FIPS PUB 140-1: 1.0 : Security Policy

1 of 20

FIPS PUB 140-1
Netscape Security Policy

Updated 3/15/99 to reflect NIST / Infogard recommended changes

[Updated to reflect Security Module 1.01 Maintenance Validation]

1.1 Specification of Security Policy

A security policy includes the precise specification of the security rules under which the
cryptographic module must operate, including rules derived from the security requirements of
the FIPS PUB 140-1 standard, and the additional security rules imposed by Netscape. The rules
of operation of the cryptographic module that define within which role(s), and under what
circumstances (when performing which services), an operator is allowed to maintain or
disclose each security relevant data item of the cryptographic module.

There are three major reasons for developing and following a precise cryptographic module
security policy:

To induce the cryptographic module vendor (Netscape) to think carefully and precisely about
who they want to access the cryptographic module, the way different system elements can be
accessed, and which system elements to protect.

To provide a precise specification of the cryptographic security to allow individuals and
organizations (e.g., validators) to determine whether the cryptographic module, as
implemented, does obey (satisfy) a stated security policy.

To describe to the cryptographic module user (organization, or individual operator) the

capabilities, protections, and access rights they will have when using the cryptographic
module.

It should be noted that Netscape utilizes RSA's PKCS #11, version 1.1, to form most of its
cryptographic boundary. This, along with some certificate handling mechanisms, comprise the
entire cryptographic module boundary. The following table states the various security policy
rules which will be adhered to by each Netscape product:

Table I. Netscape Security Policy Rules

{Rule}[Statement of Netscape Security Policy Rule |

Netscape's cryptographic module shall consist of a series of binary software libraries

1 compiled for each supported platform and utilized by ALL Netscape client and server
products.

3/16/99 10:30 AM

FIPS PUB 140-1: 1.0 : Security Policy

2 The cryptographic module shall rely on the underlying operating system to ensure the
integrity of the cryptographic module loaded into memory.

3 The cryptographic module shall enforce a single role approach which is a combination
of the User Role and the Cryptographic User Role as defined in FIPS PUB 140-1.

4 A cryptographic module user shall have access to ALL the services supplied by the
cryptographic module.

5 Cryptographic module services shall consist of public services which require no
authentication, and private services which require authentication.

6 Public key certificates shall be stored in plain text form because of their public nature
and internal CA-signing integrity features.

SSL 2.0 and 3.0 shall utilize authentication mechanisms above the cryptographic
7 module which pass-through to utilize PKCS #11 authentication mechanisms which are
within the cryptographic module.

SSL master secrets (private key data) shall be protected within the boundary of the
8 cryptographic module (the SSL secure session ID cache shall be considered within the
boundary of the cryptographic module).

9 For the FIPS PUB 140-1 mode of operation, the cryptographic module shall enforce
rules specific to FIPS PUB 140-1 requirements.

The FIPS PUB 140-1 cryptographic module shall use an exception handling mechanism
10 to ensure that critical errors are not allowed to compromise security (i. e. - whenever

a critical error is encountered, the cryptographic module shall be required to be
reinitialized).

Upon initialization of the FIPS PUB 140-1 cryptographic module, the following
power-up self-tests shall be performed:

(1) RC2-ECB Encrypt/Decrypt,

(2) RC2-CBC Encrypt/Decrypt,

(3) RC4 Encrypt/Decrypt,

(4) DES-ECB Encrypt/Decrypt,

(5) DES-CBC Encrypt/Decrypt,

(6) triple DES-ECB Encrypt/ Decrypt,
(7) triple DES-CBC Encrypt/ Decrypt,
(8) MD2 Hash,

(9) MD5 Hash,

(10) SHA-1 Hash,

(11) RSA Encrypt,

(12) RSA Decrypt,

(13) RSA Signature,

(14) RSA Signature Verification,
(15) DSA Signature, and

(16) DSA Signature Verification.

11

Additionally, if the user performs logout services, these same power-up self-tests are

20f20 3/16/99 10:30 AM

FIPS PUB 140-1: 1,0 : Security Policy

3 0of 20

Lwﬂperformed when the user logs back in to the FIPS PUB 140-1 cryptographic module.

Subsequent logins to the FIPS PUB 140-1 cryptographic module during the same

power-up self-tests on demand as defined in section 4.11 .1 of FIPS PUB 140-1.

12 established session shall execute the same series of power-up self-tests detailed above
when logging-in under the FIPS PUB 140-1 mode. This allows a user to execute these

13 The FIPS PUB 140-1 cryptographic module shall require the user to establish a

password (for the user role) in order for subsequent authentications to be enforced.

14 |All passwords shall be stored in an encrypted form in secondary storage.

Once a password has been established for the FIPS PUB 140-1 cryptographic module
15 Ishall only allow the user to use security services if and only if the user successfully
authenticates to the FIPS PUB 140-1 cryptographic module.

, it

module via PKCS #5 password-based encryption mechanisms.

In order to verify the user's stored password, the user shall enter the password, and
16 ||the verification that the password is correct shall be performed by the cryptographic

17 The user's password shall act as the key material to encrypt/ decrypt private key
material via PKCS #5 using Triple-DES.

The cryptographic module shall only extract private keys wrapped with a password
18 g
according to PKCS #12.

higher level callers.

Private keys, plain text PINs, and other security relevant data items (SRDIs) shall be
19 maintained under the control of the cryptographic module, and shall not be passed to

20 |All private keys shall be stored in an encrypted form in secondary storage.

|

the database to ensure genuine data.

