
FIPS PUB 140-1
Network Security Services Security Policy

[Updated to reflect NSS 3.2.2 Maintenance Validation]

1.1 Specification of Security Policy

A security policy includes the precise specification of the security rules under which the cryptographic module
must operate, including rules derived from the security requirements of the FIPS PUB 140-1 standard, and
the additional security rules listed below. The rules of operation of the cryptographic module that define within
which role(s), and under what circumstances (when performing which services), an operator is allowed to
maintain or disclose each security relevant data item of the cryptographic module.

There are three major reasons for developing and following a precise cryptographic module security policy:

 To induce the cryptographic module vendor (Sun Microsystems) to think carefully and precisely about
who they want to access the cryptographic module, the way different system elements can be accessed, and
which system elements to protect.

 To provide a precise specification of the cryptographic security to allow individuals and organizations
(e.g., validators) to determine whether the cryptographic module, as implemented, does obey (satisfy) a
stated security policy.

 To describe to the cryptographic module user (organization, or individual operator) the capabilities,
protections, and access rights they will have when using the cryptographic module.

It should be noted that NSS utilizes RSA's PKCS #11, version 2.01, to form most of its cryptographic
boundary. This, along with some certificate handling mechanisms, comprise the entire cryptographic module
boundary. The following table states the various security policy rules which will be adhered to by each
product utilizing NSS:

Table I. NSS Security Policy Rules
Rule Statement of NSS Security Policy Rule

1 The NSS cryptographic module shall consist of a series of binary software libraries compiled
for each supported platform.

2 The cryptographic module shall rely on the underlying operating system to ensure the integrity
of the cryptographic module loaded into memory.

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

1 of 21 8/23/2002 4:36 PM

3 The cryptographic module shall enforce a single role approach which is a combination of the
User Role and the Cryptographic User Role as defined in FIPS PUB 140-1.

4 A cryptographic module user shall have access to ALL the services supplied by the
cryptographic module.

5 Cryptographic module services shall consist of public services which require no
authentication, and private services which require authentication.

6 Public key certificates shall be stored in plain text form because of their public nature and
internal CA-signing integrity features.

7
SSL 2.0, 3.0, and TLS shall utilize authentication mechanisms above the cryptographic module
which pass-through to utilize PKCS #11 authentication mechanisms which are within the
cryptographic module.

8
SSL master secrets (private key data) shall be protected within the boundary of the
cryptographic module (the SSL secure session ID cache shall be considered within the
boundary of the cryptographic module).

9 For the FIPS PUB 140-1 mode of operation, the cryptographic module shall enforce rules
specific to FIPS PUB 140-1 requirements.

10
The FIPS PUB 140-1 cryptographic module shall use an exception handling mechanism to
ensure that critical errors are not allowed to compromise security (i. e. - whenever a critical
error is encountered, the cryptographic module shall be required to be reinitialized).

11

Upon initialization of the FIPS PUB 140-1 cryptographic module, the following power-up
self-tests shall be performed:

(1) RC2-ECB Encrypt/Decrypt,
(2) RC2-CBC Encrypt/Decrypt,
(3) RC4 Encrypt/Decrypt,
(4) DES-ECB Encrypt/Decrypt,
(5) DES-CBC Encrypt/Decrypt,
(6) triple DES-ECB Encrypt/Decrypt,
(7) triple DES-CBC Encrypt/Decrypt,
(8) MD2 Hash,
(9) MD5 Hash,
(10) SHA-1 Hash,
(11) RSA Encrypt,
(12) RSA Decrypt,
(13) RSA Signature,
(14) RSA Signature Verification,
(15) DSA Signature, and
(16) DSA Signature Verification.

Additionally, if the user performs logout services, these same power-up self-tests are
performed when the user logs back in to the FIPS PUB 140-1 cryptographic module.

12
Subsequent logins to the FIPS PUB 140-1 cryptographic module during the same established
session shall execute the same series of power-up self-tests detailed above when logging-in
under the FIPS PUB 140-1 mode. This allows a user to execute these power-up self-tests on

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

2 of 21 8/23/2002 4:36 PM

demand as defined in section 4.11.1 of FIPS PUB 140-1.

13 The FIPS PUB 140-1 cryptographic module shall require the user to establish a password (for
the user role) in order for subsequent authentications to be enforced.

14 All passwords shall be stored in an encrypted form in secondary storage.

15
Once a password has been established for the FIPS PUB 140-1 cryptographic module, it shall
only allow the user to use security services if and only if the user successfully authenticates to
the FIPS PUB 140-1 cryptographic module.

16
In order to verify the user's stored password, the user shall enter the password, and the
verification that the password is correct shall be performed by the cryptographic module via
PKCS #5 password-based encryption mechanisms.

17 The user's password shall act as the key material to encrypt/decrypt private key material.

18 The cryptographic module shall only extract private keys wrapped with a password according
to PKCS #12.

19
Private keys, plain text PINs, and other security relevant data items (SRDIs) shall be
maintained under the control of the cryptographic module, and shall not be passed to higher
level callers.

