

Non-proprietary Security Policy
FIPS 140-2 level 3

nShield SOLO XC F3 &

nShield SOLO XC F3 for nShield Connect XC

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 2 of 33

Copyright

Date April 2019

Doc. No TesUSA-DDQ-000054-EN

Author Fabien Deboyser

Copyright © 2019 nCipher Security Limited. All rights reserved.

Copyright in this document is the property of nCipher Security Limited. It is not to be reproduced, modified, adapted, published,

translated in any material form (including storage in any medium by electronic means whether or not transiently or incidentally)

in whole or in part nor disclosed to any third party without the prior written permission of nCipher Security Limited neither shall

it be used otherwise than for the purpose for which it is supplied.

Words and logos marked with ® or ™ are trademarks of nCipher Security Limited or its affiliates in the EU and other countries.

Information in this document is subject to change without notice.

nCipher Security Limited makes no warranty of any kind with regard to this information, including, but not limited to, the implied

warranties of merchantability and fitness for a particular purpose. nCipher Security Limited shall not be liable for errors

contained herein or for incidental or consequential damages concerned with the furnishing, performance or use of this material.

Where translations have been made in this document English is the canonical language.

nCipher Security Limited

Registered Office: 350 Longwater Avenue,

Green Park, Reading, R62 66F, United Kingdom

Registered in England No. 00868273

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 3 of 33

Contents

1. Introduction ... 5
1.1 Purpose ... 5
1.2 Overall FIPS level 3 ... 6
1.3 Cryptographic boundary .. 7
1.4 Ports and Interfaces ... 7
1.5 Operational environment .. 7

2. Cryptographic functionality .. 8
2.1 Critical Security Parameters .. 8
2.2 Cryptographic algorithm .. 11

2.2.1 FIPS approved and allowed ... 11

3. Roles and Services ... 18
3.1 Authentication enforcement ... 18
3.2 Roles ... 18

3.2.1 User .. 18
3.2.2 nShield Security Officer ... 18
3.2.3 Junior Security Officer ... 18

3.3 Services vs Roles ... 18

4. Physical Security .. 24
4.1 Physical security overview ... 24
4.2 Checking the module ... 24

5. Rules ... 25
5.1 Identification and authentication ... 25

5.1.1 Strength of authentication .. 25
5.1.2 Access Control.. 25
5.1.3 Access Control List ... 25
5.1.4 Object re-use ... 26
5.1.5 Error conditions ... 26
5.1.6 Status information ... 26
5.1.7 Create a new operator .. 26
5.1.8 Authorize the operator to create keys ... 27
5.1.9 Authorize an operator to act as a Junior Security Officer ... 27
5.1.10 Authenticate an operator to use a stored key ... 27
5.1.11 Authenticate an operator to create a new key .. 28

5.2 Delivery and operation .. 28
5.2.1 Delivery .. 28
5.2.2 MOI switch ... 28
5.2.3 Initialization procedures .. 28
5.2.4 FIPS mode verification ... 29
5.2.5 Return a module to factory state.. 29

6. Self-tests .. 30
6.1 Power up self-test .. 30
6.2 KAT Test .. 30
6.3 Pairwise consistency tests ... 31
6.4 Firmware Load Test .. 31

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 4 of 33

Tables

Table 1 - Product configuration ..5

Table 2 - Product references ...5

Table 3 - Security Level of Security Requirements ...6

Table 4 - Critical Security Parameters .. 10

Table 5 – Public asymmetric Critical Security Parameters ... 11

Table 6 - Overview of FIPS Approved and allowed algorithms... 17

Table 7 - Services vs Roles .. 23

Table 8 - ACL usage ... 26

Table 9 – KAT Tests table .. 31

Figure

Figure 1 – nCipher nShield overview ...6

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 5 of 33

1. Introduction

1.1 Purpose

The nShield Hardware Security Modules provide support for the widest range of cryptographic algorithms, application

programming interfaces (APIs) and host operating systems, enabling the devices to be used with virtually any business

application—from identity management, web services and database encryption to tokenization, PKI services and strong

authentication.

The nShield Hardware Security Modules are defined as a multi-chip embedded cryptographic modules as defined by FIPS 140-2.

Both modules, enumerated below, possess the following attributes:

- Real Time Clock
- Potting
- Cryptographic acceleration
- EMC classification B
- Secure Execution Environment (optional)

Unit ID Hardware number Overall FIPS level
nShield Solo XC F3 NC4035E-000 3

nShield Solo XC F3 for nShield Connect XC NC4335N-0001 3

Table 1 - Product configuration

 nShield Solo XC F3 & nShield Solo XC F3 for nShield Connect XC
Firmware versions 3.3.21

3.4.1

3.4.2

Cryptographic library nShield X Algorithm library

Table 2 - Product references

1 This module is embedded in the nShield Connect XC appliance with model number NH2075-x (where x is B, M or H)

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 6 of 33

NOTE: The nShield Solo XC F3 is embedded in the Connect XC

Figure 1 – nCipher nShield overview

All modules are supplied at build standard “A”.

nCipher also supply modules to third party OEM vendors for use in a range of security products.

The modules run firmware provided by nCipher. There is the facility for the Crypto Officer to upgrade this firmware. In order to
determine that the module is running the correct version of firmware they should use the NewEnquiry service which reports the
version of firmware currently loaded.

The initialization parameters are reported by the NewEnquiry and SignModuleState services. An operator can determine which
mode the module is operating in using the KeySafe GUI or the command line utilities supplied with the module, or their own
code - these operate outside the cryptographic boundary.

The modules must be accessed by a custom written application. Full documentation for the nCore API can be downloaded from
the nCipher web site.

The modules have on-board non-volatile memory. There are services that enable memory to be allocated as files. Files have
Access Control Lists that determine what operations can be performed on their contents. nShield modules have an on-board
Real-time clock.

The module can be connected to a computer running one of the following operating systems (Windows, Solaris, HP-UX, AIX,
Linux x86 / x64). Windows and Linux was used to test the module for this validation.

1.2 Overall FIPS level 3

The FIPS 140-2 security levels for the module in overall FIPS level 3 configuration are as follows:

Security Requirement Security level

Cryptographic Module Specification 3

Cryptographic Module Ports and Interfaces 3

Roles, Service and Authentication 3

Finite State Model 3

Physical Security 3

Operational Environment NA

Cryptographic Key Management 3

EMI/EMC 3

Self-Tests 3

Design Assurance 3

Mitigation of Other Attacks NA

Overall FIPS level 3

Table 3 - Security Level of Security Requirements

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 7 of 33

1.3 Cryptographic boundary

The physical cryptographic boundary is the potted area on the PCB board, which includes the epoxy resin itself, the metal jig

surrounding the potted area, and the heatsink.

1.4 Ports and Interfaces

The module has the following physical ports:

- PCIe2 bus (data input/output, control input, status output and power)
- Status LED (status output)
- PS-2 Serial connector (data input/output)
- Mode switch (control input)
- 16-way header (data input/output)
- DIP switches (control input)
- Clear button (control input)

1.5 Operational environment

The module’s operating environment is non-modifiable. The FIPS 140-2 Operational Environment requirements are not

applicable because the module contains a non-modifiable operational environment

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 8 of 33

2. Cryptographic functionality

2.1 Critical Security Parameters
Table 4 below enumerates the Critical Security Parameters utilized in the nShield Solo XC, and Table 5 breaks out the asymmetric public portions of those CSPs in order to

document the specific input, output, storage, and zeroization attributes and services associated with those CSP objects.

CSP Type Description Generation Input Output Storage Zeroization

Application

keys (KA)
See description

Keys associated with a user to perform cryptographic operations,

that can be used with one of the following validated algorithms:

- AES keys - #3664, #3697, #3711

- Triple-DES keys - #2046, #2073

- RSA keys - #1897, #1917, #1903

- DSA keys - #1034, #1039

- ECDSA keys - #771, #790, #776

- Key Agreement - #669, #696, #682

- KBKDF - #73, #75

- ECMQV - #1111

DRBG
Load Blob -

encrypted

Make Blob -

encrypted

Ephemeral, stored

in volatile RAM

Destroy,

Initialize Unit,

Clear Unit

Archiving keys

(KR)

AES-256 CBC with

HMAC SHA2

integrity

mechanism

Key used to protect an archive copy of a key. DRBG
Load Blob -

encrypted

Make Blob -

encrypted

Ephemeral, stored

in volatile RAM
Initialize Unit

DRBG internal

state
N/A

The module uses the Hash_DRBG from SP800-90A with SHA-256

as the underlying approved hash function. This DRBG is seeded

from the on-board entropy source whenever the module is

initialized and is reseeded according to SP800-90A with a further

512 bits of entropy after every 2048 bytes of output.

NDRNG No No
Ephemeral, stored

in volatile RAM
Clear Unit

EncFSKey
AES-256 CBC

An AES Key used to protect the Encrypting File System.

