

Windows Server 2003 Enhanced
Cryptographic Provider (RSAENH)

FIPS 140-2 Documentation: Security Policy

09/21/2005 04:29PM

Abstract

This document specifies the security policy for the Microsoft Enhanced Cryptographic Provider

(RSAENH) as described in FIPS PUB 140-2.

This is a preliminary document and may be changed substantially prior to final
commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy
of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. This
work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial
License (which allows redistribution of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or send a letter to Creative
Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing of
this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

The example companies, organizations, products, people and events depicted
herein are fictitious. No association with any real company, organization, product,
person or event is intended or should be inferred.

© 2003 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Visual Basic, Visual Studio, Windows, the Windows logo,
Windows NT, and Windows Server are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

INTRODUCTION

SECURITY POLICY

SPECIFICATION OF ROLES

SPECIFICATION OF SERVICES

CRYPTOGRAPHIC KEY MANAGEMENTSELF-TESTS

MISCELLANEOUS

FOR MORE INFORMATION

CONTENTS

The Microsoft Corporation’s Windows Server 2003 Enhanced Cryptographic Provider (RSAENH) is a

FIPS 140-2 Level 1 compliant, software-based, cryptographic service provider. Like other

cryptographic providers that ship with Microsoft Windows Server 2003 and Windows Server 2003

Service Pack 1, RSAENH encapsulates several different cryptographic algorithms in an easy-to-use

cryptographic module accessible via the Microsoft CryptoAPI. Software developers can dynamically

link the Microsoft RSAENH module into their applications to provide FIPS 140-2 compliant

cryptographic support.

Windows Server 2003 does not ship the previously FIPS-140-1 validated Microsoft Base Cryptographic

Provider (RSABASE) anymore. There is no loss of functionality as the RSAENH functionality has

always been a subset of the RSABASE functionality.

Cryptographic Boundary

The Microsoft Enhanced Cryptographic Provider (RSAENH) consists of a single dynamically-linked

library (DLL) named RSAENH.DLL (Software version 5.2.3790.0 and 5.2.3790.1830 [SP1]) tested on

an x86, x64, and ia64 processors, which comprises the modules logical boundary. The cryptographic

boundary for RSAENH is defined as the enclosure of the computer system on which the cryptographic

module is to be executed. The physical configuration of the module, as defined in FIPS PUB 140-2, is

Multi-Chip Standalone. It should be noted that the Data Protection API of Microsoft Windows Server

2003 is not part of the module and should be considered to be outside the boundary.

INTRODUCTION

RSAENH operates under several rules that encapsulate its security policy.

• RSAENH is supported on Windows Server 2003.

• RSAENH provides no user authentication; however, it relies on Microsoft Windows Server 2003

for the authentication of users.

• All the services provided by the RSAENH DLL are available to the User and Crypto-officer roles.

• Keys created within RSAENH by one user are not accessible to any other user via RSAENH.

• RSAENH stores keys in the file system, but relies upon Microsoft Windows Server 2003 for the

encryption of the keys prior to storage.

• When operating this module under Windows Server 2003 the following algorithms are Approved

Security functions and can be used in FIPS mode:

• FIPS-approved algorithms: DES, Triple-DES, AES, SHA-1, HMAC-SHA-1, and RSA

• When operating this module under Windows Server 2003 Service Pack 1 the following algorithms

are Approved security function and can be used in FIPS mode:

• FIPS-approved algorithms: Triple-DES, AES, SHA-1, SHA-256, SHA-384, SHA-512, HMAC,

and RSA

• RSAENH supports the following non-FIPS approved algorithms: RC4, RC2, MD2, MD4, and

MD51; and though these algorithms may not be used when operating the module in a FIPS

compliant manner, the module provides power-up self-tests to provide extra security for non FIPS

users.

1 Applications may not use any of these non-FIPS algorithms if they need to be FIPS compliant. To operate the module in a FIPS
compliant manner, applications must only use FIPS-approved algorithms.

SECURITY POLICY

RSAENH module supports both a User and Cryptographic Officer roles (as defined in FIPS PUB 140-

2). Both roles

may access all the services implemented in the cryptographic module.

When an application requests the crypto module to generate keys for a user, the keys are generated,

used, and deleted as requested by applications. There are no implicit keys associated with a user, and

each user may have numerous keys, both signature and key exchange, and these keys are separate

from other users’ keys.