20 All private keys shall be stored in an encrypted form in secondary storage.

21 Integrity checks shall be applied to the private and public key material retrieved from the
database to ensure genuine data.

22 Once the FIPS PUB 140-1 mode of operation has been selected, the cryptographic module
shall only allow FIPS PUB 140-1 cipher suite functionality.

23

The FIPS PUB 140-1 cipher suite shall consist solely of DES/Triple-DES (FIPS PUB 46-3) for
encryption/decryption, SHA-1 (FIPS PUB 180-1) for hashing, RSA for key distribution, and
DSA (FIPS PUB 186) or RSA (PKCS #1) for generic signature signing and verifying
functionality.

24 Once the FIPS PUB 140-1 mode of operation has been selected, DES/Triple-DES shall be
limited in its use to perform encryption/decryption using either CBC or ECB mode.

25 Once the FIPS PUB 140-1 mode of operation has been selected, SHA-1 shall be the only
algorithm used to perform one-way hashes of data.

26
Once the FIPS PUB 140-1 mode of operation has been selected, RSA shall be limited in its use
to generation of PKCS#1 signatures and verification of them, and to signing and verifying key
material for key exchange.

27 Once the FIPS PUB 140-1 mode of operation has been selected, DSA shall be used in addition
to RSA to generate signatures and to perform verification on them.

28
In the FIPS PUB 140-1 mode of operation, the cryptographic module shall perform a pairwise
consistency test upon each invocation of RSA and DSA key generation as defined in section
4.11.2 of FIPS PUB 140-1.

29 The FIPS PUB 140-1 cryptographic module shall employ its prime number generation and
verification via the mechanisms described in Appendix 2 of FIPS PUB 186.

30 The FIPS PUB 140-1 cryptographic module shall utilize pseudorandom number generation as
defined via the mechanisms described in Appendix 3 of FIPS PUB 186.

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

3 of 21 8/23/2002 4:36 PM

31

The FIPS PUB 140-1 cryptographic module shall seed its pseudorandom number generation
via invoking a noise generator specific to the platform on which it was implemented (e. g. -
MacIntosh, UNIX, or Windows). Pseudorandom number generator shall be seeded with noise
derived from the execution environment such that the noise is not predictable.

32 The FIPS PUB 140-1 cryptographic module's pseudorandom number generator shall
periodically reseed itself with pseudorandom noise.

33
In the FIPS PUB 140-1 mode of operation, the cryptographic module shall perform a
pseudorandom number generation test upon each invocation of the pseudorandom number
generator as defined in section 4.11.2 of FIPS PUB 140-1.

34
Upon exit from the FIPS PUB 140-1 mode of operation, all security relevant data items within
the cryptographic module which are stored to secondary storage shall be zeroized by having
their memory contents rewritten with zeroes.

35

The TLS pseudorandom function (PRF) is contained within the cryptographic module, and it
shall enforce if one hash is weak the PRF function would remain strong, this is accomplished
by exclusive-oring the results of the two hashes in computation of security relevant data items
-- specifically SSL pre-master secrets.

36

For operation in FIPS PUB 140-1 Level 2 mode, the machine shall be labeled in a
tamper-evident manner. Labels are to be supplied by the vendor and placed by the user on the
bottom right and left edges midway between the front and the back of the case. Before placing
labels, clean the portion of the case where the labels will adhere with rubbing alcohol, and
allow the case to dry. Apply the labels to the indicated locations, and allow labels to set for 24
hours.

37
The FIPS module is activated with a call to SECMOD_DeleteModule(), with the module to
delete being the internal module. This will disable non-FIPS use of NSS, and enable the FIPS
mode of operation. NSS clients may provide UI for enabling FIPS operation.

Additionally, a cryptographic module security policy should be expressed in terms of the roles, services,
cryptographic keys , and other critical security parameters . It should consist of, at a minimum, an
identification and authentication (I&A) policy and an access control policy. An I&A policy specifies
whether a cryptographic module operator is required to identify his or her self to the system, and, if so, what
information is required and how it should be presented to the system in order for the operator to prove his or
her identity to the system (i.e., authenticate themselves). Information required to be presented to the system
might be passwords or individually unique biometric data. Once an operator can perform service(s) using the
cryptographic module, an access control policy specifies what mode(s) of access he or she has to each
security relevant data item while performing a given service.

1.2 Specification of Roles

A series of security libraries represent the cryptographic module which present the same application
programmer interface (API) to client and server products utilizing NSS. There are minor variations, listed in
the module interfaces description, but these do not break the following definition of roles. The NSS
cryptographic module utilizes a single role approach -- this role is a combination of both the User Role and
the Cryptographic Officer Role, and will be referenced below as NSS User . A NSS User utilizes secure
services, and is also responsible for making decisions related to retrieval, updating, and deletion of keys from
their key database. This is true for both client and server products. For multiple user products, like the HTTP

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

4 of 21 8/23/2002 4:36 PM

Server, the server still operates in this single role paradigm, under a single identity.