Constructed at startup time using a vendor affirmed PBKDF (case

1). For the PBKDF process, the password has 288 bits of entropy,

the salt has 800 bits of entropy, and the process utilizes 10, 000

iterations. The password and salt consist of entropy generated in

the module from the approved DRBG at manufacture time.

See description No No
Ephemeral, stored

in volatile RAM
Clear Unit

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3664
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3697
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3711
http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesnewval.html#2046
http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesnewval.html#2073
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1897
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1917
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1903
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1034
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1039
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#771
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#790
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#776
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#669
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#696
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#682
http://csrc.nist.gov/groups/STM/cavp/documents/KBKDF800-108/kbkdfnewval.html#73
http://csrc.nist.gov/groups/STM/cavp/documents/KBKDF800-108/kbkdfnewval.html#75
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#1111

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 9 of 33

CSP Type Description Generation Input Output Storage Zeroization

Firmware
Confidentiality
Key (KFC)

Triple-DES 3 keys,
CBC mode

Protect the source code during transport. The source code is

deciphered and stored only after the firmware integrity check

completes successfully.

At nCipher

Security

Firmware Update

- encrypted
No

Non-volatile

memory – flash
N/A

Impath keys

AES-128 CBC,

integrity HMAC

with SHA 256

Used for secure channel between two modules. It consists in a set

of four keys for cryptographic operations: encryption, decryption,

MAC creation and MAC validation.

DH 3072 bit key-

exchange

between two

modules

No No
Ephemeral, stored

in volatile RAM

Initialize Unit,

Clear Unit

Key blob N/A

Used for secure external storage of keys. A Key blob is encrypted

by a Logical Token (LT), Module Key (KM), and optionally an

Archiving key (KR).

N/A
Load Blob -

encrypted

Make Blob -

encrypted

Ephemeral, stored

in volatile RAM
Clear Unit

KJSO 3072 DSA
nShield Junior Security Officer key used with its associated

certificate to perform the operations allowed by the NSO.
DRBG

Load Blob -

encrypted

Make Blob -

encrypted

Ephemeral, stored

in volatile RAM

Initialize Unit,

Clear Unit

Module key

(KM)

AES-256 CBC

Key used to protect logical tokens and associated module Key

blobs.
DRBG

Load Blob -

encrypted

Make Blob -

encrypted

Non-volatile

memory – flash

(encrypted)

Initialize Unit

KML 3072 DSA

Module signing key. When the nShield module is initialized it

automatically generates a 3072-bit DSA key pair that it uses to sign

certificates using DSA with SHA-256. This key is only ever used to

verify that a certificate was generated by a specific module.

DRBG N/A N/A

Non-volatile

memory – flash

(encrypted)

Initialize Unit

KNSO 3072 DSA

nShield Security Officer key used for NSO authorisation and

Security World integrity. Used to sign Delegation Certificates and

to directly authorize commands during recovery operations.

DRBG
Load Blob -

encrypted

Make Blob -

encrypted

Ephemeral, stored

in volatile RAM
Initialize Unit

Logical Token

(LT)
AES-256 CBC

A logical token is a key used to protect Key blobs. For storage, the
logical token is encrypted with Module key (KM) and then split
into shares that are stored on smartcard or a softcard encrypted
with a share key and optional passphrase.

DRBG Input from Shares Output to Shares
Ephemeral, stored

in volatile RAM
Clear Unit

Passphrase N/A
A passphrase (or PIN) is optional and protects a share. It is created

by the user at share creation time.
Share creation Write share N/A

Ephemeral, stored

in volatile RAM
Clear Unit

Remote

Administration

Session keys

AES-256 CBC,

integrity with

CMAC

Used for a single session and generated as required by the module

between remote smartcards and the module.

ECDH P521 key

agreement
N/A N/A

Ephemeral, stored

in volatile RAM

Initialize Unit,

Clear Unit, New

Session

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 10 of 33

CSP Type Description Generation Input Output Storage Zeroization

Share N/A

A Logical Token (LT) is encrypted with Module key (KM) and then

split with the Shamir Threshold Sharing Scheme to create the

share. This share is then stored on a smartcard or softcard

optionally encrypted by a share key.

Established via

the Shamir

Secret Sharing

protocol

Read Share -

encrypted

Write Share -

encrypted

Ephemeral, stored

in volatile RAM

Write Share,

Initialize Unit,

Clear Unit,

Destroy,

Remove a

Softcard,

Remove a

Smartcard

Share Keys

AES-128 CBC,

integrity HMAC

using SHA-1

Protects a share when written to a smartcard or softcard. Shares

are protected by a passphrase (optional).
DRBG N/A N/A

Ephemeral, stored

in volatile RAM

Remove a

Softcard

Table 4 - Critical Security Parameters

Public key Type Description Generation Input Output Storage

Firmware

Integrity key

(NFIK)

ECDSA P521 with

SHA256

Public key used to ensure the integrity of the firmware during

boot. The module validates the signature before new firmware is

written to flash

At nCipher

Security
Firmware

Update
No In Firmware

KJWAR ECDSA P521
nCipher root warranting public key for Remote Administrator

Cards and Remote Operator Cards

At nCipher

Security

Firmware

Update
None

Encrypted in the

module

Application

keys -

asymmetric

public key

See description

Public key associated to the Application keys:

- RSA keys - #1897, #1917, #1903

- DSA keys - #1034, #1039

- ECDSA keys - #771, #790, #776

- Key Agreement - #669, #696, #682

- ECMQV - #1111

At creation of

the application

key

Load Blob -

encrypted
Key export

Ephemeral, stored in

volatile RAM

KJSO public key 3072 DSA Public key associated to the KJSO
At creation of

the KJSO

Load Blob -

encrypted
Key export

Ephemeral, stored in

volatile RAM

KNSO public

key
3072 DSA Public key associated to the KNSO

At creation of

the KNSO

Load Blob -

encrypted
Key export

Ephemeral, stored in

volatile RAM

KML public key 3072 DSA Public key associated to the KML

At creation of

the KML, and

upon request

No Key export
Ephemeral, stored in

volatile RAM

http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1897
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1917
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1903
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1034
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1039
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#771
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#790
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#776
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#669
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#696
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#682
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#1111

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 11 of 33

Public key Type Description Generation Input Output Storage

Impath public

key
3072 DH

Public key associated to the Impath keys for creation of the

secure channel between two modules

Internally using

approved DH

key-exchange

Impath Secure

Channel

(Cmd_ImpathRe

ceive)

Impath Secure

Channel

(ImpathSend)

Ephemeral, stored in

volatile RAM

Table 5 – Public asymmetric Critical Security Parameters

2.2 Cryptographic algorithm

The following cryptographic algorithms are licensable and can be activated through the feature ‘Enable Feature’:

- Elliptic Curve

- EC MQV

- Accelerated Elliptic Curve

- SCA (Side channel attack) protected algorithms

2.2.1 FIPS approved and allowed

This section describes the algorithm used by the module in FIPS approved mode. Non-approved algorithms are not listed as they cannot be used in FIPS mode.

 The following acronyms are used in the table below:

- e - encryption

- d - decryption

- KO 1 - Three -key Triple DES

CAVP # Algorithm Standard Details

Boot Loader

#3130 SHA FIPS 180-4
SHA-256 (BYTE-only)

SHA-512 (BYTE-only)

#805 ECDSA FIPS 186-4
SigVer: CURVES(P-521: (SHA-512))
SHS: Val#3130

Firmware

http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3130
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#805
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3130

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 12 of 33

CAVP # Algorithm Standard Details

#3664 AES

FIPS 197
SP800-38A
SP800-38D
SP800-38B
SP800-38F

ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CTR (int only; 256)

CMAC (Generation/Verification) (KS: 128; Block Size(s): ; Msg Len(s) Min: 0 Max: 2^16 ; Tag Len(s) Min: 16 Max: 16) (KS: 192; Block Size(s): ; Msg Len(s) Min:

0 Max: 2^16 ; Tag Len(s) Min: 16 Max: 16) (KS: 256; Block Size(s): ; Msg Len(s) Min: 0 Max: 2^16 ;Tag Len(s) Min: 16 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96 64 32)(KS: AES_192(e/d) Tag Length(s): 128 120 112 104 96 64 32)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96 64 32); IV Generated: (Internally (using Section 8.2.2)); PT Lengths Tested:(0 , 1024 , 1024); AAD

Lengths tested: (1024 , 1024) ; IV Lengths Tested: (96 , 1024) ; 96BitIV_Supported ; OtherIVLen_Supported; GMAC_Supported

DRBG: Val# 985

KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 4096)

#2046 Triple-DES SP800-67 TECB(KO 1 e/d); TCBC(KO 1 e/d)

#3082 SHA FIPS 180-4 SHA-1 (BYTE-only); SHA-224 (BYTE-only); SHA-256 (BYTE-only); SHA-384 (BYTE-only);SHA-512 (BYTE-only)