Maintenance Roles

Maintenance roles are not supported by RSAENH.

Multiple Concurrent Operators

RSAENH is intended to run on Windows Server 2003 in Single User Mode. When run in this

configuration, multiple concurrent operators are not supported.

Because the module is a DLL, each process requesting access is provided its own instance of the

module. As such, each process has full access to all information and keys within the module. Note

that no keys or other information are maintained upon detachment from the DLL, thus an instantiation

of the module will only contain keys or information that the process has placed in the module.

Data Access

Because an operator is provided a separate instance of the module (a separate instantiation of the

DLL), the operator has complete access to all of the security data items within the module.

SPECIFICATION OF

ROLES

The following list contains all services available to an operator. All services are accessible by all roles.

Key Storage Services

The following functions provide interfaces to the cryptomodule’s key container functions. Please see

the Key Storage description under the Cryptographic Key Management section for more information.

CryptAcquireContext

The CryptAcquireContext function is used to acquire a programmatic context handle to a particular key

container via a particular cryptographic service provider (CSP). This returned handle can then be used

to make calls to the selected CSP. Any subsequent calls to a cryptographic function need to reference

the acquired context handle.

This function performs two operations. It first attempts to find a CSP with the characteristics described

in the dwProvType and pszProvider parameters. If the CSP is found, the function attempts to find a key

container matching the name specified by the pszContainer parameter.

With the appropriate setting of dwFlags, this function can also create and destroy key containers.

If dwFlags is set to CRYPT_NEWKEYSET, a new key container is created with the name specified by

pszContainer. If pszContainer is NULL, a key container with the default name is created.

If dwFlags is set to CRYPT_DELETEKEYSET, The key container specified by pszContainer is deleted.

If pszContainer is NULL, the key container with the default name is deleted. All key pairs in the key

container are also destroyed and memory is zeroized.

When this flag is set, the value returned in phProv is undefined, and thus, the CryptReleaseContext

function need not be called afterwards.

CryptGetProvParam

The CryptGetProvParam function retrieves data that governs the operations of the provider. This

function may be used to enumerate key containers, enumerate supported algorithms, and generally

determine capabilities of the CSP.

CryptSetProvParam

The CryptSetProvParam function customizes various aspects of a provider’s operations. This function

is may be used to set a security descriptor on a key container.

CryptReleaseContext

The CryptReleaseContext function releases the handle referenced by the hProv parameter. After a

provider handle has been released, it becomes invalid and cannot be used again. In addition, key and

hash handles associated with that provider handle may not be used after CryptReleaseContext has

been called.

SPECIFICATION OF

SERVICES

Key Generation and Exchange Services

The following functions provide interfaces to the cryptomodule’s key generation and exchange

functions.

CryptDeriveKey

The CryptDeriveKey function creates cryptographic session keys from a hash value. This function

guarantees that when the same CSP and algorithms are used, the keys created from the same hash

value are identical. The hash value is typically a cryptographic hash (SHA-1 must be used when

operating in FIPS-mode) of a password or similar secret user data.

This function is the same as CryptGenKey, except that the generated session keys are created from

the hash value instead of being random and CryptDeriveKey can only be used to create session keys.

This function cannot be used to create public/private key pairs.

If keys are being derived from a CALG_SCHANNEL_MASTER_HASH, then the appropriate key

derivation process is used to derive the key. In this case the process used is from either the SSL 2.0,

SSL 3.0, PCT or TLS specification of deriving client and server side encryption and MAC keys. This

function will cause the key block to be derived from the master secret and the requested key is then

derived from the key block. Which process is used is determined by which protocol is associated with

the hash object. For more information see the SSL 2.0, SSL 3.0, PCT and TLS specifications.

CryptDestroyKey

The CryptDestroyKey function releases the handle referenced by the hKey parameter. After a key

handle has been released, it becomes invalid and cannot be used again.

If the handle refers to a session key, or to a public key that has been imported into the CSP through

CryptImportKey, this function zeroizes the key in memory and frees the memory that the key occupied.

The underlying public/private key pair (which resides outside the crypto module) is not destroyed by

this function. Only the handle is destroyed.