1.2.1 Authentication Policy

The NSS cryptographic module utilizes Role-Based Authentication - An operator who is allowed to use
the cryptographic module must perform an authentication sequence using information unique to that operator
(individual password) to perform sensitive services using the cryptographic module. Role-based
authentication is utilized to safeguard a users private key information. However, Discretionary Access
Controls (DAC) are used to safeguard all other NSS User information (e.g., the Public Key Certificate
database). An NSS User may use a product (e.g. Netscape Navigator) without establishing a personal
private key -- e.g., they may utilize SSL 3.0 Server Authentication without having a private key established.
However, to enable SSL on the server products, a private key and public key certificate are required to
enable secure services. An individual password is required in order to start the server -- this password is
used to decrypt the private key.

1.3 Specification of Maintenance Roles

This section is not applicable to the NSS cryptographic module since it does not have a Maintenance Role.

1.4 Multiple Concurrent Operator Roles and Services

Since NSS-based applications always operate under a single role, under a single identity, no separate
concurrent processes take place within an NSS-based application. In the case of separate threads of
execution within the same process, NSS's threading model consists of a shared data segment with separate
stack instances, and does not allow threads to leak insecurity into or out of the given process. Further, since a
thread is not a separate process, and all threads of a given process live within the confines of that process,
then all threads are subject to the same security imposed on the process itself.

1.5 Specification of Services

The vendor documentation shall fully describe each service including its purpose and function. Possible
services may include, but not be limited to, the following:

 Cryptographic operations such as encryption, decryption, message integrity, digital signature generation,
digital signature verification, and other operations that require the use of cryptography.

 Key management operations such as key and parameter entry, key generation, key output , key archiving,
key zeroization, and other key management functions.

 Cryptographic management functions such as audit parameter entry and setting, alarm handling and
resetting, and other cryptographic management functions.

 Performance of operator-selectable self tests, such as cryptographic algorithm tests, software/firmware
tests , critical functions tests, statistical random number generator tests, or any additional tests that can be
initiated by an operator.

The vendor documentation shall specify, for each service, the service inputs, corresponding service
outputs, and the authorized role or roles in which the service can be performed. Service inputs shall consist
of all data or control inputs to the module that initiate or obtain specific services, operations, or functions.

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

5 of 21 8/23/2002 4:36 PM

Service outputs shall consist of all data and status outputs that result from services, operations or functions
initiated or obtained by service inputs. The vendor may supply a matrix that displays the services that can be
performed in each role.

In each of the following services, since there is only one role, the user has access to ALL the services
mediated by the application (for both client and server products). Routines have been specified for each
service and denoted whether or not they are public, meaning that they require no authentication to utilize, or
private, meaning that authentication must be provided prior to the routine being utilized. This model allows a
type of safety state by allowing a NSS user to logout (thus disallowing any access to private services)
without ending the session, and then log back in to re-authenticate private services rendered by the
cryptographic module. All public and private services are listed in the following table:

Table II. Services
Name of Service Description of Service in Terms of Routines

Certificate
Storage and

Retrieval

This private service consists of six routines used to perform certificate storage and
retrieval including SEC_OpenPermCertDB(), AddCertToPermDB(),
SEC_TraversePermCerts(), SEC_FindPermCertByKey(),
SEC_DeletePermCertificate(), and CERT_ClosePermCertDB().

Digital
Signatures

This private service consists of the one routine used to perform DSA signature
generation, DSA_SignDigest(), and the one routine used to perform DSA signature
verification, DSA_VerifyDigest(). This service also consists of the three routines used
for RSA signature generation, verification, and entity association: RSA_Sign(),
RSA_CheckSign(), and RSA_CheckSignRecover(), and the three raw routines used
for RSA signature generation, verification, and entity association: RSA_SignRaw(),
RSA_CheckSignRaw(), and RSA_CheckSignRecoverRaw(). In general, the key
generation service must be invoked prior to invoking this service.

Encryption/
Decryption

This private service consists of the four routines used to perform DES
Encryption/Decryption including DES_CreateContext(), DES_Encrypt(),
DES_Decrypt(), and DES_DestroyContext(). Single-key DES service is provided by
using the NSS_DES and NSS_DES_CBC modes with DES_CreateContext().
Triple-DES service is provided by using the NSS_DES_EDE3 and
NSS_DES_EDE3_CBC modes with DES_CreateContext().

Hashing

This public service consists of the eight routines used to perform SHA-1 hashing
including SHA1_NewContext(), SHA1_CloneContext(), SHA1_Begin(),
SHA1_Update(), SHA1_End(), SHA1_HashBuf(), SHA1_Hash(), and
SHA1_DestroyContext().