21 Integrity checks shall be applied to the private and public key material retrieved from

22 Once the FIPS PUB 140-1 mode of operation has been selected, the cryptographic
module shall only allow FIPS PUB 140-1 cipher suite functionality.

The FIPS PUB 140-1 cipher suite shall consist solely of DES (FIPS PUB 46-2) for

and DSA (FIPS PUB 186) for generic signature signing and verifying functionality.

23 |lencryption/decryption, SHA-1 (FIPS PUB 180-1) for hashing, RSA for key distribution,

(TECB) mode.

Once the FIPS PUB 140-1 mode of operation has been selected, DES and triple-DES shall
24 |lbe limited in its use to perform encryption/decryption using either CBC (TCBC) or ECB

algorithm used to perform one-way hashes of data.

25 Once the FIPS PUB 140-1 mode of operation has been selected, SHA-1 shall be the only

Once the FIPS PUB 140-1 mode of operation has been selected, RSA can be used for

general purpose signatures.

26 |signature functionality to sign and verify key material for key exchange and perform

27 Once the FIPS PUB 140-1 mode of operation has been selected, DSA can be used to

generate signatures and perform verification on them for general purpose signatures.

28 ||pairwise consistency test upon each invocation of RSA and DSA key generation as

In the FIPS PUB 140-1 mode of operation, the cryptographic module shall perform a

3/16/99 10:30 AM

FIPS PUB 140-1: 1.0 : Security Policy

| ||defined in section 4.11.2 of FIPS PUB 140-1.

29 The FIPS PUB 140-1 cryptographic module shall employ its prime number generation
and verification via the mechanisms described in Appendix 2 of FIPS PUB 186.

30 The FIPS PUR 140-1 cryptographic module shall utilize pseudorandom number
generation as defined via the mechanisms described in Appendix 3 of FIPS PUB 186.

The FIPS PUB 140-1 cryptographic module shall seed its pseudorandom number
generation via invoking a noise generator specific to the platform on which it was

31 |limplemented (e. g. - Macintosh, UNIX, or Windows). Pseudorandom number generator
shall be seeded with noise derived from the execution environment such that the noise
is not predictable.

32 The FIPS PUB 140-1 cryptographic module’s pseudorandom number generator shall
periodically reseed itself with pseudorandom noise.

In the FIPS PUB 140-1 mode of operation, the cryptographic module shall perform a
33 \lpseudorandom number generation test upon each invocation of the pseudorandom
number generator as defined in section 4.11.2 of FIPS PUB 140-1.

Upon exit from the FIPS PUB 140-1 mode of operation, all security relevant data items
34 ||\within the cryptographic module which are stored to secondary storage shall be
zeroized by having their memory contents rewritten with zeroes.

The TLS pseudorandom function (PRF) is contained within the cryptographic module,
35 and it shall enforce if one hash is weak the PRF function would remain strong, this is
accomplished by exclusive-oring the results of the two hashes in computation of
security relevant data items -- specifically SSL pre-master secrets.

Additionally, a cryptographic module security policy should be expressed in terms of the
roles, services, cryptographic keys, and other critical security parameters. It should consist
of, at a minimum, an identification and authentication (1&A) policy and an access control
policy. An I&A policy specifies whether a cryptographic module operator is required to
identify his or her self to the system, and, if so, what information is required and how it
should be presented to the system in order for the operator to prove his or her identity to the
system (i.e., authenticate themselves). Information required to be presented to the system
might be passwords or individually unique biometric data. Once an operator can perform
service(s) using the cryptographic module, an access control policy specifies what mode(s) of
access he or she has to each security relevant data item while performing a given service.

1.2 Specification of Roles

A series of security libraries represent the cryptographic module which present the same
application programmer interface (API) to all Netscape client and server products. There are
minor variations, listed in the module interfaces description, but these do not break the
following definition of roles. Netscape's cryptographic module utilizes a single role approach
-- this role is a combination of both the User Role and the Cryptographic Officer Role, and will
be referenced below as Netscape User. A Netscape User utilizes secure services, and is also
responsible for making decisions related to retrieval, updating, and deletion of keys from

40f 20 3/16/99 10:30 AM

FIPS PUB 140-1: 1.0 : Security Policy

5 of 20

their key database. This is true for both client and server products. For multiple user

products, like the HTTP Server (Enterprise Server 3.0), the server still operates in this single
role paradigm, under a single identity.

1.2.1 Authentication Policy

Netscape's cryptographic module utilizes Role-Based Authentication - An operator who is
allowed to use the cryptographic module must perform an authentication sequence using
information unique to that operator (individual password) to perform sensitive services using
the cryptographic module. Role-based authentication is utilized to safeguard a users private
key information. However, Discretionary Access Controls (DAC) are used to safeguard all other
Netscape User information (e.g., the Public Key Certificate database). A Netscape User may
use a product (e.g. Netscape Navigator) without establishing a personal private key -- e.g.,
they may utilize SSL 3.0 Server Authentication without having a private key established.
However, to enable SSL on the server products, a private key and public key certificate are
required to enable secure services. An individual password is required in order to start the
server -- this password is used to decrypt the private key.

1.3 Specification of Maintenance Roles

This section is not applicable to Netscape products since they do not have a Maintenance
Role.