#2414 HMAC with SHA FIPS 198-1
HMAC-SHA1 (Key Sizes Ranges Tested:KS=BS) SHS Val#3082; HMAC-SHA224 (Key Size Ranges Tested:KS=BS) SHS Val#3082; HMAC-SHA256 (Key Size Ranges

Tested:KS=BS) SHS Val#3082; HMAC-SHA384 (Key Size Ranges Tested:KS=BS) SHS Val#3082; HMAC-SHA512 (Key Size Ranges Tested:KS=BS) SHS Val#3082

#1897 RSA FIPS 186-4

FIPS186-2:

ALG[ANSIX9.31]: Key(gen)(MOD: 2048, 3072)

ALG[ANSIX9.31]: SIG(ver); 1024 , 1536 , 2048 , 3072 , 4096

SHS: SHA-1 Val#3082, SHA-224 Val#3082, SHA-256 Val#3082, SHA-384 Val#3082, SHA-512 Val#3082

FIPS186-4:

186-4KEY(gen): FIPS186-4_Random_e

PGM(ProbRandom: (2048 , 3072) PPTT:(C.3)

PGM(ProvPrimeCondition)

ALG[RSASSA-PKCS1_V1_5] SIG(gen) (2048 SHA(224 , 256 , 384 , 512)) (3072 SHA(224 , 256 , 384 , 512))

SIG(Ver) (1024 SHA(1 , 224 , 256 , 384 , 512)) (2048 SHA(1 , 224 , 256 , 384 , 512)) (3072 SHA(1 , 224 , 256 , 384 , 512))

[RSASSA-PSS]: Sig(Gen): (2048 SHA(224 SaltLen(28) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64))) (3072 SHA(224 SaltLen(28) , 256 SaltLen(32) , 384

SaltLen(48) , 512 SaltLen(64)))

Sig(Ver): (1024 SHA(1 SaltLen(20) , 224 SaltLen(28) , 256 SaltLen(32) , 384 SaltLen(48))) (2048 SHA(1 SaltLen(20) , 224 SaltLen(28) , 256 SaltLen(32) , 384

SaltLen(48) , 512 SaltLen(64))) (3072 SHA(1 SaltLen(20) , 224 SaltLen(28) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)))

SHA Val#3082, DRBG: Val# 985

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3664
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesnewval.html#2046
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmacval.html#2414
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1897
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 13 of 33

CAVP # Algorithm Standard Details

#1034 DSA FIPS 186-4

FIPS186-4:
PQG(gen)PARMS TESTED: [(2048, 224)SHA(224); (2048,256)SHA(256); (3072,256) SHA(256)]
PQG(ver)PARMS TESTED: [(1024,160) SHA(1); (2048,224) SHA(224); (2048,256) SHA(256); (3072,256) SHA(256)]
KeyPairGen: [(2048,224) ; (2048,256) ; (3072,256)]
SIG(gen)PARMS TESTED: [(2048,224) SHA(224 , 256 , 384 , 512); (2048,256) SHA(256 , 384 , 512); (3072,256) SHA(256 , 384 , 512);]
SIG(ver)PARMS TESTED: [(1024,160) SHA(1 , 224 , 256 , 384 , 512); (2048,224) SHA(224 , 256 , 384 , 512); (2048,256) SHA(256 , 384 , 512); (3072,256)
SHA(256 , 384 , 512)]
SHS: Val# 3082, DRBG: Val# 985

#771 ECDSA FIPS 186-4

FIPS186-4:
PKG: CURVES(P-224 P-256 P-384 P-521 K-233 K-283 K-409 K-571 B-233 B-283 B-409 B-571 ExtraRandomBits)
PKV: CURVES(ALL-P ALL-K ALL-B)
SigGen: CURVES(P-224: (SHA-224, 256, 384, 512) P-256: (SHA-256, 384, 512) P-384: (SHA-384, 512) P-521: (SHA-512) K-233: (SHA-224, 256, 384, 512) K-
283: (SHA-256, 384, 512) K-409: (SHA-384, 512) K-571: (SHA-512) B-233: (SHA-224, 256, 384, 512) B-283: (SHA-256, 384, 512) B-409: (SHA-384, 512) B-571:
(SHA-512))
SigVer: CURVES(P-192: (SHA-1, 224, 256, 384, 512) P-224: (SHA-224, 256, 384, 512) P-256: (SHA-256, 384, 512) P-384: (SHA-384, 512) P-521: (SHA-512) K-
163: (SHA-1, 224, 256, 384, 512) K-283: (SHA-256, 384, 512) K-409: (SHA-384, 512) K-571: (SHA-512) B-163: (SHA-1, 224, 256, 384, 512) B-233: (SHA-224,
256, 384, 512) B-283: (SHA-256, 384, 512) B-409: (SHA-384, 512) B-571: (SHA-512))
SHS: Val#3082, DRBG: Val# 985

#669

Key Agreement

CVL certificate for

DH, ECDH & EC MQV

SP800-56A

FFC: (FUNCTIONS INCLUDED IN IMPLEMENTATION: KPG Partial Validation)
SCHEMES: Ephem: (KARole: Initiator / Responder) FB FC OneFlow: (KARole: Initiator / Responder) FB FC Static: (KARole: Initiator / Responder) FB FC
DSA Val#1034, SHS Val#3082, DRBG Val#985
ECC: (FUNCTIONS INCLUDED IN IMPLEMENTATION: KPG Partial Validation)
SCHEMES: FullMQV: (KARole: Initiator / Responder) EB: P-224 EC: P-256 ED: P-384 EE:EphemUnified: (KARole: Initiator / Responder) EB: P-224 EC: P-256 ED:
P-384 EE: P-521
OnePassDH: (KARole: Initiator) EB: P-224 EC: P-256 ED: P-384 EE: P-521 StaticUnified: (KARole: Initiator / Responder) EB: P-224 EC: P-256 ED: P-384 EE: P-
521
ECDSA Val#771, SHS Val#3082, DRBG Val#985

#73 KBKDF SP800-108
CTR_Mode: (Llength(Min16 Max16) MACSupported([CMACAES256]) LocationCounter([BeforeFixedData]) rlength([8]))
AES Val#3664, DRBG Val#985

#985 DRBG SP800-90A Hash_Based DRBG: [Prediction Resistance Tested: Not Enabled (SHA-256) (SHS Val#3082)]

Main Cryptographic Accelerator

http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1034
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#771
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#669
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1034
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#771
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/KBKDF800-108/kbkdfnewval.html#73
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3664
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 14 of 33

CAVP # Algorithm Standard Details

#3697 AES SP800-38D

CMAC (Generation/Verification) (KS: 128; Block Size(s): ; Msg Len(s) Min: 0 Max: 2^16 ; Tag Len(s) Min: 16 Max: 16) (KS: 192; Block Size(s): ; Msg Len(s) Min:
0 Max: 2^16 ; Tag Len(s) Min: 16 Max: 16) (KS: 256; Block Size(s): ; Msg Len(s) Min: 0 Max: 2^16 ;Tag Len(s) Min: 16 Max: 16)
AES Val#3711
GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96 64 32)(KS: AES_192(e/d) Tag Length(s): 128 120 112 104 96 64 32)
(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96 64 32)
IV Generated: (Internally (using Section 8.2.2)) ; PT Lengths Tested:(0 , 1024 , 1024) ; AAD Lengths tested: (1024 , 1024) ; IV Lengths Tested: (96 ,
1024) ; 96BitIV_Supported ; OtherIVLen_Supported
GMAC_Supported
DRBG: Val# 985

#3711 AES
FIPS 197 &
SP800-138

ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CTR (int only; 256)
KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 4096)

#2073 Triple-DES SP800-67 TECB(KO 1 e/d); TCBC(KO 1 e/d)

#75 KBKDF SP800-108
CTR_Mode: (Llength(Min16 Max16) MACSupported([CMACAES256]) LocationCounter([BeforeFixedData]) rlength([8]))
AES Val#3664, DRBG Val#985

Firmware Side-Channel

#1917 RSA FIPS 186-4

FIPS186-2:

ALG[RSASSA-PKCS1_V1_5]:

SIG(ver): 1024 , 1536 , 2048 , 3072 , 4096

SHS: SHA-1 Val#3082, SHA-224 Val#3082, SHA-256 Val#3082, SHA-384 Val#3082, SHA-512 Val#3082

FIPS186-4:

186-4KEY(gen): FIPS186-4_Random_e

PGM(ProbRandom: (2048, 3072) PPTT:(C.3)

ALG[RSASSA-PKCS1_V1_5] SIG(gen) (2048 SHA(224 , 256 , 384 , 512)) (3072 SHA(224 , 256 , 384 , 512))

SIG(Ver) (1024 SHA(1 , 224 , 256 , 384 , 512)) (2048 SHA(1 , 224 , 256 , 384 , 512)) (3072 SHA(1 , 224 , 256 , 384 , 512))

[RSASSA-PSS]: Sig(Gen): (2048 SHA(224 SaltLen(28) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64))) (3072 SHA(224 SaltLen(28) , 256 SaltLen(32) , 384