Key
Generation

This private service is utilized to perform key generation and consists of the six
routines used to perform DSA key generation including PQGParamGen(),
PQG_ParamGenSeedLen(), PQG_VerifyParams(), DSA_CreateKeyGenContext(),
DSA_NewKey(), and DSA_NewKeyFromSeed(), and the one routine used for RSA
private key generation called RSA_NewKey() (only used for entity association in
public key exchange). When RSA_NewKey() is used in public key exchange between
two parties, the Pairwise Consistency Test requires routines to check this symmetric
algorithm. These consist of two routines used for entity association which include
RSA_EncryptBlock(), and RSA_DecryptBlock(), and two raw routines used for entity
association which include RSA_EncryptRaw(), and RSA_DecryptRaw().

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

6 of 21 8/23/2002 4:36 PM

PKCS #5
Password-Based

Encryption

The PKCS #5 API specifies a standard interface based upon the PKCS #5 standard
which allows this private service to be used to perform password-based encryption
and consists of the five routines including SEC_PKCS5GetSalt(),
SEC_PKCS5GetIV(), SEC_PKCS5GetKey(), SEC_PKCS5CipherData(), and
SEC_PKCS5CreateAlgorithmID().

PKCS #11

The PKCS #11 API specifies a standard interface based upon the PKCS #11
standard which allows for the selection of a FIPS PUB 140-1 mode of operation that
provides both public and private services as well as a means of authentication into all
private services, creates and maintains entry points for all FIPS PUB 140-1 specific
routines including pk11_fipsPowerUpSelfTest() at initialization as well as on demand
for subsequent logins, and enforces a pairwise consistency check on all key generation
algorithms. NSS's FIPS PUB 140-1 PKCS #11 implementation defines the following
standard crypto API:
Category Function Description

FIPS PUB 140-1
specific

FC_GetFunctionList Return the list of FIPS PUB 140-1 functions

General
purpose

FC_Initialize initializes Cryptoki

FC_Finalize finalizes Cryptoki (1.1)

FC_GetInfo obtains general information about Cryptoki

Slot and
token
management

FC_GetSlotList obtains a list of slots in the system

FC_GetSlotInfo obtains information about a particular slot

FC_GetTokenInfo obtains information about a particular token

FC_GetMechansimList obtains a list of mechanisms supported by a token

FC_GetMechanismInfo obtains information about a particular mechanism

FC_InitToken initializes a token

FC_InitPIN initializes the normal user?s PIN

FC_SetPIN modifies the PIN of the current user

Session
management

FC_OpenSession opens a connection or "session" between an
application and a particular token

FC_CloseSession closes a session

FC_CloseAllSessions closes all sessions with a token

FC_GetSessionInfo obtains information about the session

FC_GetOperationState saves the state of the cryptographic operation in a
session (1.1)

FC_SetOperationState restores the state of the cryptographic operation
in a session (1.1)

FC_Login logs into a token

FC_Logout logs out from a token

Object
management

FC_CreateObject creates an object

FC_CopyObject creates a copy of an object

FC_DestroyObject destroys an object

FC_GetObjectSize obtains the size of an object in bytes

FC_GetAttributeValue obtains an attribute value of an object

FC_SetAttributeValue modifies an attribute value of an object

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

7 of 21 8/23/2002 4:36 PM

FC_FindObjectsInit initializes an object search operation

FC_FindObjects continues an object search operation

FC_FindObjectsFinal finishes an object search operation (1.1)

Encryption
and
decryption

FC_EncryptInit initializes an encryption operation

FC_Encrypt encrypts single-part data

FC_EncryptUpdate continues a multiple-part encryption operation

FC_EncryptFinal finishes a multiple-part encryption operation

FC_DecryptInit initializes a decryption operation

FC_Decrypt decrypts single-part encrypted data

FC_DecryptUpdate continues a multiple-part decryption operation

FC_DecryptFinal finishes a multiple-part decryption operation

Message
digesting

FC_DigestInit initializes a message-digesting operation

FC_Digest digests single-part data

FC_DigestUpdate continues a multiple-part digesting operation

FC_DigestKey continues a multi-part message-digesting
operation by digesting the value of a secret key as
part of the data already digested (1.1)

FC_DigestFinal finishes a multiple-part digesting operation

Signature
and
verification

FC_SignInit initializes a signature operation

FC_Sign signs single-part data

FC_SignUpdate continues a multiple-part signature operation

FC_SignFinal finishes a multiple-part signature operation

FC_SignRecoverInit initializes a signature operation, where the data
can be recovered from the signature

FC_SignRecover signs single-part data, where the data can be
recovered from the signature

FC_VerifyInit initializes a verification operation

FC_Verify verifies a signature on single-part data

FC_VerifyUpdate continues a multiple-part verification operation

FC_VerifyFinal finishes a multiple-part verification operation

FC_VerifyRecoverInit initializes a verification operation where the data is
recovered from the signature

FC_VerifyRecover verifies a signature on single-part data, where the
data is recovered from the signature

Dual-function
cryptographic
operations

FC_DigestEncryptUpdate continues a multiple-part digesting and
encryption operation (1.1)