CryptExportKey

The CryptExportKey function exports cryptographic keys from a cryptographic service provider (CSP)

in a secure manner for key archival purposes.

A handle to a private RSA key to be exported may be passed to the function, and the function returns a

key blob. This private key blob can be sent over a nonsecure transport or stored in a nonsecure

storage location. The private key blob is useless until the intended recipient uses the CryptImportKey

function on it to import the key into the recipient's CSP. Key blobs are exported either in plaintext or

encrypted with a symmetric key. If a symmetric key is used to encrypt the blob then a handle to the

private RSA key is passed in to the module and the symmetric key referenced by the handle is used to

encrypt the blob. Any of the supported symmetric cryptographic algorithm’s may be used to encrypt

the private key blob (DES, 3DES, RC4 or RC22).

2 Note that RC2 and RC4 may not be used while operating RSAENH in a FIPS compliant manner.

Public RSA keys are also exported using this function. A handle to the RSA public key is passed to

the function and the public key is exported, always in plaintext as a blob. This blob may then be

imported using the CryptImportKey function.

Symmetric keys may also be exported encrypted with an RSA key using the CryptExportKey function.

A handle to the symmetric key and a handle to the public RSA key to encrypt with are passed to the

function. The function returns a blob (SIMPLEBLOB) which is the encrypted symmetric key.

Symmetric keys may also be exported by wrapping the keys with another symmetric key. The

wrapped key is then exported as a blob and may be imported using the CryptImportKey function.

CryptGenKey

The CryptGenKey function generates a random cryptographic key. A handle to the key is returned in

phKey. This handle can then be used as needed with any CryptoAPI function requiring a key handle.

The calling application must specify the algorithm when calling this function. Because this algorithm

type is kept bundled with the key, the application does not need to specify the algorithm later when the

actual cryptographic operations are performed.

CryptGenRandom

The CryptGenRandom function fills a buffer with random bytes. The random number generation

algorithm is the SHS based RNG from FIPS 186. During the function initialization, a seed, to which

SHA-1 is applied to create the output random, is created based on the collection of all the data listed in

the Miscellaneous section.

CryptGetKeyParam

The CryptGetKeyParam function retrieves data that governs the operations of a key.

CryptGetUserKey

The CryptGetUserKey function retrieves a handle of one of a user's public/private key pairs.

CryptImportKey

The CryptImportKey function transfers a cryptographic key from a key blob into a cryptographic service

provider (CSP).

Private keys may be imported as blobs and the function will return a handle to the imported key.

A symmetric key encrypted with an RSA public key is imported into the CryptoImportKey function. The

function uses the RSA private key exchange key to decrypt the blob and returns a handle to the

symmetric key.

Symmetric keys wrapped with other symmetric keys may also be imported using this function. The

wrapped key blob is passed in along with a handle to a symmetric key, which the module is supposed

to use to unwrap the blob. If the function is successful then a handle to the unwrapped symmetric key

is returned.

The CryptImportKey function recognizes a new flag CRYPT_IPSEC_HMAC_KEY. The flag allows the

caller to supply the HMAC key material of size greater than 16 bytes. Without the

CRYPT_IPSEC_HMAC_KEY flag, the CryptImportKey function would fail with NTE_BAD_DATA if the

caller supplies the HMAC key material of size greater 16 bytes. For importing a HMAC key, the caller

should identify the imported key blob as the PLAINTEXTKEYBLOB type and use CALG_RC2 as the

key Algorithm identifier.

CryptSetKeyParam

The CryptSetKeyParam function customizes various aspects of a key's operations. This function is

used to set session-specific values for symmetric keys.

CryptDuplicateKey

The CryptDuplicateKey function is used to duplicate, make a copy of, the state of a key and returns a

handle to this new key. The CryptDestroyKey function must be used on both the handle to the original

key and the newly duplicated key.

Data Encryption and Decryption Services

The following functions provide interfaces to the cryptomodule’s data encryption and decryption

functions.

CryptDecrypt

The CryptDecrypt function decrypts data previously encrypted using CryptEncrypt function.

CryptEncrypt

The CryptEncrypt function encrypts data. The algorithm used to encrypt the data is designated by the

key held by the CSP module and is referenced by the hKey parameter.

Hashing and Digital Signature Services

The following functions provide interfaces to the cryptomodule’s hashing and digital signature

functions.