SaltLen(48) , 512 SaltLen(64)))

Sig(Ver): (1024 SHA(1 SaltLen(20) , 224 SaltLen(28) , 256 SaltLen(32) , 384 SaltLen(48))) (2048 SHA(1 SaltLen(20) , 224 SaltLen(28) , 256 SaltLen(32) , 384

SaltLen(48) , 512 SaltLen(64))) (3072 SHA(1 SaltLen(20) , 224 SaltLen(28) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)))

SHA Val#3082, DRBG: Val# 985

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3697
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3711
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3711
http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesnewval.html#2073
http://csrc.nist.gov/groups/STM/cavp/documents/KBKDF800-108/kbkdfnewval.html#75
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3664
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1917
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 15 of 33

CAVP # Algorithm Standard Details

#790 ECDSA FIPS 186-4

FIPS186-4:
PKG: CURVES(P-224 P-256 P-384 P-521 K-233 K-283 K-409 K-571 B-233 B-283 B-409 B-571 ExtraRandomBits)
PKV: CURVES(ALL-P ALL-K ALL-B)
SigGen: CURVES(P-224: (SHA-224, 256, 384, 512) P-256: (SHA-256, 384, 512) P-384: (SHA-384, 512) P-521: (SHA-512) K-233: (SHA-224, 256, 384, 512) K-
283: (SHA-256, 384, 512) K-409: (SHA-384, 512) K-571: (SHA-512) B-233: (SHA-224, 256, 384, 512) B-283: (SHA-256, 384, 512) B-409: (SHA-384, 512) B-571:
(SHA-512))
SigVer: CURVES(P-192: (SHA-1, 224, 256, 384, 512) P-224: (SHA-224, 256, 384, 512) P-256: (SHA-256, 384, 512) P-384: (SHA-384, 512) P-521: (SHA-512) K-
163: (SHA-1, 224, 256, 384, 512) K-283: (SHA-256, 384, 512) K-409: (SHA-384, 512) K-571: (SHA-512) B-163: (SHA-1, 224, 256, 384, 512) B-233: (SHA-224,
256, 384, 512) B-283: (SHA-256, 384, 512) B-409: (SHA-384, 512) B-571: (SHA-512))
SHS: Val#3082, DRBG: Val# 985

#696

Key Agreement

CVL certificate for

ECDH

SP800-56A

ECC: (FUNCTIONS INCLUDED IN IMPLEMENTATION: KPG Partial Validation)

SCHEMES: EphemUnified: (KARole: Initiator / Responder) EB: P-224 EC: P-256 ED: P-384 EE: P-521 OnePassDH: (KARole: Initiator / Responder) EB: P-224 EC:

P-256 ED: P-384 EE: P-521StaticUnified: (KARole: Initiator / Responder) EB: P-224 EC: P-256 ED: P-384 EE: P-521

ECDSA Val#790, SHS Val#3082, DRBG Val#985

Cryptographic Accelerator Library

#1903 RSA FIPS 186-4

FIPS186-2:

ALG[RSASSA-PKCS1_V1_5]:

SIG(ver): 1024 , 1536 , 2048 , 3072 , 4096

SHS: SHA-1 Val#3082, SHA-224 Val#3082, SHA-256 Val#3082, SHA-384 Val#3082, SHA-512 Val#3082

FIPS186-4:

186-4KEY(gen): FIPS186-4_Random_e

PGM(ProbRandom: (2048 , 3072) PPTT:(C.3)

ALG[RSASSA-PKCS1_V1_5] SIG(gen) (2048 SHA(224 , 256 , 384 , 512)) (3072 SHA(224 , 256 , 384 , 512))

SIG(Ver) (1024 SHA(1 , 224 , 256 , 384 , 512)) (2048 SHA(1 , 224 , 256 , 384 , 512)) (3072 SHA(1 , 224 , 256 , 384 , 512))

[RSASSA-PSS]: Sig(Gen): (2048 SHA(224 SaltLen(28) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64))) (3072 SHA(224 SaltLen(28) , 256 SaltLen(32) , 384

SaltLen(48) , 512 SaltLen(64)))

Sig(Ver): (1024 SHA(1 SaltLen(20) , 224 SaltLen(28) , 256 SaltLen(32) , 384 SaltLen(48))) (2048 SHA(1 SaltLen(20) , 224 SaltLen(28) , 256 SaltLen(32) , 384

SaltLen(48) , 512 SaltLen(64))) (3072 SHA(1 SaltLen(20) , 224 SaltLen(28) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)))

SHA Val#3082, DRBG: Val# 985

http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#790
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#696
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#790
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1903
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 16 of 33

CAVP # Algorithm Standard Details

#1039 DSA FIPS 186-4

FIPS186-4:

PQG(gen)PARMS TESTED: [(2048, 224)SHA(224); (2048,256)SHA(256); (3072,256) SHA(256)]

PQG(ver)PARMS TESTED: [(1024,160) SHA(1); (2048,224) SHA(224); (2048,256) SHA(256); (3072,256) SHA(256)]

KeyPairGen: [(2048,224) ; (2048,256) ; (3072,256)]

SIG(gen)PARMS TESTED: [(2048,224) SHA(224 , 256 , 384 , 512); (2048,256) SHA(256 , 384 , 512); (3072,256) SHA(256 , 384 , 512);]

SIG(ver)PARMS TESTED: [(1024,160) SHA(1 , 224 , 256 , 384 , 512); (2048,224) SHA(224 , 256 , 384 , 512); (2048,256) SHA(256 , 384 , 512); (3072,256)

SHA(256 , 384 , 512)]

SHS: Val# 3082, DRBG: Val# 985

#776 ECDSA FIPS 186-4

FIPS186-4:
PKG: CURVES(P-224 P-256 P-384 P-521 K-233 K-283 K-409 K-571 B-233 B-283 B-409 B-571 ExtraRandomBits)
PKV: CURVES(ALL-P ALL-K ALL-B)
SigGen: CURVES(P-224: (SHA-224, 256, 384, 512) P-256: (SHA-256, 384, 512) P-384: (SHA-384, 512) P-521: (SHA-512) K-233: (SHA-224, 256, 384, 512) K-
283: (SHA-256, 384, 512) K-409: (SHA-384, 512) K-571: (SHA-512) B-233: (SHA-224, 256, 384, 512) B-283: (SHA-256, 384, 512) B-409: (SHA-384, 512) B-571:
(SHA-512))
SigVer: CURVES(P-192: (SHA-1, 224, 256, 384, 512) P-224: (SHA-224, 256, 384, 512) P-256: (SHA-256, 384, 512) P-384: (SHA-384, 512) P-521: (SHA-512) K-
163: (SHA-1, 224, 256, 384, 512) K-283: (SHA-256, 384, 512) K-409: (SHA-384, 512) K-571: (SHA-512) B-163: (SHA-1, 224, 256, 384, 512) B-233: (SHA-224,
256, 384, 512) B-283: (SHA-256, 384, 512) B-409: (SHA-384, 512) B-571: (SHA-512))
SHS: Val#3082, DRBG: Val# 985

#682

Key Agreement

CVL certificate for

DH & ECDH

SP800-56A

FFC: (FUNCTIONS INCLUDED IN IMPLEMENTATION: KPG Partial Validation)

SCHEMES: Ephem: (KARole: Initiator / Responder) FB FC OneFlow: (KARole: Initiator / Responder) FB FC Static: (KARole: Initiator / Responder) FB FC

DSA Val#1039, SHS Val#3082, DRBG Val#985

ECC: (FUNCTIONS INCLUDED IN IMPLEMENTATION: KPG Partial Validation)

SCHEMES: EphemUnified: (KARole: Initiator / Responder) EB: P-224 EC: P-256 ED: P-384 EE: P-521 OnePassDH: (KARole: Initiator / Responder) EB: P-224 EC:

P-256 ED: P-384 EE: P-521StaticUnified: (KARole: Initiator / Responder) EB: P-224 EC: P-256 ED: P-384 EE: P-521

ECDSA Val#776, SHS Val#3082, DRBG Val#985

#1111

Key Agreement

CVL certificate for EC

MQV

FIPS 186-4

ECC: (FUNCTIONS INCLUDED IN IMPLEMENTATION: KPG Partial Validation)

SCHEMES: FullMQV: (KARole: Initiator / Responder) EB: P-224 EC: P-256 ED: P-384 EE: P-521

ECDSA Val#776, SHS Val#3082, DRBG Val#985

Others

N/A NDRNG N/A Allowed Non-Deterministic Random Number Generator (NDRNG). NDRNG is used to seed the approved DRBG

N/A PBKDF SP800-132 Vendor affirmed PBKDF implementation. Algorithm used only for storage of the EncFSKey

N/A Diffie-Hellman N/A CVL Cert. #669, #682, key agreement

N/A EC Diffie-Hellman N/A CVL Cert. #669, #682, #696; key agreement

http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1039
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#776
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#682
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1039
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#776
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#1111
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#776
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 17 of 33

CAVP # Algorithm Standard Details

N/A EC MQV N/A CVL Cert. #669, #1111; key agreement

Table 6 - Overview of FIPS Approved and allowed algorithms

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 18 of 33

3. Roles and Services

3.1 Authentication enforcement

The module provides identity-based authentication, as described in chapter 5.1, and furthermore, the strength of the functions

involved are described in chapter 5.1.1. A four second delay is implemented upon an unsuccessful authentication attempt,

thereby dramatically increasing the time required to brute-force module authentication.