FC_DecryptDigestUpdate continues a multiple-part decryption and
digesting operation (1.1)

FC_SignEncryptUpdate continues a multiple-part signing and encryption
operation (1.1)

FC_DecryptVerifyUpdate continues a multiple-part decryption and verify
operation (1.1)

Key
management

FC_GenerateKey generates a secret key

FC_GenerateKeyPair generates a public-key/private-key pair

FC_WrapKey wraps (encrypts) a key

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

8 of 21 8/23/2002 4:36 PM

FC_UnwrapKey unwraps (decrypts) a key

FC_DeriveKey derives a key from a base key

Random number
generation

FC_SeedRandom mixes in additional seed material to the random
number generator

FC_GenerateRandom generates random data

Function
management

FC_GetFunctionStatus obtains updated status of a function running in
parallel with the application

FC_CancelFunction cancels a function running in parallel with the
application

Callbacks Notify processes notifications from Cryptoki

PKCS #12
Personal

Information
Exchange

The PKCS #12 API will specify a standard interface based upon the forthcoming
PKCS #12 standard which allows this private service to be used to exchange data
such as private keys and certificates between two parties and consists of the eight
routines including SEC_PKCS12CreateExportContext,
SEC_PKCS12CreatePasswordPrivSafe(), SEC_PKCS12AddCertAndKey(),
SEC_PKCS12Encode(), SEC_PKCS12DestroyExportContext(),
SEC_PKCS12DecoderStart(), SEC_PKCS12DecoderUpdate(), and
SEC_PKCS12DecoderFinish().

Prime
Number

Generation

This public service consists of the two routines used for generating a prime number
including mpp_make_prime() and mpp_pprime().

Private Key
Storage and

Retrieval

This private service is utilized to perform private key storage and retrieval and consists
of the seven routines including SECKEY_OpenKeyDB(), SECKEY_TraverseKeys(),
SECKEY_UpdateKeyDBPass1() SECKEY_UpdateKeyDBPass2(),
SECKEY_FindKeyByPublicKey(), SECKEY_DeleteKey(), and
SECKEY_CloseKeyDB().

Pseudorandom
Number

Generation

This public service consists of the four routines used for global pseudorandom number
generation including RNG_RNGInit(), RNG_GenerateGlobalRandomBytes(),
RNG_RandomUpdate(), and RNG_RNGShutdown(), and the three routines used for
seeding pseudorandom number generation including RNG_GetNoise(),
RNG_SystemInfoForRNG(), and RNG_FileForRNG(). A continuous pseudorandom
number generator test is performed whenever a new pseudorandom number is
generated.

SSL Session ID
Cache
(Secret

Management)

This public service consists of the five routines used to perform session ID cache
management including SSL_ConfigServerSessionIDCache(), ssl_FreeSID(),
ssl_LookupSID(), ssl_ChooseSessionIDProcs(), and SSL_ClearSessionCache().

TLS
pseudorandom
function (PRF)

TLS pseudorandom function (PRF) is utilized by SSL 3.0 protocol to produce FIPS
140-1 compliant hashes of security relevant data items [pre-master secret]. See SSL
changes in Security Module 1.01 for full details.

1.6 Bypass Capabilities

This section is not applicable to NSS since it does not allow for any bypass capability.

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

9 of 21 8/23/2002 4:36 PM

1.7 Access Control Policy

The access control policy enforced by the cryptographic module must be sufficiently precise, and of sufficient
detail to allow the operator and testers to know what security relevant data items the operator has
access to while performing a service, and the modes of access he or she has to these data items. Also, the
testers and operator must be able to know if and how the kinds of data items accessible changes when the
service is invoked from each role in which it can be invoked.

1.7.1 Security Relevant Data Items

Security relevant data items consist of data types used for Certificate Storage and Retrieval, Digital
Signatures, Encryption/Decryption, Generic Containers, Hashing, Key Generation, PKCS #5
Password-Based Encryption, PKCS #12 Personal Information Exchange, Private Key Storage and
Retrieval, Pseudorandom Number Generation, and SSL Session ID Cache (Secret Management).

All security relevant data items are identified by category, type, name, and description in the following table:

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

10 of 21 8/23/2002 4:36 PM

Table III. Security Relevant Data Items

Category Type of Data Item Name of Data Item Description of Data
Item

Generic
Containers

typedef struct SECAlgorithmIDStr SECAlgorithmID

The structure
containing two
SECItems which
identify the X.500
algorithm.

typedef struct SECItemStr SECItem

Generic container
used to hold type of
data, actual data
content, and length of
data.

typedef struct
SECKEYLowPrivateKeyStr

SECKEYLowPrivateKey

Generic container
used for low-level
private key structures
including RSA and
DSA private keys.
This structure is used
below the PKCS
#11 service layer and
contains the actual
private key.

typedef struct
SECKEYLowPublicKeyStr

SECKEYLowPublicKey

Generic container
used for low-level
public key structures
including RSA and
DSA public keys.
This structure is used
below the PKCS
#11 service layer and
contains the actual
public key.

typedef struct
SECKEYPrivateKeyStr

SECKEYPrivateKey

Generic container
used as a high-level
pointer to the defined
private key
structures, and is
used above the
PKCS #11 service
layer.

typedef struct
SECKEYPublicKeyStr SECKEYPublicKey

Generic container
used as a high-level
pointer to the defined
public key structures,
and is used above the

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

11 of 21 8/23/2002 4:36 PM

PKCS #11 service
layer.

typedef enum SECOidTag

Generic container
used to identify the
supported object
IDs.

typedef enum _SECStatus SECStatus

Generic container
used primarily to
indicate success or
failure.