1.4 Multiple Concurrent Operator Roles and Services

Since Netscape applications always operate under a single role, under a single identity, no
separate concurrent processes take place within a Netscape application. In the case of
separate threads of execution within the same process, Netscape's threading model consists of
a shared data segment with separate stack instances, and does not allow threads to leak
insecurity into or out of the given process. Further, since a thread is not a separate process,
and all threads of a given process live within the confines of that process, then all threads are
subject to the same security imposed on the process itself.

1.5 Specification of Services

The vendor documentation shall fully describe each service including its purpose and function.
Possible services may include, but not be limited to, the following:

Cryptographic operations such as encryption, decryption, message integrity, digital signature
generation, digital signature verification, and other operations that require the use of
cryptography.

Key management operations such as key and parameter entry, key generation, key output ,
key archiving, key zeroization, and other key management functions.

Cryptographic management functions such as audit parameter entry and setting, alarm
handling and resetting, and other cryptographic management functions.

3/16/99 10:46 AM

FIPS PUB 140-1: 1.0 : Security Policy

Performance of operator-selectable self tests, such as cryptographic algorithm tests,

software/firmware tests , critical functions tests, statistical random number generator tests,
or any additional tests that can be initiated by an operator.

The vendor documentation shall specify, for each service, the service inputs, corresponding
service outputs, and the authorized role or roles in which the service can be performed.
Service inputs shall consist of all data or control inputs to the module that initiate or obtain
specific services, operations, or functions. Service outputs shall consist of all data and status
outputs that result from services, operations or functions initiated or obtained by service

inputs. The vendor may supply a matrix that displays the services that can be performed in
each role.

In each of the following services, since there is only one role, the user has access to ALL the
services mediated by the application (for both client and server products). Routines have
been specified for each service and denoted whether or not they are public, meaning that
they require no authentication to utilize, or private, meaning that authentication must be
provided prior to the routine being utilized. This model allows a type of safety state by
allowing a Netscape user to logout (thus disallowing any access to private services) without
ending the session, and then log back in to re-authenticate private services rendered by the
cryptographic module. All public and private services are listed in the following table:
Table Il. Services

| Name of Service H Description of Service in Terms of Routines
This private service consists of six routines used to perform certificate
Certificate storage and retrieval including SEC_OpenPermCertDB(),
Storage and AddCertToPermDB(), SEC_TraversePermCerts(),
Retrieval SEC_FindPermCertByKey(), SEC_DeletePermCertificate(), and

CERT_ClosePermCertDB().

This private service consists of the four routines used to perform DSA
signature generation including DSA_CreateSignContext(), DSA_PreSign()
DSA_Sign(), and DSA_DestroySignContext(), and the three routines used
to perform DSA signature verification including
DSA_CreateVerifyContext(), DSA_Verify(), and
DSA_DestroyVerifyContext(). Performing public key exchange between
two parties or performing RSA signature generation, consists of the
three routines used for entity association, or performing RSA signature
generation, including RSA_Sign(), RSA_CheckSign(), and
RSA_CheckSignRecover(), and the three raw routines used for entity
association including RSA_SignRaw(), RSA_CheckSignRaw(), and
RSA_CheckSignRecoverRaw(). In general, the key generation service
must be invoked prior to invoking this service.

HThis private service consists of the five routines used to perform DES or s

)

Digital
Signatures

6 of 20 3/16/99 10:49 AM

FIPS PUB 140-1: 1.0 : Security Policy

7 0of 20

Encryption/
Decryption

triple-DES Encryption/Decryption including DES_CreateContext(),

DES_Encrypt(), DES_Decrypt(), DES_PadBuffer(), and
DES_DestroyContext().

Hashing

This public service consists of the eight routines used to perform SHA-1
hashing including SHA1_NewContext(), SHA1_CloneContext()
SHA1_Begin(), SHA1_Update(), SHA1_End(), SHA1_HashBuf()
SHA1_Hash(), and SHA1_DestroyContext().

1

)

Key
Generation

This private service is utilized to perform key generation and consists of
the three routines used to perform DSA key generation including
DSA_CreateKeyGenContext(), DSA_KeyGen(), and
DSA_DestroyKeyGenContext(), and the one routine used for RSA private
key generation called RSA_NewKey(). When RSA_NewKey() is used in
public key exchange between two parties, the Pairwise Consistency
Test requires routines to check this symmetric algorithm. These consist
of two routines which include RSA_EncryptBlock(), and
RSA_DecryptBlock(), and two raw routines which include
RSA_EncryptRaw(), and RSA_DecryptRaw().

PKCS #5
Password-Based
Encryption

The PKCS #5 API specifies a standard interface based upon the PKCS #5
standard which allows this private service to be used to perform
password-based encryption and consists of the three routines including
SEC_PKCS5GetSalt(), SEC_PKCS5CipherData(), and
SEC_PKCS5CreateAlgorithmiDY).

