_HashFree

HMAC functions

The Module clients can use HMAC methods based grhash function that is implemented in the
Module. By specifying the ID of a hash functionyaiur choice, you fully specify the HMAC
algorithm that you want to use. To obtain inforraatabout parameters of a particular HMAC
algorithm, simply call "fsclm_HashiInfo" for the ¢esponding hash function.

fsclm_HMACAIlloc

Allocates and initializes the context object fog tHMAC algorithm based on the specified hash
function, and with the specified key. Any allocatéflAC object must eventually be freed by calling
"fscim_HMACFree".

HMAC objects contain keying information derivedrfikeys passed to the HMAC allocation function
and may contain other confidential information. TWedule takes care of never exposing contents of
HMAC objects outside and of proper zeroizing tire@mory when appropriate.

fscim_HMACFree
Zeroizes and frees the memory of the specified HM&ct. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_HMACReset

This resets the given HMAC context object so thatduld look like a newly allocated and initialized
one. It is useful when you want to use the same I@Ménction, possibly with a different key, for
computing message authentication code (MAC) vatdiesultiple data blocks.

The "reset" operation also zeroizes all remnante@previous processing.

F-Secure Kernel Mode Cryptographic Driver Security &oli 17

fscim_HMACUpdate

This updates the given HMAC context with the giveput.

When you need to compute MAC of a data stream wtaches in a number of portions (or when you
want to split a very long stream in a number otp#), you can simply feed such portions to
"fscim_HMACUpdate" one by one. The resulting MAGQuawill be identical to what you would get
if passing the entire stream as a single buffer.

Note that in order to obtain MAC value of your daay sequence of calls to "fsclm_HMACUpdate"
must eventually be followed by a call to "fsclm_HIZRinal".

fsclm_HMACFinal

This function completes computation of MAC valueaadata stream, which has been processed by
calls to "fscim_HMACUpdate" function. The resultiMAC is written to a caller-supplied buffer.
Note that after "fsclm_HMACFinal" has been called &an HMAC object, the object should not be
used for any further operations until you call IiscHMACReset" for it. After resetting, you may dtar
computation of MAC value for a new data stream ¢fag using a different key).

fscim_HMACOfBuffer

This routine computes MAC value of a given buffehich can be a useful shortcut in certain cases. It
encapsulates a number of other API calls to sav@piplication developer effort. Roughly, this esll
equivalent to the following sequence:

fsclm_HMACAIlloc

fscilm_HMACUpdate

fsclm_HMACFinal

fsclm_HMACFree

PRNG functions

The PRNG implemented in the Module is based onbaithyarchitecture. It uses a one-way output
function on top of the well-known “entropy pool’reme. The design is FIPS-compliant as the output
algorithm is the one specified in Section 3.1, Appie 3 of FIPS PUB 186-2document, with the
function G constructed from the SHA-1 as speciiire8ection 3.3, Appendix 3 of the same document.

The PRNG is initialized when the Module gets loagted memory. During the initialization phase,
various system and hardware parameters and statsst collected and mixed in the PRNG pool with
the SHA-1 transform function to achieve a goodudiibn of “entropy” bits. Seeding/reseeding code for
each supported platform resides in the respectatéopm-specific source file.

fsclm_PrngDeepPoll

Invokes platform-specific “deep” polling for entpf.e., hard-to-predict bits) to achieve good-gyal
seeding of the PRNG. This deep polling gets cal@matically at the PRNG initialization time and
also occasionally during the entire lifetime of tedule.

The main purpose of this function is to help mamthe PRNG pool in a state which is infeasible to
guess for the adversary.

fsclm_PrngAddNoise

F-Secure Kernel Mode Cryptographic Driver Security &oli 18

This exclusive-ORs bytes from the given buffer itk PRNG pool content and serves the purpose of
adding unpredictability to the PRNG state. (We &#rwp to the client whether to use this function

not as the automatic PRNG seeding in the Moduleldhze good enough to prevent the adversary
from guessing the PRNG state or any of the outplutes.)

The exclusive-OR operation can not force the PRN& weaker state because it obviously can not
reduce the pool data entropy.

fsclm_PrngMixPool

Mixes (i.e., cryptographically processes) the PRMGI. The mixing operation is based on the SHA-1
transform function. It provides a good “entropyffdsion and is irreversible.