Certificate
Storage and

Retrieval

typedef struct CERTCertificateStr CERTCertificate

The structure
representing an
X.509 certificate
object (the unsigned
form).

typedef struct
CERTCertDBHandleStr

CERTCertDBHandle

The structure
representing a handle
to an open certificate
database.

typedef struct CERTCertTrustStr CERTCertTrust
The trust structure
containing flags for
SSL and email.

typedef struct _certDBEntryCert certDBEntryCert
The structure for
certificate database
entries.

Digital
Signatures

typedef struct DSAPrivateKeyStr DSAPrivateKey

The structure
representing the
context of a digital
signature containing
data associated with
the private portion of
the DSA key pair.

typedef struct DSAPublicKeyStr DSAPublicKey

The structure
representing the
context of a digital
signature verification
containing data
associated with the
public portion of the
DSA key pair.

typedef struct RSAPrivateKeyStr RSAPrivateKey

The structure
representing the
context of an RSA
signature generation

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

12 of 21 8/23/2002 4:36 PM

or decryption
mechanism used for
both signature
generation and key
exchange; containing
data associated with
the private portion of
the RSA key pair.

typedef struct RSAPublicKeyStr RSAPublicKey

The structure
representing the
context of an RSA
signature verification
or encryption
mechanism used for
both signature
verification and key
exchange; containing
data associated with
the public portion of
the RSA key pair.

Encryption/
Decryption typedef struct DESContextStr DESContext

The structure
representing the
context of a DES
encryption/decryption
containing an
encrypt/decrypt flag,
space for up to three
distinct keys, space
for the carry-forward
needed for CBC
modes of DES, and
function pointers to
the appropriate
encryption and
decryption functions
associated with that
mode of DES.

Hashing typedef struct SHA1ContextStr SHA1Context

The structure
representing the
context of a SHA-1
hash containing
information relevant
to performing a
SHA-1 hash.

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

13 of 21 8/23/2002 4:36 PM

Key
Generation

typedef struct PQGParamsStr PQGParams

The structure
representing the
context of a digital
signature key
generation containing
multiple items
including pointers to
both low-level public
and private key
structures containing
the public and private
portions of the DSA
key pair.

typedef struct PQGVerifyStr PQGVerify

The structure
representing the
context of a digital
signature containing
data associated with
the verification (in
terms of validity) of a
set of parameters
contained in a DSA
key pair.

typedef struct DSAPrivateKeyStr DSAPrivateKey

The structure
containing the private
portion of the DSA
key pair.

typedef struct DSAPublicKeyStr DSAPublicKey

The structure
containing the public
portion of the DSA
key pair.

typedef struct RSAPrivateKeyStr RSAPrivateKey

The structure
containing the private
portion of the RSA
key pair.

typedef struct RSAPublicKeyStr RSAPublicKey

The structure
containing the public
portion of the RSA
key pair.

PKCS #5
Password-Based

Encryption

typedef struct SECItemStr SECItem

Utilizes this generic
container to hold
password-based
encryption data.

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

14 of 21 8/23/2002 4:36 PM

PKCS #12
Personal

Information
Exchange

typedef struct
SEC_PKCS12ExportContextStr SEC_PKCS12ExportContext

The structure
representing the
context of a
PKCS#12 export
operation.

typedef struct
SEC_PKCS12DecoderContextStr SEC_PKCS12DecoderContext

The structure
representing the
context of a
PKCS#12 import
operation.

Prime
Number

Generation

typedef struct mp_int
The structure used to
hold very large
numbers.

typedef int mp_err

The integer used to
hold error codes
from the
Multi-Precision
Arithmetic (big
integer) library.

Private Key
Storage and

Retrieval

typedef struct
SECKEYKeyDBHandleStr

SECKEYKeyDBHandle

The structure
representing a handle
into the private key
database.

typedef struct
SECKEYLowPrivateKeyStr

SECKEYLowPrivateKey

Utilizes this generic
container used for
low-level private key
structures.

SSL Session ID
Cache
(Secret

Management)

typedef struct SSLSecurityInfoStr SSLSecurityInfo

The structure
containing all
information relevant
to SSL security.

typedef struct SSLSessionIDStr SSLSessionID

The structure
containing data
relevant to the SSL
session ID including
the session ID cache
and the master
secret.