The PKCS #11 API specifies a standard interface based upon the PKCS
#11 standard which allows for the selection of a FIPS PUB 140-1 mode of
operation that provides both public and private services as well as a
means of authentication into all private services, creates and maintains
entry points for all FIPS PUB 140-1 specific routines including
pk11_fipsPowerUpSelfTest() at initialization as well as on demand for
subsequent logins, and enforces a pairwise consistency check on all key
generation algorithms. Netscape's FIPS PUB 140-1 PKCS #11

implementation defines the following standard crypto API:

lCategory “Function f Description i
FIPS PUB 140-1 |FC_GetFunctionList Return the list of FIPS PUB 140-1
Specific funCtions
General IFC_Initialize jlinitializes Cryptoki ?
purpose |FC_Finalize ﬁﬁnalizes Cryptoki (1.1)]
FC_GetInfo obtains general information about
Cryptoki
Slot and lFC_GetSlotList Hobtains a list of slots in the system }
token FC_GetSlotInfo obtains information about a
management particular slot
FC_GetTokenInfo obtains information about a
particular token
FC_GetMechansimList obtains a list of mechanisms
supported by a token

3/16/99 10:52 AM

|

FIPS PUB 140-1: 1.0 : Security Policy

8 0of 20

PKCS #11

FC_GetMechanismInfo

obtains information about a
particular mechanism

IFC_InitToken Hinitializes a token i
IFC_InitPIN f initializes the normal user’s PIN E
FC_SetPIN modifies the PIN of the current

user

Session FC_OpenSession opens a connection or "session"
management between an application and a
particular token
IFC_CloseSession] closes a session 1
'FC_CloseAHSessions Hcloses all sessions with a token I
FC_GetSessionInfo obtains information about the
session
FC_GetOperationState saves the state of the cryptographic
operation in a session (1.1)
FC_SetOperationState restores the state of the
cryptographic operation in a
session (1.1)
|FC_Login ﬂlogs into a token 1
FC_Logout ﬂlogs out from a token }
Object FC_CreateObject ”creates an object }
management IFC_CopyObject Hcreates a copy of an object {
]FC_DestroyObject ﬂdestroys an object 1
FC_GetObjectSize obtains the size of an object in
bytes
FC_GetAttributeValue obtains an attribute value of an
object
FC_SetAttributeValue modifies an attribute value of an
object
FC_FindObjectsInit initializes an object search
operation
FC_FindObjects continues an object search '
operation
FC_FindObjectsFinal finishes an object search operation
(L.1)
Encryption [FC_EncryptInit “initializes an encryption operation !
and lFC_Encrypt i encrypts single-part data [
decryption FC_EncryptUpdate
Typtip

continues a multiple-part
encryption operation

FC_EncryptFinal

finishes a multiple-part encryption
operation

[FC_DecryptInit

“initializes a decryption operation {

FC_Decrypt

decrypts single-part encrypted
data

FC_DecryptUpdate

continues a multiple-part
decryption operation

lFC_DecryptFinal

“finishes a multiple-part decryption }

3/16/99 11:08 AM

FIPS PUB 140-1: 1.0 : Security Policy

90of 20

l

L

||loperation |

Message
digesting

FC_DigestInit

initializes a message-digesting
operation

FC_Digest

fldigests single-part data]

FC_DigestUpdate

continues a multiple-part digesting
operation

FC_DigestKey

continues a multi-part
message-digesting operation by
digesting the value of a secret key
as part of the data already digested
(1.1)

FC_DigestFinal

finishes a multiple-part digesting
operation

Signature

and
verification

[FC_SignInit

ﬁ“initializes a signature operation

[FC_Sign

1
“signs single-part data 1

FC_SignUpdate

continues a multiple-part signature
operation

FC_SignFinal

finishes a multiple-part signature
operation

FC_SignRecoverlnit

initializes a signature operation,
where the data can be recovered
from the signature

FC_SignRecover

signs single-part data, where the
data can be recovered from the
signature

IF C_Verifylnit

”initializes a verification operation I

FC_Verify

verifies a signature on single-part
data

FC_VerifyUpdate

continues a multiple-part
verification operation

FC_VerifyFinal

finishes a multiple-part verification |
operation

FC_VerifyRecoverlnit

initializes a verification operation
where the data is recovered from
the signature

FC_VerifyRecover

verifies a signature on single-part
data, where the data is recovered
from the signature

Dual-function

cryptographic
operations

FC_DigestEncryptUpdate

continues a multiple-part digesting
and encryption operation (1.1)

FC_DecryptDigestUpdate

continues a multiple-part
decryption and digesting operation
(1.1)

FC_SignEncryptUpdate

continues a multiple-part signing
and encryption operation (1.1)

FC_DecryptVerifyUpdate

continues a multiple-part

decryption and verify operation
(1.1)

Key

“FC_GenerateKey

“generates a secret key

3/16/99 11:16 AM

FIPS PUB 140-1: 1.0 : Security Policy

10 of 20

management FC_GenerateKeyPair generates a public-key/private-key
pair
[FC_WrapKey f wraps (encrypts) a key i

lFC_UnwrapKey

ﬂunwraps (decrypts) a key 1
EC_DeriveKey

Hderives a key from a base key i

Random number [[FC_SeedRandom mixes in additional seed material
generation to the random number generator
[FC_GenerateRandom ngnerates random data [
Function FC_GetFunctionStatus obtains updated status of a
management function running in parallel with
the application
FC_CancelFunction cancels a function running in
parallel with the application
Callbacks Notify processes notifications from
Cryptoki
PKCS #12 The PKCS #12 API will specify a standard interface based upon the
forthcoming PKCS #12 standard which allows this private service to be
Personal . e
. used to exchange data such as private keys and certificates between
Information . . - . .
Exchange two parties and consists of the two routines including
SEC_PKCS12GetPFX() and SEC_PKCS12PutPFX().
Prime This public service consists of the four routines used for generating a
Number prime number including prm_PrimeFind(), prm_GeneratePrimeRoster(),
Generation prm_PseudoPrime(), and prm_RabinTest().