3.2 Roles

This section described the roles supported by the module. Note a user is “Unauthenticated” prior to authentication.

3.2.1 User

User role (USR) corresponds to the FIPS User role, as defined in FIPS 140-2. The exact accreditation and operation required to

perform each service is listed in the table of services below.

In order to perform an operation on a stored key, the operator must first load the Key blob. If the Key blob is protected by a

logical token, the operator must first load the logical token by loading shares from smart cards. Once an operator in the user

role has loaded a key they can then use this key to perform cryptographic operations as defined by the Access Control List (ACL)

stored with the key.

Each Key blob contains an ACL that determines what services can be performed on that key. This ACL can require a certificate

from an nShield Security Officer authorizing the action. Some actions including writing tokens always require a certificate.

3.2.2 nShield Security Officer

The nShield Security Officer role (NSO) corresponds to the FIPS Crypto Officer role, as defined in FIPS 140-2. An operator

assumes the role of NSO by loading the private half of KNSO and presenting the ObjectID for this key to authorize a command.

The NSO is identified by a key pair, referred to as KNSO. The hash of the public half of this key is stored when the unit is

initialized. Any operation involving a module key or writing a token requires a certificate signed by KNSO. The NSO is

responsible for creating the authentication tokens (smart cards) for each operator and ensuring that these tokens are physically

handed to the correct person.

3.2.3 Junior Security Officer

Junior Security Officer role (JSO) is a delegated role created by the NSO for authorizing an action. In order to assume the role of

JSO, the operator loads a key corresponding to a service that is delegated by the NSO and presents the handle of this key, and if

required the certificate signed by KNSO that delegates authority to the key, to authorize a command.

An ACL can then refer to this key, and the JSO is then empowered to sign the certificate authorizing the action. The JSO's keys

should be stored on a Key blob protected by a token that is not used for any other purpose. A JSO can delegate portions of their

authority to a new operator in the same way. The new operator will be a JSO if they have authority they can delegate,

otherwise they will assume the user role.

3.3 Services vs Roles

The table below presents the Services of the product with a mapping with the Roles.

The Access column presents the access level given to the CSP, R for Read, W for Write, D for Delete

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 19 of 33

Service Description Authorized roles Access CSPs
Big number operation
Cmd_BignumOp

Performs an operation on an integer. Unauthenticated - None

Buffer operations
Cmd_CreateBuffer
Cmd_LoadBuffer

Mechanism for loading of data into the module volatile memory. The data can be loaded in encrypted form
which can be decrypted inside the module with a key that has been previously loaded.

Unauthenticated R Key blob

Bulk channel
Cmd_ChannelOpen
Cmd_ChannelUpdate

Provides a bulk processing channel for encryption or decryption using symmetric key algorithms. User R Application keys (KA)

Change Share Passphrase
Cmd_ChangeSharePIN

Updates the passphrase of a Share. NSO / JSO / User W Passphrase, Share

Check User Action
Cmd_CheckUserAction

Determines whether the ACL associated with a Key blob allows a specific operator defined action. User / JSO / NSO R Key blob; KNSO, KJSO; KA

Clear Unit
Cmd_ClearUnit

Zeroises all keys, tokens and shares that are loaded into the module. Will cause the module to reboot and
perform self-tests. The CSP that are keeping on a smartcard for instance are not erased. When a module is
power cycle, a clear unit command is sent to the module.

Unauthenticated D

Application keys (KA), DRBG
internal state, EncFSKey,
Impath Keys, Key Blob, KJSO,
Logical Token (LT), Passphrase,
Remote Administration keys,
Share

Derive Key
Cmd_DeriveKey

Key wrapping, unwrapping. The ACL needs to authorize this operation. NSO / JSO / User R
Application keys (KA)

Destroy
Cmd_Destroy

Remove handle to an object in SRAM. If the current handle is the only one remaining, the object is deleted
from SRAM. This action deletes the element from the memory

Unauthenticated D
Application keys (KA), Logical
Token, Share, Impath keys

Duplicate key handle
Cmd_Duplicate

Creates a second instance of a Key with the same ACL and returns a handle to the new instance.
Note that the source key ACL needs to authorize this operation.

User / JSO / NSO R Application keys (KA)

Enable feature
Cmd_StaticFeatureEnable

Enables the service. This service requires a certificate signed by the Master Feature Enable key. Unauthenticated - None

Encryption / decryption
Cmd_Encrypt
Cmd_Decrypt

Encryption and decryption using the provided key handle. User R Application keys (KA)

Erase from smartcard /softcard
Cmd_EraseFile
Cmd_EraseShare

Removes a file or a share and delete the CSP from memory, it does not erase the share keys NSO / JSO / User D Share keys

File operations
Cmd_FileCopy
Cmd_FileCreate
Cmd_FileErase
Cmd_FileOp

Performs file operations in the module. NSO / JSO - None

Firmware Authenticate
Cmd_FirmwareAuthenticate

Reports firmware version, using a zero knowledge challenge response protocol based on HMAC
The protocol generates a random value to use as the HMAC key.

Unauthenticated - None

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 20 of 33

Service Description Authorized roles Access CSPs
Firmware Update
Cmd_ProgrammingBegin
Cmd_ProgrammingBeginChunk
Cmd_ProgrammingLoadBlock
Cmd_ProgrammingEndChunk
Cmd_ProgrammingEnd
Cmd_ProgrammingGetKeyList

Perform a firmware update. Restricted service to nCipher signed Firmware. NSO R
Firmware Confidentiality Key
(KFC), Firmware Integrity key
(NFIK), KJWAR

Force module to fail
Cmd_Fail

Causes the module to enter a failure state. Unauthenticated - None

Foreign Token command
Cmd_ForeignTokenCommand

Sends an ISO-7816 command to a smart card over the channel opened by ForeignTokenOpen. Unauthenticated R Logical Token

Foreign Token open
Cmd_ForeignTokenOpen

Opens a channel for direct data access to a Smartcard
Requires Feature Enabled.

NSO / JSO R Logical Token

Format Token
Cmd_FormatToken

Formats a smart card or a software token. NSO / JSO - None

Generate Logical Token
Cmd_GenerateLogicalToken

Creates a new Logical Token with given properties and secret sharing parameters. NSO, JSO W
Module key (KM), Logical
Token

Generate prime number
Cmd_GeneratePrime

Generates a random prime number. Unauthenticated R DRBG internal state

Generate random number
Cmd_GenerateRandom

Generates a random number from the Approved DRBG. Unauthenticated R DRBG internal state

Get ACL
Cmd_GetACL

Get the ACL of a given handle. User R Application keys (KA)

Get challenge
Cmd_GetChallenge

Get a random challenge that can be used in fresh certificates. Unauthenticated R DRBG internal state

Get key application data
Cmd_GetApplicationData

Get the application data field from a key. User R Application keys (KA)

Get Key Information
Cmd_GetKeyInfo
Cmd_GetKeyInfoEx

Get the type, length and hash of a key. NSO / JSO / User R Application keys (KA)

Get list of module keys
Cmd_GetKMList

Get the list of the hashes of all module keys and the KNSO. Unauthenticated - None

Get list of slot in the module
Cmd_GetSlotList

Get the list of slots that are available from the module. Unauthenticated - None

Get Logical Token Info
Cmd_GetLogicalTokenInfo
Cmd_GetLogicalTokenInfoEx

Get information about a Logical Token: hash, state and number of shares. NSO / JSO / User R Logical Token (LT)

Get module signing long term key
Cmd_GetKML

Get a handle to the KML public key. Unauthenticated R KML (public)

Get module state
Cmd_GetModuleState

Returns unsigned data about the current state of the module. Unauthenticated - None

http://grok.ncipher.com:8080/source/s?defs=direct&project=msgs
http://grok.ncipher.com:8080/source/s?defs=data&project=msgs

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 21 of 33

Service Description Authorized roles Access CSPs
Get real time clock
Cmd_GetRTC

Get the current time from the module Real Time Clock. Unauthenticated - None

Get share access control list
Cmd_GetShareACL

Get the Share's ACL. NSO / JSO / User R Share key

Get Slot Information
Cmd_GetSlotInfo

Get information about shares and files on a Smartcard that has been inserted in a module slot. Unauthenticated - None

Get Ticket
Cmd_GetTicket

Get a ticket (an invariant identifier) for a key. This can be passed to another client or to a SEE World which
can redeem it using Redeem Ticket to obtain a new handle to the object.