1.7.2 Service Relationships to Security Relevant Data Items Matrix

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

15 of 21 8/23/2002 4:36 PM

Table IV. Service Routine to Security Relevant Data Items Matrix

Service Service Routine Security Relevant Data Item Read
Access

Write
Access

Certificate
Storage and

Retrieval

AddCertToPermDB()

CERTCertDBHandle X X

CERTCertificate X X

CERTCertTrust X X

certDBEntryCert X -

CERT_ClosePermCertDB() CERTCertDBHandle X X

SEC_FindPermCertByKey()

CERTCertDBHandle X X

SECItem X X

certDBEntryCert X -

SEC_OpenPermCertDB()
CERTCertDBHandle X X

SECStatus X -

SEC_DeletePermCertificate()

CERTCertDBHandle X X

CERTCertificate X X

SECStatus X -

SEC_TraversePermCerts()
CERTCertDBHandle X X

SECStatus X -

Digital
Signatures

DSA_SignDigest()
DSAPrivateKey X -

SECStatus X -

DSA_VerifyDigest()
DSAPublicKey X -

SECStatus X -

RSA_Sign()
SECKEYLowPrivateKey X -

SECStatus X -

RSA_CheckSign()
SECKEYLowPublicKey X -

SECStatus X -

RSA_CheckSignRecover()
SECKEYLowPublicKey X -

SECStatus X -

RSA_SignRaw()
SECKEYLowPrivateKey X -

SECStatus X -

RSA_CheckSignRaw()
SECKEYLowPublicKey X -

SECStatus X -

RSA_CheckSignRecoverRaw()
SECKEYLowPublicKey X -

SECStatus X -

Encryption/
Decryption

DES_CreateContext() DESContext - X

DES_Encrypt()
DESContext X X

SECStatus X -

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

16 of 21 8/23/2002 4:36 PM

DES_Decrypt()
DESContext X X

SECStatus X -

DES_DestroyContext() DESContext - X

Hashing

SHA1_NewContext() SHA1Context - X

SHA1_CloneContext()
SHA1Context X -

SHA1Context - X

SHA1_Begin() SHA1Context - X

SHA1_Update() SHA1Context X X

SHA1_End() SHA1Context X X

SHA1_HashBuf() SECStatus X -

SHA1_Hash() SECStatus X -

SHA1_DestroyContext() SHA1Context - X

Key
Generation

PQG_ParamGen()

PQGParams - X

PQGVerify - X

SECStatus X -

PQG_ParamGenSeedLen()

PQGParams - X

PQGVerify - X

SECStatus X -

PQG_VerifyParams()

PQGParams X -

PQGVerify X -

SECStatus X -

DSA_NewKey()

PQGParams X -

DSAPrivateKey - X

SECStatus X -

DSA_NewKeyFromSeed()

PQGParams X -

DSAPrivateKey - X

SECStatus X -

RSA_NewKey() RSAPrivateKey - X

RSA_EncryptBlock()
SECKEYLowPublicKey X -

SECStatus X -

RSA_DecryptBlock()
SECKEYLowPrivateKey X -

SECStatus X -

RSA_EncryptRaw()
SECKEYLowPublicKey X -

SECStatus X -

RSA_DecryptRaw()
SECKEYLowPrivateKey X -

SECStatus X -

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

17 of 21 8/23/2002 4:36 PM

PKCS #5
Password-Based

Encryption

SEC_PKCS5GetSalt()
SECAlgorithmID X X

SECItem X -

SEC_PKCS5GetIV()
SECAlgorithmID X X

SECItem X -

SEC_PKCS5GetKey()
SECAlgorithmID X X

SECItem X -

SEC_PKCS5CipherData()

SECAlgorithmID X X

SECItem X X

SECItem X -

SEC_PKCS5CreateAlgorithmID()

SECOidTag X -

SECItem X X

SECAlgorithmID - X

PKCS #12
Personal

Information
Exchange

SEC_PKCS12CreateExportContext() SEC_PKCS12ExportContext X X

SEC_PKCS12CreatePasswordPrivSafe() SEC_PKCS12ExportContext X -

SEC_PKCS12AddCertAndKey()

SEC_PKCS12ExportContext X -

CERTCertificate X -

SECStatus X -

SEC_PKCS12Encode()
SEC_PKCS12ExportContext X -

SECStatus X -

SEC_PKCS12DestroyExportContext() SEC_PKCS12ExportContext - X

SEC_PKCS12DecoderStart() SEC_PKCS12DecoderContext X X

SEC_PKCS12DecoderUpdate()
SEC_PKCS12DecoderContext X -

SECStatus X -

SEC_PKCS12DecoderFinish() SEC_PKCS12DecoderContext - X

Prime
Number

Generation

mpp_make_prime()
mp_int X X

mp_err X -

mpp_pprime()
mp_int X -

mp_err X -

Private Key
Storage and

Retrieval

SECKEY_CloseKeyDB() SECKEYKeyDBHandle X X

SECKEY_DeleteKey()