This function gets called automatically at theiatization time and then regularly during the estir
lifetime of the Module.

fsclm_PrngGetBytes

This routine writes to the caller-supplied buffiee requested number of PRNG-produced bytes.
Although what the generated bytes will be usedd@ntirely up to the caller, we recommend to call
this function if you need to generate:

- any keying material (in both symmetric and asynnoeaettings)

- IV or initial counter values used in many poputagthods (e.g., modes of operation of block ciphers
- padding bytes for various cryptographic schemes

- random nonces and challenges required in mamtagyaphic protocols (e.g., authentication
protocols)

- salts to be combined with passphrases in passpitu@sed key derivation algorithms

- random values for probabilistic cryptographicaxlthms (e.g., signing with DSA)

We stress that it is a responsibility of the clienprotect bytes provided by the Module PRNG (in
particular, from being exposed to the adversary).

fsclm_PrngGetParameters

Fills in the fields of a caller-supplied structwvéh the current values of the PRNG object paramsete
The function that sets the PRNG parameters, “fseimgSetParameters”, is unavailable in the API of
the F-Secure Kernel Mode Cryptographic Driver fae time being. This is mostly due to the fact that
in the kernel mode, a single instance of the Modelees to multiple clients, so the PRNG object is
shared between all clients.

Other functions

fsclm_Selftest

Calling this routine makes the Module run a nundfeself-tests. This on-demand self-testing includes
self-integrity test, Known Answer Tests of cryptaghic algorithms, and the set of PRNG statistical
tests (as specified in the FIPS 140-2 documenényfof the tests fail, the Module enters the error
state, which means that its cryptographic senkbee®me unavailable to the clients. To use the cesvi
again, the user will need to restart the Module.

fsclm_DeriveSymmetricKey

F-Secure Kernel Mode Cryptographic Driver Security &oli 19

This routine implements the passphrase-based kayaten function specified in PKCS#5 (PBKDF2).
The implementation uses HMAC-SHA1 as a PRF.

The two main goals of this key derivation algorithne:

- preventing the adversary from compiling a unigédictionary of passphrases and precomputing the
corresponding keys (achieved by using so-calletf”;s@hose presence in the algorithm results in a
very large number of keys that correspond to easisghrase)

- making exhaustive search attacks much more catipoally expensive, which is especially
important in the case of “weak” passphrases (aekidy iterating the key derivation function many
times and recursively)

We stress that it is a responsibility of the clisnprotect keys derived by this routine (in partae,

from being exposed to the adversary).

fsclm_OverwriteMemory

This function can be used for overwriting a givéock of memory with a bit stream that enjoys good
statistical properties (i.e., appears as a BingmrBetric Source output).

We use it internally to overwrite portions of memdinat may contain confidential data.

Also, this function can (and should !) be useddadtof the PRNG to produce random-looking bits
when we do not care about “cryptographic qualiy'typical example is generating “witnesses” for
probabilistic primality testing.

Detailed description of the Module API can be foumthe Module public header file, FSCLM.H.

We conclude this section by listing a number obremendations aimed at helping the Module clients
avoid security-related and technical problems wihgriementing kernel mode components of data
security products.

» All dynamically allocated memory blocks that maytan critical security parameters or other
confidential data should be allocated from the paged pool. We follow this rule in the Module
code as this is the best way to ensure that blooktaining confidential data never get paged by the
OS.

» We strongly recommend defining client drivers agafalent on the Module driver (FSCLM.SYS).
Then the OS will take care of loading and unloadimegModule and client drivers in the correct
order.

» Clients of the Module must be running at IRQL < BASTCH_LEVEL when calling its API
functions. (IRQL - interrupt request level)

» |tis aresponsibility of the clients to ensureyteork with cryptographic objects allocated by the
Module in a multi-threading safe way. Please keemind that the Module provides no
synchronisation for accessing such objects conatlyrby multiple threads of the client drivers.

* We made an effort to write the Module code in saetay that its functions do not consume a large
amount of the stack space. (Note that size oftdekspace available to each thread is ratheryight
limited in the kernel mode.) In particular, recuesfunction calls are not used in the Module. While

F-Secure Kernel Mode Cryptographic Driver Security &oli 20

it is difficult to give the exact upper bound orspible stack space consumption resulting from
calling the Module API functions, we are confidémit it never exceeds 3 kilobytes, and we believe
that this estimate is very conservative. To avbalgroblem of running out of stack space, we
recommend keeping stack space consumption in ithet crivers under proper control.