Private Key
Storage and
Retrieval

This private service is utilized to perform private key storage and
retrieval and consists of the seven routines including
SECKEY_OpenKeyDB(), SECKEY_TraverseKeys(),
SECKEY_UpdateKeyDBPass1() SECKEY_UpdateKeyDBPass2(),
SECKEY_FindKeyByPublicKey(), SECKEY_DeleteKey(), and
SECKEY_CloseKeyDB().

Pseudorandom
Number
Generation

This public service consists of the four routines used for global
pseudorandom number generation including RNG_RNGInit(),
RNG_GenerateGlobalRandomBytes(), RNG_RandomUpdate(), and
RNG_ResetRandom(), the six routines used for pseudorandom number
generation on a per object basis including RNG_CreateContext(),
RNG_Init(), RNG_GenerateRandomBytes(), RNG_Update(),
RNG_Reseed(), and RNG_DestroyContext(), and the three routines used
for seeding pseudorandom number generation including
RNG_GetNoise(), RNG_SystemInfoForRNG(), and RNG_FileForRNG(). A
continuous pseudorandom number generator test is performed
whenever a new pseudorandom number is generated.

SSL Session ID
Cache
(Secret

Management)

This public service consists of the five routines used to perform session
ID cache management including SSL_ConfigServerSessionIDCache(),
ssl_FreeSID(), ssl_LookupSID(), ssl_ChooseSessionIDProcs(), and

SSL_ClearSessionCache().

3/16/99 11:19 AM

FIPS PUB 140-1: 1.0 : Security Policy

[TLS pseudorandom function (PRF) is utilized by SSL 3.0 protocol to
TLS pseudorandoin |[produce FIPS 140-1 compliant hashes of security relevant data items

function (PRF) [pre-master secret]. See SSL changes in Security Module 1.01 for full
details.

1.6 Bypass Capabilities

This section is not applicable to Netscape products since they do not allow for any bypass
capability.

1.7 Access Control Policy

The access control policy enforced by the cryptographic module must be sufficiently precise,
and of sufficient detail to allow the operator and testers to know what security relevant data
items the operator has access to while performing a service, and the modes of access he or
she has to these data items. Also, the testers and operator must be able to know if and how

the kinds of data items accessible changes when the service is invoked from each role in
which it can be invoked.

1.7.1 Security Relevant Data Items

Security relevant data items consist of data types used for Certificate Storage and Retrieval,
Digital Signatures, Encryption/ Decryption, Generic Containers, Hashing, Key Generation, PKCS
#5 Password-Based Encryption, PKCS #12 Personal Information Exchange, Private Key Storage
and Retrieval, Pseudorandom Number Generation, and SSL Session ID Cache (Secret
Management).

All security relevant data items are identified by category, type, name, and description in the
following table:

Table lll. Security Relevant Data Items

Category] Type of Data Item] Name of Data Item 1 Description of Data Item]

The structure

typedef struct . representing an X.509
CERTCertificateStr CERTCertificate | ertificate object (the
unsigned form).

The structure

. typedef struct representing a handle to
Certificate CERTCertDBHandleStr CERTCertDBHandle an open certificate
Storage and database.

Retrieval
typedef struct The trust structure
CERTCertTrustStr CERTCertTrust containing flags for SSL

and email.

11 of 20 3/16/99 11:21 AM

FIPS PUB 140-1: 1.0 : Security Policy

12 of 20

typedef struct
_certDBEntryCert

certDBEntryCert

The structure for
certificate database
entries.

Digital
Signatures

typedef struct
DSASignContextStr

DSASignContext

The structure
representing the context
of a digital signature
containing data
associated with the
private portion of the
DSA key pair.

typedef struct
DSAVerifyContextStr

DSAVerifyContext

The structure
representing the context
of a digital signature
verification containing
data associated with the
public portion of the DSA
key pair.

typedef struct
RSAPrivateContextStr

RSAPrivateContext

The structure
representing the context
of an RSA signature
generation or decryption
mechanism containing
data associated with the
private portion of the
RSA key pair.

typedef struct
RSAPublicContextStr

RSAPublicContext

The structure
representing the context
of an RSA signature
verification or encryption
mechanism containing
data associated with the
public portion of the RSA
key pair.

Encryption/
Decryption

typedef struct
DESContextStr

DESContext

The structure
representing the context
of a DES or triple-DES
encryption/decryption
containing an
encrypt/decrypt flag,
space for up to three
distinct keys, space for
the carry-forward
needed for CBC modes of

DES, and function

3/16/99 11:24 AM

FIPS PUB 140-1: 1.0 : Security Policy

pointers to the
appropriate encryption
and decryption functions
associated with that
mode of DES.

Generic container used
typedef struct CMPInt to hold very large

numbers.

The structure containing
typedef struct X two SECltems which
SECAlgorithmIDStr SECAlgorithmiD identify the X.500
algorithm.

Generic container used

to hold type of data,
typedef struct SECItemStr [|SECItem actual data content, and

length of data.

Generic container used
for low-level private key
structures including RSA
and DSA private keys.

?I{I%T(CIIEerLZtVCIJDCr:vateKeyStr SECKEYLowPrivateKey|[This structure is used

below the PKCS #11
service layer and
contains the actual
private key.

Generic container used
for low-level public key

Generic structures including RSA
Containers |[typedef struct . and DSA public keys. This

SElzZKEYLowPublicKeyStr SECKEYLowPublickey structure is used below

the PKCS #11 service
layer and contains the
actual public key.

Generic container used
as a high-level pointer to
typedef struct . the defined private key
SECKEYPrivateKeyStr SECKEYPrivateKey structures, and is used
above the PKCS #11
service layer.