CryptCreateHash

The CryptCreateHash function initiates the hashing of a stream of data. It returns to the calling

application a handle to a CSP hash object. This handle is used in subsequent calls to CryptHashData

and CryptHashSessionKey in order to hash streams of data and session keys. SHA-1 and MD5 are

the cryptographic hashing algorithms supported. In addition, a MAC using a symmetric key is created

with this call and may be used with any of the symmetric block ciphers support by the module (DES,

3DES AES, RC4 or RC2). For creating a HMAC hash value, the caller specifies the CALG_HMAC flag

in the Algid parameter, and the HMAC key using a hKey handle obtained from calling CryptImportKey.

A CALG_SCHANNEL_MASTER_HASH may be created with this call. If this is the case then a handle

to one of the following types of keys must be passed in the hKey parameter, CALG_SSL2_MASTER,

CALG_SSL3_MASTER, CALG_PCT1_MASTER, or CALG_TLS1_MASTER. This function with

CALG_SCHANNEL_MASTER_HASH in the ALGID parameter will cause the derivation of the master

secret from the pre-master secret associated with the passed in key handle. This key derivation

process is done in the method specified in the appropriate protocol specification, SSL 2.0, SSL 3.0,

PCT 1.0, or TLS. The master secret is then associated with the resulting hash handle and session

keys and MAC keys may be derived from this hash handle. The master secret may not be exported or

imported from the module. The key data associated with the hash handle is zeroized when

CryptDestroyHash is called.

CryptDestroyHash

The CryptDestroyHash function destroys the hash object referenced by the hHash parameter. After a

hash object has been destroyed, it can no longer be used. When a hash object is destroyed, the

crypto module zeroizes the memory within the module where the hash object was held. The memory

is then freed.

If the hash handle references a CALG_SCHANNEL_MASTER_HASH key then, when

CryptDestroyHash is called, the associated key material is zeroized also.

All hash objects should be destroyed with the CryptDestroyHash function when the application is

finished with them.

CryptGetHashParam

The CryptGetHashParam function retrieves data that governs the operations of a hash object. The

actual hash value can also be retrieved by using this function.

CryptHashData

The CryptHashData function adds data to a specified hash object. This function and

CryptHashSessionKey can be called multiple times to compute the hash on long data streams or

discontinuous data streams. Before calling this function, the CryptCreateHash function must be called

to create a handle of a hash object.

CryptHashSessionKey

The CryptHashSessionKey function computes the cryptographic hash of a key object. This function

can be called multiple times with the same hash handle to compute the hash of multiple keys. Calls to

CryptHashSessionKey can be interspersed with calls to CryptHashData. Before calling this function,

the CryptCreateHash function must be called to create the handle of a hash object.

CryptSetHashParam

The CryptSetHashParam function customizes the operations of a hash object. For creating a HMAC

hash associated with a hash object identified the hHash handle, the caller uses the

CryptSetHashParam function with the HP_HMAC_INFO flag to specify the necessary SHA-1 algorithm

using the CALG_SHA1 flag in the input HMAC_INFO structure. There is no need for the caller to

specify the HMAC inner or outer strings as the CSP is using the inner and outer string values as

documented in the Draft FIPS for HMAC as its default values.

CryptSignHash

The CryptSignHash function signs data. Because all signature algorithms are asymmetric and thus

slow, the CryptoAPI does not allow data be signed directly. Instead, data is first hashed and

CryptSignHash is used to sign the hash. The crypto module supports signing with RSA. The X9.31

format may be specified by a flag.

CryptVerifySignature

The CryptVerifySignature function verifies the signature of a hash object. Before calling this function,

the CryptCreateHash function must be called to create the handle of a hash object. CryptHashData or

CryptHashSessionKey is then used to add data or session keys to the hash object. The crypto module

supports verifying RSA signatures. The X9.31 format may be specified by a flag.

After this function has been completed, only CryptDestroyHash can be called using the hHash handle.

CryptDuplicateHash

The CryptDuplicateHash function is used to duplicate, make a copy of, the state of a hash and returns

a handle to this new hash. The CryptDestroyHash function must be used on both the handle to the

original hash and the newly duplicated hash.

The RSAENH cryptomodule manages keys in the following manner.