NSO / JSO / User - None

Impath secure channel
Cmd_ImpathGetInfo
Cmd_ImpathKXBegin
Cmd_ImpathKXFinish
Cmd_ImpathReceive
Cmd_ImpathSend

Support for Impath secure channel. Requires Feature Enabled. Cmd_ImpathKXBegin and
Cmd_ImpathKXFinish will create the Impath Key between two modules.
Cmd_ImpathGetInfo, Cmd_ImpathReceive and Cmd_ImpathSend uses the impath key

NSO / JSO / User R, W
Impath key

Initialize Unit
Cmd_InitializeUnit
Cmd_InitializeUnitEx

Causes a module in the pre-initialization state to enter the initialization state. When the module enters the
initialization state, it erases all Module keys (KM). It also erases the module's signing key, KML, and the hash
of the Security Officer's keys, HKNSO. It then generates a new KML and KM.

Unauthenticated D, W

(D, W):
Module Key (KM), KML
(D):
Application keys (KA), Archiving
Keys, Impath keys, KJSO, KNSO,
Share, Remote Administration
Session keys

Insert a Softcard
Cmd_InsertSoftToken

Allocates memory on the module that is used to store one or more logical shares or other Token data
objects.

Unauthenticated R Share, Share key

Key export
Cmd_Export

Exports a public key in plain text. NSO / JSO / User R
Application keys (KA), KJSO,
KNSO, KML

Key generation
Cmd_GenerateKey
Cmd_GenerateKeyPair

Generates a cryptographic key of a given type with a specified ACL. It returns a handle to the key or a State
Blob with the key. Optionally, it returns a KML signed certificate with the ACL information.

NSO, JSO W
Key blob, DRBG internal state,
Application keys (KA), KJSO

Key import
Cmd_Import

Loads a plain text key into the module. If the module is initialized in FIPS 140-2 level 3 mode, this service is
available for public keys only.

NSO, JSO R
Key blob, Application keys (KA)

Load Blob
Cmd_LoadBlob

Load a Key blob into the module. It returns a handle to the key suitable for use with module services. NSO / JSO / User R
Application keys (KA), Archiving
keys (KR), Key blob, KJSO,
Module key (KM), KNSO

Load Logical Token
Cmd_LoadLogicalToken

Initiates loading a Logical Token from Shares, which can be loaded with the Read Share command. Unauthenticated R
Module key (KM), Logical
Token

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 22 of 33

Service Description Authorized roles Access CSPs

Make Blob
Cmd_MakeBlob

Creates a Key blob containing the key. Note that the key ACL needs to authorize the operation. User / JSO / NSO W

Application keys (KA), KNSO,
Archiving keys (KR), Key blob,
KJSO, Module key (KM), Logical
Token (LT)

Message digest
Cmd_Hash

Computes the cryptographic hash of a given message. Unauthenticated - None

Modular Exponentiation
Cmd_ModExp
Cmd_ModExpCrt
Cmd_RSAImmedSignEncrypt
Cmd_RSAImmedVerifyDecrypt

Performs a modular exponentiation (standard or CRT) on values supplied with the command. Unauthenticated - None

Module hardware information
Cmd_ModuleInfo

Reports detailed hardware information. Unauthenticated - None

No Operation
Cmd_NoOp

No operation. Unauthenticated - None

NVRAM Allocate
Cmd_NVMemAllocate

Allocation in NVRAM. NSO - None

NVRAM Free
Cmd_NVMemFree

Deallocation from NVRAM. NSO - None

Operation on NVM files
Cmd_NVMemOp

Returns a list of files in NVRAM. Unauthenticated - None

Operation on NVM list
Cmd_NVMemList

Returns a list of files in NVRAM. Unauthenticated - None

Power On Power on of the module, re initialize the DRBG internal state and reconstruct the EncFSKey Unauthenticated W EncFSKey

Read file
Cmd_ReadFile

Reads data from a file on a Smartcard or Softcard. The ACL needs to authorize this operation. NSO / JSO - None

Read share
Cmd_ReadShare

Reads a share from a Smartcard or Softcard. Once a quorum of shares have been loaded, the module re-
assembles the Logical Token.

NSO / JSO / User R
Passphrase, Share Keys, Logical
Token (LT)

Receive share from remote slot
Cmd_ReceiveShare

Receives a Share encrypted with the Impath session keys by a remote module. NSO / JSO / User R
Impath key, passphrase,
Application keys (KA), Share
Keys

Redeem Ticket
Cmd_RedeemTicket

Gets a handle in the current name space for the object referred to by a ticket created by Get Ticket. NSO / JSO / User R
Key blob, Logical Token (LT),
Impath key

Remote Administration
Cmd_DynamicSlotCreateAssociation
Cmd_DynamicSlotExchangeAPDUs
Cmd_DynamicSlotsConfigure
Cmd_DynamicSlotsConfigure
Cmd_DynamicSlotsConfigureQuery
Cmd_VerifyCertificate

Provides remote presentation of Smartcards using a secure channel between the module and the
Smartcard. The KJWAR is used in the operation (R), the remote administration session keys are created (W)

NSO / JSO / User R & W
Remote administration session
keys, KJWAR

Copyright © 2019 nCipher Security Limited. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 23 of 33

Service Description Authorized roles Access CSPs
Remove a Softcard
Cmd_RemoveSoftToken

Removes a Softcard from the module. It returns the updated shares and deletes them from the module’s
memory. The removal does not erase the CSP from the softcard.

Unauthenticated D Share, Share key

Report statistics
Cmd StatGetValues
Cmd_StatEnumTree

Reports the values of the statistics tree. Unauthenticated - None

Secure Execution Environment
Cmd_CreateSEEWorld
Cmd_GetWorldSigners
Cmd_SEEJob
Cmd_SetSEEMachine
Cmd_TraceSEEWorld

Creation and interaction with SEE machines. NSO - None

Send share to remote slot
Cmd_SendShare

Reads a Share and encrypts it with the Impath session keys for transmission to the peer module. NSO / JSO / User R Impath key, Share Keys

Set ACL
Cmd_SetACL

Replaces the ACL of a given Key blob with a new ACL. The ACL needs to authorize this operation.
NSO / JSO / User

R Application keys (KA)

Set key application data
Cmd_SetAppData

Writes the application information field of a key. User W Application keys (KA)

Set Module Key
Cmd_SetKM

Allows a Key blob to be stored internally as a Module key (KM) value. The ACL needs to authorize this
operation.

NSO / JSO R Key blob, Module key (KM)

Set NSO Permissions
Cmd_SetNSOPerm

Sets the NSO key hash and which permissions required a Delegation Certificate. NSO R KNSO

Set real time clock
Cmd_SetRTC

Sets the Real-Time Clock value. JSO -
None

Show Status
Cmd_NewEnquiry

Report status information. Unauthenticated - None

Sign Module State
Cmd_SignModuleState

Returns a signed certificate that contains data about the current configuration of the module. Unauthenticated R KML

Signature generation
Cmd_Sign

Generate a digital signature or MAC value. NSO / JSO / User R Application keys (KA)

Signature verification
Cmd_Verify

Verifies a digital signature or MAC value. NSO / JSO / User R Application keys (KA)

Write file
Cmd_WriteFile

Writes a file to a Smartcard or Softcard. Unauthenticated - None

Write share
Cmd_WriteShare

Writes a Share to a Smartcard or Softcard. NSO / JSO W Share

Table 7 - Services vs Roles

Copyright 2019 nCipher Security. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 24 of 33

4. Physical Security

4.1 Physical security overview

The product is a multiple-chip embedded cryptographic module as described in FIPS 140-2. It is design to meet FIPS 140-2

Security level 3 requirement. All components within the defined cryptographic boundary of the module, except the physical

interfaces, are covered by an opaque epoxy resin, and opaque solid metal heat sink.

PCI card on which the module resides, has a clear button. Pressing this button puts the module into the self-test state, clearing all

application keys (KA), stored Key blobs, Logical Tokens and Impath keys and running all self-tests. The NSO's key, module keys

and module signing key (KML) can be cleared by returning the module to the factory state, as described above.

4.2 Checking the module

To ensure physical security, the following checks are required to be made regularly:

- Examine the entire PCI including the epoxy resin security coating for obvious signs of damage.
- Examine the heatsink on top of the module and also the potting which binds the edges of the heatsink for obvious signs

of damage.
- Examine the smartcard reader and ensure it is directly plugged into the module or into the port provided by any

appliance in which the module is integrated and the cable has not been tampered with.

Copyright 2019 nCipher Security. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 25 of 33

5. Rules

5.1 Identification and authentication

Communication with the modules is performed via a server program running on the host machine, using standard inter process

communication, sockets on UNIX and pipes on Windows. The operator must log on to the host computer and start an nShield

enabled application to use the module. The application connects to the hard server, this connection is given a client ID, a 32-bit

arbitrary number.