SECKEYKeyDBHandle X X

CERTCertificate X -

SECStatus X -

SECKEY_FindKeyByCert()

SECKEYKeyDBHandle X X

CERTCertificate X X

SECKEYLowPrivateKey X X

SECKEY_OpenKeyDB() SECKEYKeyDBHandle X -

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

18 of 21 8/23/2002 4:36 PM

SECKEY_TraversePermKeys()
SECKEYKeyDBHandle X X

SECStatus X -

SECKEY_UpdateKeyDBPass1()
SECKEYKeyDBHandle X X

SECStatus X -

SECKEY_UpdateKeyDBPass2()

SECKEYKeyDBHandle X X

SECItem X X

SECStatus X -

Pseudorandom
Number

Generation

RNG_RNGInit() SECStatus X -

RNG_GenerateGlobalRandomBytes() SECStatus X -

RNG_RandomUpdate() SECStatus X -

RNG_RNGShutdown() void - -

SSL Session ID
Cache
(Secret

Management)

ssl_ChooseSessionIDProcs()
SSLSecurityInfo X X

SSLSessionID - X

SSL_ClearSessionCache() SSLSessionID X X

ssl_LookupSID()
SSLSessionID X X

SSLSessionID X -

ssl_FreeSID()
SSLSessionID X X

SSLSessionID - X

SSL pre-master
secrets

pk11_PRF() const SECItem *secret X X

1.8 Means of Access

Prior to execution of the Client or Server products, the Security Libraries are stored on disk in compiled
binary form. NSS relies on Discretionary Access Controls (DAC) to protect the binary image from being
tampered with.

1.9 Zeroization

Within the Security Libraries, there are a number of explicit zeroization steps that are taken to clear the
memory region previously occupied by a private key or password. In summary, private keys are not stored in
plaintext. Any key material that has been unwrapped for use is zeroed once the use is complete. The function
used to both zero and free memory used by private key material is PORT_ZFree().

1.10 Role-based Authentication

Since all NSS-based products utilize role-based authentication, and all products use a single-role mechanism
referred to above as a NSS User, authentication shall always be required upon initializing the FIPS
Cryptographic Module. This is true of all NSS-based client and server products, and shall be handled via the
PKCS #11 mechanism of required authentication.

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

19 of 21 8/23/2002 4:36 PM

1.11 Identity-based Authentication

This section is not applicable to NSS since it is only applicable to products attempting to be certified to
security level three or four.

Results of FIPS 140-1 Level 2 Maintenance Validation of NSS
3.2.2

FIPS 140-1
Section

Description Validation
Level

Obtained

1.0 Cryptographic Modules 2

2.0 Module Interfaces 2

3.0 Roles and Services 2

4.0 Finite State Machine Model 2

5.0 Physical Security 2

6.0 Software Security 2

7.0 Operating System Security 2

8.0 Cryptographic Key Management 2

9.0 Cryptographic Algorithms 2

10.0 EMI/EMC 2

11.0 Self-Tests 2

Results of FIPS 140-1 Level 1 Maintenance Validation of NSS
3.2.2

FIPS 140-1
Section

Description Validation
Level

Obtained

1.0 Cryptographic Modules 1

2.0 Module Interfaces 1

3.0 Roles and Services 2

4.0 Finite State Machine Model 1

5.0 Physical Security 1

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

20 of 21 8/23/2002 4:36 PM

6.0 Software Security 1

7.0 Operating System Security 1

8.0 Cryptographic Key Management 1

9.0 Cryptographic Algorithms 1

10.0 EMI/EMC 1

11.0 Self-Tests 1

Platform List

To meet the FIPS 140-1 level 1 requirement, the operating system on which NSS runs must allow only one
user at a time.

Windows 95, 98, and Me are single-user operating systems. Other operating systems (Windows NT 4.0,
Windows 2000, SunOS, Linux, AIX, HP-UX, and OSF1) must be running in single-user mode.

For the level 2 certificate, the platform validated was a Sun Ultra 1 running Solaris 8 and was configured
according to the specifications listed in the Common Criteria documents referred to in the link below

http://www.commoncriteria.org/ccc/epl/productType/epldetail.jsp?id=42

Platform Validated Level
Obtained

Windows 98 1

SunOS 5.8 2

Vendor Affirmed Platform Level

Windows 95, Me, NT 4.0, 2000 1

SunOS 5.6 SPARC
SunOS 5.8 SPARC 32-bit, 64-bit
SunOS 5.8 x86

1

Linux 2.2 1

AIX 4.3.3 32-bit, 64-bit 1

HP-UX B.11.00 32-bit, 64-bit 1

OSF1 V5.0A 1

FIPS PUB 140-1: 1.0 : Security Policy file:///F:/Netscape/Project%20Documentation/report/V1.4/policy.html

21 of 21 8/23/2002 4:36 PM