Key Material

RSAENH can create and use keys for the following algorithms: RSA Signature, RSA Key Exchange,

RC2, RC4, DES, 3DES, and AES. Each time an application links with RSAENH, the DLL is

instantiated and no keys exist within. The user application is responsible for importing keys into

RSAENH or using RSAENH’s functions to generate keys.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI 2.0\CryptoAPI

Reference\CryptoAPI Structures\Cryptography Structures for more information about key formats and

structures.

Key Generation

Random keys can be generated by calling the CryptGenKey() function. Keys can also be created from

known values via the CryptDeriveKey() function. DES, 3DES, and AES keys are generated following

the techniques given in FIPS PUB 186-2, Appendix 3, Random Number Generation.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI 2.0\CryptoAPI

Reference\CryptoAPI Functions\Base Cryptography Functions\Key Generation and Exchange

Functions for more information.

Key Entry and Output

Keys can be both exported and imported out of and into RSAENH via CryptExportKey() and

CryptImportKey(). Exported private keys may be encrypted with a symmetric key passed into the

CryptExportKey function. Any of the symmetric algorithms supported by the crypto module may be

used to encrypt private keys for export (AES, DES, 3DES, RC4 or RC2). When private keys are

generated or imported from archival, they are covered with the Microsoft Windows Server 2003 Data

Protection API (DPAPI) and then outputted to the file system in the covered form.

Symmetric key entry and output is done by exchanging keys using the recipient’s asymmetric public

key. Symmetric key entry and output may also be done by exporting a symmetric key wrapped with

another symmetric key.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI 2.0\CryptoAPI

Reference\CryptoAPI Functions\Base Cryptography Functions\Key Generation and Exchange

Functions for more information.

CRYPTOGRAPHIC KEY

MANAGEMENT

Key Storage

RSAENH does not provide persistent storage of keys. While, it is possible to store keys in the file

system, this functionality is outside the scope of this validation. The task of protecting (or encrypting)

the keys prior to storage in the file system is delegated to the Data Protection API (DPAPI) of Microsoft

Windows Server2003. The DPAPI is a separate component of the operating system that is outside the

boundaries of the cryptomodule but relies upon RSAENH for all cryptographic functionality. This

section describes this functionality for information purposes only.

When a key container is deleted, the file is zeroized before being deleted. RSAENH offloads the key

storage operations to the Microsoft Windows Server 2003 operating system, which is outside the

cryptographic boundary. Because keys are not persistently stored inside the cryptographic module,

private keys are instead encrypted by the Microsoft Data Protection API (DPAPI) service and stored in

the Microsoft Windows Server 2003 file system. Keys are zeroized from memory after use. As an

exception, the key used for power up self-testing is stored in the cryptographic module.

When an operator requests a keyed cryptographic operation from RSAENH, his/her keys are retrieved

from the file system by RSAENH with the support of DPAPI.

The readers may refer to the technical paper “Windows Data Protection”

(http://msdn.microsoft.com/library/en-us/dnsecure/html/windataprotection-dpapi.asp) for further detail

of DPAPI.

Key Archival

RSAENH does not directly archive cryptographic keys. The operator may choose to export a

cryptographic key labeled as exportable (cf. “Key Input and Output” above), but management of the

secure archival of that key is the responsibility of the user.

Key Destruction

All keys are destroyed and their memory location zeroized when the operator calls CryptDestroyKey on

that key handle. Private keys that reside outside the cryptographic boundary (ones stored by the

operating system in encrypted format in the Windows Server 2003 DPAPI system portion of the OS)

are destroyed when the operator calls CryptAcquireContext with the CRYPT_DELETE_KEYSET flag.

RSAENH provides all of the FIPS 140-2 required self-tests. As required, the module performs some of

its self-tests upon power up and other self-tests upon encountering a specific condition (key pair or

random number generation). Note that RSAENH also provides self-tests for non-FIPS approved

algorithms, and though not required, RSAENH provides these tests for extra security. Finally, it should

be noted that non-FIPS approved algorithms should not be used if operating RSAENH in a FIPS

compliant manner.