Generic container used
as a high-level pointer to
the defined public key
structures, and is used
above the PKCS #11

typedef struct

SECKEYPublicKeyStr SECKEYPublicKey

13 of 20 3/16/99 11:27 AM

FIPS PUB 140-1: 1.0 : Security Policy

| |service layer.
Generic container used
typedef enum SECOidTag to identify the supported
object IDs.

Generic container used
typedef enum _SECStatus |SECStatus primarily to indicate

success or failure.

The structure
representing the context
typedef struct of a SHA-1 hash
SHA1ContextStr SHA1Context containing information
relevant to performing a
SHA-1 hash.

The structure
representing the context
of a digital signature key
generation containing
multiple items including
DSAKeyGenContext ||pointers to both
low-level public and
private key structures
containing the public and
private portions of the
DSA key pair.

Hashing

typedef struct
DSAKeyGenContextStr

typedef struct The structure containing
DSAPrivateKeystr DSAPrivateKey the private portion of
4 the DSA key pair.

typedef struct The structure containing
eAPUDL DSAPublicKey the public portion of the
DSAPublicKeyStr .

DSA key pair.

The structure

Key representing the context
Generation of a key generation used
for key exchange
containing multiple items
including a low-level
private key structure
RSAKeyGenContext ||containing the private
portion of the RSA key
pair (and the public
portion of the RSA key
pair which is replicated
inside of the private
portion of the RSA key

typedef struct
RSAKeyGenContextStr

14 of 20 3/16/99 11:29 AM

FIPS PUB 140-1: 1.0 : Security Policy

I

|pair).

|

typedef struct
RSAPrivateKeyStr

RSAPrivateKey

The structure containing
the private portion of
the RSA key pair.

typedef struct
RSAPublicKeyStr

RSAPublicKey

The structure containing
the public portion of the
RSA key pair.

PKCS #5
Password-Based

Encryption

typedef struct SECItemStr

SECItem

Utilizes this generic
container to hold
password-based
encryption data.

PKCS #12
Personal
Information
Exchange

typedef struct SECltemStr

SECltem

Utilizes this generic
container for data
associated with personal
information exchange.

Private Key
Storage and
Retrieval

typedef struct
SECKEYKeyDBHandleStr

SECKEYKeyDBHandle

The structure
representing a handle
into the private key
database.

typedef struct
SECKEYLowPrivateKeyStr

SECKEYLowPrivateKey

Utilizes this generic
container used for
low-level private key
structures.

Pseudorandom
Number
Generation

typedef struct
RNGContextStr

RNGContext

The structure
representing the context
of pseudorandom number
generation dependent
upon a SHA1Context and
a seed value among
other data items.

SSL Session ID
Cache
(Secret

Management)

typedef struct
SSLSecurityInfoStr

SSLSecurityinfo

The structure containing
all information relevant
to SSL security.

typedef struct
SSLSessionlIDStr

SSLSessionID

The structure containing
data relevant to the SSL
session ID including the
session ID cache and the
master secret.

1.7.2 Service Relationships to Security Relevant Data Items Matrix

Table IV. Service Routine to Security Relevant Data Items Matrix

15 of 20

3/16/99 11:31 AM

FIPS PUB 140-1: 1.0 : Security Policy

Service Service Routine Security Relevant ||Read ||Write |
Data Item Access Accessl
CERTCertDBHandle | X [X |
AddCertToPermDB() CERTCertificate | x | x|
[CERTCertTrust] X] X |
lcertDBEntryCert ” X H }
CERT_ClosePermCertDB() |CERTCertDBHandle | X || x |
' ICERTCertDBHandle | X X |
Certificate |SEC_FindPermCertByKey() SECltem X | x]
Storage and certDBEntryCert] X][}

Retrieval CERTCertDBHandle X [x
SEC_OpenPermCertDB() SECotat } X ;
atus -
CERTCertDBHandle | X [x |
SEC_DeletePermCertificate() CERTCertificate l X] X }
SECStatus l X ? |
CERTCertDBHandle || X [Xx |
SEC_TraversePermCerts() [SECStat : H X “ |
u ;
_ SECKEYLowPrivateKey | X | 3
DSA_CreateSignContext() DSASignContext H X 1
. DSASignContext K X |
D>A_PreSign() SECStatus] X 2
DSA_Sign() DSASignContext X x]

12N
-8 SECStatus X || - |
DSA_DestroySignContext() HDSASignContext l - j§| X |
_ SECKEYLowPublickey | X | - |
DSA_CreateVerifyContext() DSAVerifyContext ! x|
ifyCo - 3
DSA_Verify() DSAVerifyContext || X [x |
en]
—verty SECStatus x| |
DSA_DestroyVerifyContext() 1 DSAVerifyContext { - I X 2
'RSA N SECKEYLowPrivateKey | X | }
n
->1gn() SECStatus x| -
_ SECKEYLowPublickey | X | |
o RSA_CheckSign()
Digital SECStatus I x