Before performing any service the operator must present the correct authorization. Where several stages are required to

assemble the authorization, all the steps must be performed on the same connection. The authorization required for each

service is listed in the Section “Services vs Roles”. An operator cannot access any service that accesses CSPs without first

presenting a smartcard, or software token.

5.1.1 Strength of authentication

KNSO, KJSO and application keys are stored encrypted with Module key (KM) and encrypted with an associated logical token for
storage on the host side. The associated logical token is encrypted with KM and divided into shares and then encrypted by a share
key on smartcard or softcard plus an optional passphrase for each share. The share is distributed to the quorum of users.

The authentication requires the following:

- Presentation of the quorum of shares to the HSM by the quorum of smartcards or softcard holders to reconstruct the
encrypted logical token. Each share is protected by an AES-128 key, optional passphrase and associated MAC values.

- The encrypted logical token is then decrypted by the HSM to validate that the logical token belongs to the security world.
- The usage of the key is granted.

The protection of the authentication mechanism meets the requirement of 10^6 resistance for authentication mechanisms. In

effect, an attacker would need to brute force the MAC protection (2^160) and brute force the share which is protected by an

AES-key (2^128).

5.1.2 Access Control

Keys are stored on the host computer's hard disk in an encrypted format, known as a Key blob. In order to load a key, the

operator must first load the logical token used to encrypt this blob.

The Key blob also contains an ACL that specifies which services can be performed with this key, and the number of times these

services can be performed. These can be hard limits or per authorization limits. If a hard limit is reached that service can no

longer be performed on that key. If a per-authorization limit is reached the operator must reauthorize the key by reloading the

token.

All objects are referred to by handle. Handles are cross-referenced to a client, identified by a unique ClientID. If a command

refers to a handle that was issued to a different client, the command is refused. Services exist to pass a handle between clients.

5.1.3 Access Control List

An Access Control List or ACL is associated to all Key blobs and describes the operations that can be performed by its associated

key. Created by the operator during the generation or import of the key and stored with the key enciphered and MAC when it is

on the blob format.

Copyright 2019 nCipher Security. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 26 of 33

When the blob is reloaded the ACL applies to the new Key blob created. It can only be altered if the ACL includes the SetACL

service. The ACL is stored with the key when it is stored as a blob and applies to the new Key blob created when you reload the

blob. ACL design is complex - operators will not normally need to write ACLs themselves. nCipher provide tools to generate keys

with strong ACLs.

Table 8 - ACL usage

5.1.4 Object re-use

All objects stored in the module are referred to by a handle. The module's memory management functions ensure that a specific

memory location can only be allocated to a single handle. The handle also identifies the object type, and all of the modules

enforce strict type checking. When a handle is released the memory allocated to it is actively zeroed.

5.1.5 Error conditions

If the module encounters an unrecoverable error it enters in the error state. The error state is indicated by the status LED

flashing in the Morse pattern SOS. As soon as the unit enters the error state all processors stop processing commands and no

further replies are returned. In the error state the unit does not respond to commands. The unit must be reset. Upon reset, the

keys and CSPs are zeroized.

If the module cannot complete a command due to a temporary condition, the module returns a command block with no data

and an appropriate status word. The operator can resubmit the command at a later time. The server program can record a log of

failures.

5.1.6 Status information

The module sends a signal to the status LED on the PCI card that indicates the overall state of the module. The module also

returns a status message in the reply to every command. This indicates the status of that command.

There are a number of services that report status information (e.g. new enquiry), for more information refer to the services table.

5.1.7 Create a new operator

To create a new operator:
1. Create a Logical Token

Usage Description

Limits on operation

The ACL can specify limits on operation or groups of operations. Those limits may be global
limits or per authorization limits:

- If a global limit is exceeded, then the key cannot be used for that operation

- If a per authorization limit is exceeded then the Logical Token protecting the key
must be reloaded before the key can be reused

Specify a certifier for an

operation

In this case, the operator must present a certificate signed by the key whose hash is in the ACL

with the command in order to use the service

List operator defined actions

These actions do not permit any operations within the module, but can be tested with the

CheckUserACL service. This enables SEE programs to make use of the ACL system for their own

purposes

Specify a host service identifier

An ACL can also specify a host service identifier. In which case the ACL is only met if the hard

server appends the matching Service name. This feature is designed to provide a limited level

of assurance and relies on the integrity of the host, it offers no security if the server is

compromised or not used.

Copyright 2019 nCipher Security. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 27 of 33

2. Write one or more shares of this token onto software tokens
3. For each key the operator will require, export the key as a Key blob under this token
4. Give the operator any passphrases used and the Key blob

nCipher supplies a graphical user interface, called KeySafe, and a command line tool called new-world, that can help automate these

steps.

5.1.8 Authorize the operator to create keys

To authorize the operator to create keys:
1. Create a new key, with an ACL that only permits UseAsSigningKey
2. Export this key as a Key blob under the operator's token
3. Create a certificate signed by the NSO's key that:

- includes the hash of this key as the certifier
- authorizes the action GenerateKey or GenerateKeyPair depending on the type of key required

4. If the operator needs to create permanent - as opposed to session - keys, the certificate must also include an entry that
enables the action MakeBlob. The certificate can restrict the operator to only making blobs protected by their Operator
Card Set by including the hash of its Logical Token

5. Give the operator the Key blob and certificate

nCipher supplies a graphical user interface, called KeySafe, and a command line tool called new-world, that can help automate these

steps.

5.1.9 Authorize an operator to act as a Junior Security Officer

To authorize an operator to act as a Junior Security Officer:
1. Generate a Logical Token to use to protect the JSO's key
2. Write one or more shares of this token onto software tokens
3. Create a new key pair

- Give the private half an ACL that permits Sign and UseAsSigningKey

- Give the public half an ACL that permits ExportAsPlainText

- Export the private half of the JSO's key as a Key blob under this token

- Export the public half of the JSO's key as plain text
4. Create a certificate signed by the NSO's key that includes the hash of this key

- Authorizes the actions GenerateKey, GenerateKeyPair

- Authorizes the actions GenerateLogicalToken, WriteShare and MakeBlob, these may be limited to a particular
module key

5. Give the JSO the software token, any passphrases used, the Key blob and certificate

nCipher supplies a graphical user interface, called KeySafe, and a command line tool called new-world, that can help automate these

steps.

5.1.10 Authenticate an operator to use a stored key

To authenticate an operator to use a stored key:
1. Use the LoadLogicalToken service to create the space for a Logical Token
2. Use the ReadShare service to read each share from the software token
3. Use the LoadBlob service to load the key from the Key blob

The operator can now perform the services specified in the ACL for this key.

To assume NSO role, load the NSO's key using this procedure. The NSO's key can then be used in certificates authorizing further

operations.

Copyright 2019 nCipher Security. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 28 of 33

nCipher supplies a graphical user interface, called KeySafe, and a command line tool called new-world, that can help automate these

steps.

5.1.11 Authenticate an operator to create a new key

To authenticate an operator to create a new key:
1. If you have not already loaded your operator token, load it as indicated above
2. Use the LoadBlob service to load the authorization key from the Key blob
3. Use the KeyId returned to build a signing key certificate
4. Present this certificate with the certificate supplied by the NSO with the GenerateKey, GenerateKeyPair or MakeBlob

command

nCipher supplies a graphical user interface, called KeySafe, and a command line tool called new-world, that can help automate these

steps.

5.2 Delivery and operation

5.2.1 Delivery

Solo XC modules are sent to the customers using a standard carrier service. After accepting delivery of the module, the Crypto

Officer shall perform an inspection of the module as per section 4.2 of this Security Policy. This inspection is done to ensure that

the module has not been tampered with during transit. If the inspection results indicate that the module has not been tampered

with, the Crypto Officer can then proceed with installation and configuration of the module.

The module must be installed and configured according to the instructions provided in Section 5.2.3 of this security policy

document.

Once the module hardware has been installed, the user must install the support software and initialize the module as described

in the User Guide. There are separate versions of this guide for every operating system.

For detailed information on how to configure the module, including how to upgrade its software please refer to the User Guide.

For information on how to develop applications including SEE (Secure Execution Engine) applications, please refer to the

CodeSafe Developers Guide.

5.2.2 MOI switch

The MOI switch facilitates specific services of the module depending on the switch setting:

 Initialization
o The module is in ‘Initialization’, by physically moving the switch to the ‘I’ setting and use the Clear Unit

command / service to clear the module, or invoke the Clear Unit command / service using a command
line utility specifying Initialization as a parameter. In order to restore the module to ‘Operational’ you
must put the switch back to ‘O’

 Operational
o Normal operation of the module

 Monitor
o To put the module in ‘Monitor’ you must have physical access to the module and put the switch in ‘M’

setting. In order to restore the module to ‘Operational’, the module must be reinitialized and then
return it to ‘Operational’

5.2.3 Initialization procedures

Copyright 2019 nCipher Security. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 29 of 33

The nShield enabled application must perform the following services to initialize a module to comply with FIPS 140-2 Level 3 (for more

information refer to the nShield User Guide):

1. Put the mode switch into the initialization position and restart the module

2. Use either the graphical user interface tool called KeySafe, (ensuring to set the “FIPS 140 Mode level 3 compliant” flag to Yes)

or the command line tool new-world, specifying the -F flag.