Power-up

The following FIPS-approved algorithm tests are initiated upon power-up

• DES ECB encrypt/decrypt KAT

• DES CBC encrypt/decrypt KAT

• 3DES ECB encrypt/decrypt KAT

• 3DES CBC encrypt/decrypt KAT

• 3DES 112 ECB encrypt/decrypt KAT

• 3DES 112 CBC encrypt/decrypt KAT

• SHA-1 hash KAT

• SHA-256 KAT

• SHA-384 KAT

• SHA-512 KAT

• SHA-1 HMAC hash KAT

• RSA sign/verify power up test

• Software integrity test via a RSA signature verification of the DLL image

• AES 128 ECB encrypt/decrypt KAT

• AES 192 ECB encrypt/decrypt KAT

• AES 256 ECB encrypt/decrypt KAT

• AES 128 CBC encrypt/decrypt KAT

• AES 192 CBC encrypt/decrypt KAT

• AES 256 CBC encrypt/decrypt KAT

The following non-FIPS approved algorithms power-up tests include (may not be used in FIPS-mode)

• RC4 encrypt/decrypt KAT

• RC2 CBC encrypt/decrypt KAT

• RC2 ECB encrypt/decrypt KAT

• MD5 hash KAT

Conditional

The following are initiated at key generation and random number generation respectively:

• RSA pairwise consistency test

• Continuous random number generator test

SELF-TESTS

The following items address requirements not addressed above.

Cryptographic Bypass

A cryptographic bypass is not supported in RSAENH.

Operator Authentication

RSAENH provides no authentication of operators. However, the Microsoft Windows Server 2003

operating system upon which it runs does provide authentication, but this is outside of the scope of

RSAENH’s FIPS validation. The information about the authentication provided by Microsoft Windows

Server 2003 is for informational purposes only. Microsoft Windows Server 2003 requires

authentication from a trusted computer base (TCB3) before a user is able to access system services.

Once a user is authenticated from the TCB, a process is created bearing the operator’s security token.

All subsequent processes and threads created by that operator are implicitly assigned the parent’s

(thus the operator’s) security token. Every user that has been authenticated by Microsoft Windows

Server 2003 is naturally assigned the operator role when he/she accesses RSAENH.

ModularExpOffload

The ModularExpOffload function offloads modular exponentiation from a CSP to a hardware

accelerator. The CSP will check in the registry for the value

HKLM\Software\Microsoft\Cryptography\ExpoOffload that can be the name of a DLL. The CSP uses

LoadLibrary to load that DLL and calls GetProcAddress to get the OffloadModExpo entry point in the

DLL specified in the registry. The CSP uses the entry point to perform all modular exponentiations for

both public and private key operations. Two checks are made before a private key is offloaded. Note

that to use RSAENH in a FIPS compliant manner, this function should only be used if the hardware

accelerator is FIPS validated.

Operating System Security

The RSAENH cryptomodule is intended to run on Windows Server 2003 in Single User Mode.

When an operating system process loads the cryptomodule into memory, the cryptomodule runs a

RSA signature on the cryptomodule’s disk image of RSAENH.DLL, excluding the RSA signature,

checksum, and export signature resources. This signature is compared to the value stored in the RSA

signature resource. Initialization will only succeed if the two values are equal.

Each operating system process creates a unique instance of the cryptomodule that is wholly dedicated

to that process. The cryptomodule is not shared between processes.

Each process requesting access is provided its own instance of the module. As such, each process

3 The TCB is the part of the operating system that is designed to meet the security functional requirements of the Controlled Access
Protection Profile, which can be found at <http://www.radium.ncsc.mil/tpep/library/protection_profiles/index.html>. At this time,

Windows Server 2003 has not been evaluated.

MISCELLANEOUS

has full access to all information and keys within the module. Note that no keys or other information

are maintained upon detachment from the DLL, thus an instantiation of the module will only contain

keys or information that the process has placed in the module.

The Collection of Data Used to Create a Seed for Random Number

The RSAEnh module uses a FIPS 186-2 approved PRNG to generate the random data required for

symmetric & asymmetric key generation.. The PRNG concatenates many different sources of

information (detailed below) and the resulting byte stream is hashed with SHA-1 to produce a 20-byte

seed value.