Signatures _ SECKEYLowPublickey | X |
RSA_CheckSignRecover () SECStatus i X 1 |

16 of 20

3716799 11:34 AM

FIPS PUB 140-1: 1.0 : Security Policy

17 of 20

[SECKEYLowPublickey | X || |
RSA_EncryptBlock()
SECStatus [-
SECKEYLowPrivateKey | X [- |
RSA_DecryptBlock()
SECStatus oI -]
. SECKEYLowPrivateKey } X F - 3
RSA_SignRaw()
SECStatus BN
, SECKEYLowPublickey | X][- |
RSA_CheckSignRaw()
SECStatus] X - I
_ SECKEYLowPublickey | X -
RSA_CheckSignRecoverRaw() SECStat X 7{ ,
atus ,
SECKEYLowPublickey |[X | g
RSA_EncryptBlockRaw() !
ISECStatus H X 1[
SECKEYLowPrivateKey | X | 1
RSA_DecryptBlockRaw() SECStatis [X ' ;
i
DES_CreateContext() DESContext | X |
DES_Encrypt() DESContext X x|
DES_Encryp
Encryption/ I SECStatus ? X 1 i
Decryption DES. Decrvot DESContext Jx I x]
—eenpt() ISECStatus H X | 5
DES_DestroyContext() [DESContext l X |
SHA1_NewContext() SHA1Context } X |
|SHA1Context “ X I i
SHA1_CloneContext() SHA1 Contoxt YI z X |
SHA1_Begin() [SHA1Context | x
Hashing ||SHA1_Update() [SHA1Context L x T x
SHA1_End() [SHA1Context x| x]
SHA1_HashBuf () sECStatus X |
ISHA1_Hash() ISECStatus | x] |
SHA1_DestroyContext() I SHA1Context - } X f
DSA_CreateKeyGenContext() W DSAKeyGenContext H - 1 X |
DSAKeyGenContext X X }
DSA Keve SECKEYLowPublicKey | x|
-feyGen() SECKEYLowPrivateKey | | x |
Key SECStatus [x| |
Generation 3
DSA_DestroyKeyGenContext()] DSAKeyGenContext f I X

3/16/99 11:39 AM

FIPS PUB 140-1: 1.0 : Security Policy

18 of 20

|

RSA_NewKey()

[RNGContext

|

SECItem

|
-

> X

SECKEYLowPrivateKey E

PKCS #5
Password-Based
Encryption

SEC_PKCS5GetSalt()

SECAlgorithmID

|

XXX X

SECltem

SEC_PKCS5CipherData()

SECAlgorithmID

>

SECltem

SECltem

VSIS LSOO | SURUI 1 SN § NS | SR § SN | W—

SEC_PKCS5CreateAlgorithmID()

SECOidTag

SECItem

XXX XXX | X

SECAlgorithmID

PKCS #12
Personal
Information
Exchange

SEC_PKCS12GetPFX()

ISECOidTag

SECitem

SEC_PKCS12PutPFX()

SECltem

SECOidTag

SECStatus

Prime
Number
Generation

prm_PrimeFind()

CMPInt

SECStatus

prm_GeneratePrimeRoster()

ISECStatus

prm_PseudoPrime()

CMPInt

XXX XX EXEXIXEXEX

SECStatus

SECStatus

pad

prm_RabinTest()

CMPInt

>

SECStatus

ISECStatus

Private Key
Storage and
Retrieval

ISECKEY_CloseKeyDB()

ISECKEYKeyDBHandle

SECKEY_DeleteKey()

SECKEYKeyDBHandle

SECStatus

SECKEY_Find()

SECKEYKeyDBHandle

SECItem

ISECKEYLowPrivateKey

|
|
|

SECKEY_OpenKeyDB()

SECKEYKeyDBHandle

|

SECKEY_TraversePermKeys()

SECKEYKeyDBHandle

|

SECStatus

NG EX P2 XXX XXX | X

3/16/99 11:45 AM

FIPS PUB 140-1: 1.0 : Security Policy

SECKE |
SECKEY_UpdateKeyDBPass1() [SEE;YtKeyD Biandle {l); };L X 13
atus -]
SECKEYKeyDBHandle | X || x |
SECKEY_UpdateKeyDBPass2() SECltem o x
SECStatus L x] |
, RNGContext [1 X |
RNG_RNGInit g i
0 SECStatus Lx -]
RNGContext
RNG_GenerateGlobalRandomBytes() lSECSto: & f” ;(“ X 73
atus -
RNGC
RNG_RandomUpdate() ontext 1 X W X W
, SECStatus { X I - l
RNGC ‘
RNG_ResetRandom() ontext L x] x]
SECStatus ox -]
Pseudorandom 1
RNGCont ~
Number RNG_CreateContext() ontext § X ” X |
Generation RNGContext 3| X |
RNG_Init() RNGContext | X |
RNGContext X | X
RNG_GenerateRandomBytes() [SECSto: & Il X f[?!
atus |
RNG. Update() RNGContext L x]
- SECStatus Lx T -
RNG_Reseed|) RNGContext ” X M X]
L SECStatus ES |
RNG_DestroyContext() 1 RNGContext 7] X]
SSLSecuritylnf X X
ssl_ChooseSessionIDProcs() [SSLS u)IID ° !l ” X }
ession |
SsL éeS-:'on ID sSL_ClearSessionCache() |sSLsessionID ox [x]
ache
SSLSessionID X I x |
(Secret ssl_LookupSID() . ‘ z
ssl_FreesID() SSLSessionID X | x |
e
- SSLSessionID | | x|
SSL pre-master i
P pk11_PRF() const SECItem *secret | X X |
secrets e

1.8 Means of Access

Prior to execution of the Client or Server products, the Security Libraries are stored on disk in