3. Using either tool specify the number of cards in the ACS and specify the encryption algorithm to use as AES.

4. The tool will prompt you to insert cards and enter passphrases for each ACS card.

5. When you have created all the cards, reset the mode switch into the operational position and restart the module.

5.2.4 FIPS mode verification

An operator can verify the initialization status of the module as if a module is initialized in level 3 mode, in the following ways:

- Using Keysafe:
o Keysafe displays “Strict FIPS 140-2 Level 3 = Yes” in the information panel for that module

- Command line:
o The command line tool nfkminfo includes StrictFIPS in the list of flags for the module

5.2.5 Return a module to factory state

To return a module to the factory state, perform the following steps:

1. Put the mode switch into the initialization position

2. Pull the Initialization pin high and restart the module

3. Use the Initialize command to enter the Initialization state

4. Load a random value to use as the hash of the NSO's key

5. Set NSO service to set the NSO's key and the operational policy of the module

6. Put the mode switch into the operational position Pull the Initialization pin low and restart the module

After this operation, the module must be initialized correctly before it can be used in a FIPS approved mode.

Placing the module in factory state, has the following impact:

- Destroys any loaded Logical tokens, Share Keys, Impath keys, Key blobs, Session keys

- Erases the current Module Signing Key (KML) and generates a fresh one

- Erases all current Module Keys, except the Well Known Module Key

- Generates a new Module Key Zero

- Sets NSO's key to a known value

Placing the module in factory state prevents the module from loading any keys previously associated with the module, as it no
longer possesses the decryption key. Returning the module to factory state does not erase the Firmware Confidentiality Key or
the public halves of the Firmware Integrity Key.

nCipher supplies a graphical user interface, called KeySafe, and a command line tool called new-world, that can help automate these
steps.

Copyright 2019 nCipher Security. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 30 of 33

6. Self-tests

6.1 Power up self-test

When power is applied to the module it enters the self-test state. The module also enters the self-test state whenever the unit is
reset, by pressing the clear button or by sending the Clear Unit command, with no further intervention from the operator. During
self-test, cryptographic operations are prevented and data output is inhibited.

In the self-test state the module clears the main RAM, thus ensuring any loaded keys or authorization information is removed
and then performs the following:

- Operational test on hardware components (memory tests and real time clock tests)
- KAT test for the bootloader library (See Known Answer Tests)
- Integrity check of the following image:

o Secure bootloader - SHA512
o Firmware - ECDSA P521 NIST
o Security processor - SHA 256

- DRBG health-checks tests on the random number generator
- Cryptographic algorithm Known Answer Tests self-tests as required by FIPS 140-2 (see next paragraph)

6.2 KAT Test

The module performs the following KAT tests - If any of these test fails, the module enters in the error state.

Certificates Algorithm KAT test
Boot Loader

#3130 SHA256 & SHA512 KAT tests for SHA256 and SHA512

#805 ECDSA KAT test verify only for ECDSA P521

Firmware

#3664 AES KAT AES ECB encryption and decryption for all keys sizes

#2046 Triple DES 3K & 2K KAT TDES ECB encryption and decryption

#3082 SHA SHA1 KAT test, other size are tested along with KAT HMAC

#2414 HMAC with SHA All KAT HMAC implemented

#1897 RSA RSA sign and verify 2048 bits

#1034 DSA DSA KAT tests signature and verification key sizes 2048

#771 ECDSA ECDSA KAT tests signature and verification for prime and binary curves

#669 Key Agreement
Primitive Z for point multiply (ECDH) and modular exponentiation (DH)
KDF KAT covered by #3082
DSA KAT covered by #1034 and ECDSA KAT covered by #771

#73 KBKDF Covered by AES KAT tests #3664 and DRBG #985

#985 DRBG SP 800-90A health tests

Main Cryptographic Accelerator

#3711 AES KAT AES ECB encryption and decryption for all keys sizes

#2073 Triple-DES 3K & 2K KAT TDES ECB encryption and decryption

#75 KBKDF Covered by AES KAT tests and DRBG

Firmware Side-Channel

#1917 RSA RSA sign and verify 2048 bits

#790 ECDSA ECDSA KAT tests signature and verification for prime and binary curves

#696 Key Agreement
Primitive Z for point multiply (ECDH)
KDF KAT covered by #3082
ECDSA KAT covered by #790

http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3130
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#805
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3664
http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesnewval.html#2046
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmacval.html#2414
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1897
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1034
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#771
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#669
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1034
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#771
http://csrc.nist.gov/groups/STM/cavp/documents/KBKDF800-108/kbkdfnewval.html#73
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3664
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#985
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#3711
http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesnewval.html#2073
http://csrc.nist.gov/groups/STM/cavp/documents/KBKDF800-108/kbkdfnewval.html#75
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1917
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#790
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#696
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#790

Copyright 2019 nCipher Security. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 31 of 33

Certificates Algorithm KAT test
Cryptographic Accelerator Library

#1903 RSA RSA sign and verify 2048 bits

#1039 DSA DSA KAT tests signature and verification key sizes 2048

#776 ECDSA ECDSA KAT tests signature and verification for prime and binary curves

#682 Key Agreement
Primitive Z for point multiply (ECDH) and modular exponentiation (DH)
KDF KAT covered by #3082
DSA KAT covered by #1039 and ECDSA KAT covered by #776

#1111 CVL KAT test covered by #776 KAT tests

Other

 NDRNG Continuous randomicity check

Table 9 – KAT Tests table

6.3 Pairwise consistency tests

Whenever the GenerateKeyPair command is used (DSA, RSA and ECDSA), the module performs a pairwise consistency check as
part of the key generation process.

The private half of the key is used to create a signature which is then verified using the public half. If the signature verification
fails, the GenerateKeyPair command returns command block with the status Fail and no data.

6.4 Firmware Load Test

The firmware is operating in the approved mode before firmware is allowed to be loaded. When new firmware is loaded, the
module reads the candidate image into working memory. It then performs the following tests on the image before it replaces the
current application:

- The image contains a valid signature which the module can verify using the NFIK

- Verify the package using the public portion of the KFC

- Verify the Secure Boot image integrity (if present in package) using the public portion of the NFIK

- Verify the Firmware image integrity using the public portion of the NFIKs

- The image is encrypted with the KFC stored in the module

- The Version Security Number for the image is at least as high as the stored value

Only if all tests pass is the new firmware written to permanent storage. Updating the firmware clears the NSO's key and all stored
module keys. The module will not re-enter operational mode until the Crypto Officer has correctly re-initialized it. Note that if the
module's firmware is updated to a different version, this results in the loss of the current CMVP validation of the module.

When firmware is updated, the module verifies an ECDSA P521 (certificate #771) signature on the new firmware image before it
is written to flash.

http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html#1903
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1039
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#776
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#682
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3082
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1039
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#776
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#1111
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#776

Copyright 2019 nCipher Security. All Rights Reserved

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Page 32 of 33

Contact Us

Web site: https://www.ncipher.com
Help Centre: https://help.ncipher.com
Email Support: support@ncipher.com

Depending on your geographic location, you can also contact us as follows:

Americas Asia Pacific Europe, Middle East and Africa

nCipher Security LLC

Sawgrass Corporate Center, Building A
13800 Northwest 14th Street,
Suite 130
Sunrise, FL 33323

nCipher Security (Hong Kong) Limited

9/F, V-Point
18 Tang Lung Street
Causeway Bay,
Hong Kong

nCipher Security Ltd

One station Square
Cambridge, UK
CB1 2GA

Toll Free: +1 833 425 1990

Fort Lauderdale: +1 954 953 5229

Hong Kong: +852 3461 3088

Japan: +81 50 3196 4994

United Kingdom: +44 1223 723 711

https://www.ncipher.com/
https://ncipher.zendesk.com/hc/en-us/categories/360001306412-Customer-Service
mailto:support@ncipher.com

About nCipher Security
Today’s fast moving digital environment enhances customer satisfaction, gives competitive
advantage and improves operational efficiency. It also multiplies the security risks. nCipher
Security, a leader in the general purpose hardware security module (HSM) market, empowers
world-leading organizations by delivering trust, integrity and control to their business critical
information and applications.
Our cryptographic solutions secure emerging technologies – cloud, IoT, blockchain, digital
payments – and help meet new compliance mandates, using the same proven technology that
global organizations depend on today to protect against threats to their sensitive data, network
communications and enterprise infrastructure. We deliver trust for your business critical
applications, ensuring the integrity of your data and putting you in complete control – today,
tomorrow, at all times. www.ncipher.com

http://www.ncipher.com/