• The process ID of the current process requesting random data

• The thread ID of the current thread within the process requesting random data

• A 32bit tick count since the system boot

• The current local date and time

• The current system time of day information consisting of the boot time, current time, time zone

bias, time zone ID, boot time bias, and sleep time bias

• The current hardware-platform-dependent high-resolution performance-counter value

• The information about the system's current usage of both physical and virtual memory, and page

file

• The local disk information including the numbers of sectors per cluster, bytes per sector, free

clusters, and clusters that are available to the user associated with the calling thread

• A hash of the environment block for the current process

• Some hardware CPU-specific cycle counters

• The system processor performance information consisting of Idle Process Time, Io Read Transfer

Count, Io Write Transfer Count, Io Other Transfer Count, Io Read Operation Count, Io Write

Operation Count, Io Other Operation Count, Available Pages, Committed Pages, Commit Limit,

Peak Commitment, Page Fault Count, Copy On Write Count, Transition Count, Cache Transition

Count, Demand Zero Count, Page Read Count, Page Read Io Count, Cache Read Count, Cache

Io Count, Dirty Pages Write Count, Dirty Write Io Count, Mapped Pages Write Count, Mapped

Write Io Count, Paged Pool Pages, Non Paged Pool Pages, Paged Pool Allocated space, Paged

Pool Free space, Non Paged Pool Allocated space, Non Paged Pool Free space, Free System

page table entry, Resident System Code Page, Total System Driver Pages, Total System Code

Pages, Non Paged Pool Look aside Hits, Paged Pool Lookaside Hits, Available Paged Pool

Pages, Resident System Cache Page, Resident Paged Pool Page, Resident System Driver Page,

Cache manager Fast Read with No Wait, Cache manager Fast Read with Wait, Cache manager

Fast Read Resource Missed, Cache manager Fast Read Not Possible, Cache manager Fast

Memory Descriptor List Read with No Wait, Cache manager Fast Memory Descriptor List Read

with Wait, Cache manager Fast Memory Descriptor List Read Resource Missed, Cache manager

Fast Memory Descriptor List Read Not Possible, Cache manager Map Data with No Wait, Cache

manager Map Data with Wait, Cache manager Map Data with No Wait Miss, Cache manager Map

Data Wait Miss, Cache manager Pin-Mapped Data Count, Cache manager Pin-Read with No

Wait, Cache manager Pin Read with Wait, Cache manager Pin-Read with No Wait Miss, Cache

manager Pin-Read Wait Miss, Cache manager Copy-Read with No Wait, Cache manager Copy-

Read with Wait, Cache manager Copy-Read with No Wait Miss, Cache manager Copy-Read with

Wait Miss, Cache manager Memory Descriptor List Read with No Wait, Cache manager Memory

Descriptor List Read with Wait, Cache manager Memory Descriptor List Read with No Wait Miss,

Cache manager Memory Descriptor List Read with Wait Miss, Cache manager Read Ahead IOs,

Cache manager Lazy-Write IOs, Cache manager Lazy-Write Pages, Cache manager Data

Flushes, Cache manager Data Pages, Context Switches, First Level Translation buffer Fills,

Second Level Translation buffer Fills, and System Calls

• The system exception information consisting of Alignment Fix up Count, Exception Dispatch

Count, Floating Emulation Count, and Byte Word Emulation Count

• The system lookaside information consisting of Current Depth, Maximum Depth, Total Allocates,

Allocate Misses, Total Frees, Free Misses, Type, Tag, and Size

• The system interrupt information consisting of context switches, deferred procedure call count,

deferred procedure call rate, time increment, deferred procedure call bypass count, and

asynchronous procedure call bypass count

• The system process information consisting of Next Entry Offset, Number Of Threads, Create Time,

User Time, Kernel Time, Image Name, Base Priority, Unique Process ID, Inherited from Unique

Process ID, Handle Count, Session ID, Page Directory Base, Peak Virtual Size, Virtual Size, Page

Fault Count, Peak Working Set Size, Working Set Size, Quota Peak Paged Pool Usage, Quota

Paged Pool Usage, Quota Peak Non Paged Pool Usage, Quota Non Paged Pool Usage, Page file

Usage, Peak Page file Usage, Private Page Count, Read Operation Count, Write Operation Count,

Other Operation Count, Read Transfer Count, Write Transfer Count, and Other Transfer Count

For the latest information on Windows Server 2003 , check out our World Wide Web site at

http://www.microsoft.com/windows.

FOR MORE

INFORMATION