19 of 20 3/16/99 11:46 AM

FIPS PUB 140-1: 1.0 : Security Policy

19 of 20

SECKEYKeyDBHandl X ’
SECKEY_UpdateKeyDBPass1() }ECSt . Seange !l X {[X E

atus -
SECKEYKeyDBHandle [X [X |
SECKEY_UpdateKeyDBPass2() SECltem LT x]
SECStatus X -
RNG_RNGInit() RNGContext § x|
B ISECStatus x0T -]
RNGContext X X |
RNG_GenerateGlobalRandomBytes()[noex “ H ’
SECStatus Lx -]

' RNGContext X X
RNG_RandomUpdate() } 1 !
SECStatus | x -]
RNGContext X X |
RNG_ResetRandom() i l |
Peeudorand SECStatus x I -]
seudorandom i
RNGContext X X |
Number RNG_CreateContext() EI I =
Generation IRNGContext E| “ X]
RNG_lInit() IRNGContext 1 I x]
RNGContext Lox [x]

RNG_GenerateRandomBytes()

SECStatus [x] }
RNG_Update() IRNGContext Lx I x]
—P SECStatus IES }
‘RNG Reseed() IRNGContext ENES
- SECStatus | x |
RNG_DestroyContext() IIRNGContext § | x|
, SSLSecuritylnfo X X |
ssl_ChooseSessionIDProcs() = | |
. ISSLSesswnID !I I X
SSL Session ID |[s5| ClearSessionCache() [sSLSessionID x| x]
Cache SSLSessionID x x]
(Secret ssl_LookupSID() , |
Management) SSLSeSSIOnlD X } %
_FreesiDy) SSLSession|D Lx o x]
SS ree Y
- SSLSessionID L - x]
SSL pre-master pk11_PRF() const SECltem *secret || X X z
secrets ' !

1.8 Means of Access

Prior to execution of the Client or Server products, the Security Libraries are stored on disk in

3/16/99 11:48 AM

FIPS PUB 140-1: 1.0 : Security Policy

compiled binary form. Netscape relies on Discretionary Access Controls (DAC) to protect the
binary image from being tampered with.

1.9 Zeroization

Within the Security Libraries, there are a number of explicit zeroization steps that are taken

to clear the memory region previously occupied by a private key or password. A complete
reference to such zeroizations is listed in section 8.0 of this document.

1.10 Role-based Authentication

Since all Netscape products utilize role-based authentication, and all products use a
single-role mechanism referred to above as a Netscape User, authentication shall always be
required upon initializing the FIPS Cryptographic Module. This is true of all Netscape client
and server products, and shall be handled via the PKCS #11 mechanism of required
authentication.

1.11 Identity-based Authentication

This section is not applicable to Netscape products since it is only applicable to products ~
attempting to be certified to security level three or four. ~

20 0f 20 3/16/99 11:50 AM

Security Policy Addendum

Physical Security Considerations
August 25, 1997
Purpose:
To advise organizations of their role in configuring their systems, policies and practices
to be consistent with FIPS 140-1 module security, and to describe one method for a user
organization to attain level 2 physical security on their general purpose computer systems.

FIPS 140-1 Level 2 Physical Security Requirements

“A cryptographic module shall be designed to employ physical security mechanisms in
order to restrict unauthorized physical access to the contents of the module and to deter
unauthorized use or unauthorized modification of the module (including substitution of
the entire module) when installed. The entire contents of a cryptographic module,
including all hardware, firmware, software and data (including plaintext cryptographic
keys and unprotected critical security parameters) shall be protected.”.

“If the enclosure includes any doors or removable covers, then either they shall be locked
with pick-resistant mechanical locks that employ physical or logical keys, or they shall be
protected via tamper evident seals. ?

User Responsibilities : _

It is the responsibility of the user of the cryptographic module to implement the physical
protections necessary to provide physical security in accordance with the using
organization security policy. This may involve the procurement, application and periodic
inspection of tamper evident mechanisms, such as tamper evident seals. In conjunction
with the physical protections, the user organization may be obligated to set up policies or
procedures to periodically inspect the hardware platforms for evidence of tampering, as
well as train operators in what to look for on their systems to identify tamper evidence.

Method:

The FIPS 140-1 Standard allows for the use of seals as a means to provide evidence of a
successful or attempted physical attack on a cryptographic module. A recommended
method to accomplish this is to appropriately apply holographic seals that are designed
specifically for this purpose. The objective of the seals is to provide a high probability of
leaving evidence that the enclosure has been breached.

Holographic Seals:

If the use of seals is selected for securing the general purpose computers then a custom or
unique holographic image on the seal should be used. The holographic nature of the seals
makes them difficult and expensive to copy. The seals should have an aggressive
adhesive that is resistant to chemical solvents and should be fragile enough to de-laminate
or tear if an attempt is made to lift or remove the seal. The process of removing the seal,

should force clear indications of evidence on both the applied surface and the removed
seal.

InfoGard Laboratories Inc. Page 1

Security Policy Addendum

Seal Selection:

When selecting the appropriate seal to optimize tamper evidence, characteristics such as

background color, tamper evidence indicators, size and shape are factors. The color of

the seal should be different than the color of the product surface. The size and shape
should be large enough to have sufficient area for good adhesion.

Location and Positioning:

Determining where the seals will be located and how they will be positioned is important
to fulfilling the overall objective of tamper evidence. The primary PC component that
should be secured is the enclosure(s) that contains the processor and primary application
memory storage. Specifically seals need to be applied to the appropriate interfaces,
junctions, and/or fasteners of all doors and covers incorporated in the enclosure design.
The seals should be applied to minimize the possibility that the door or cover could be
partially opened.

Application Process:
The specific application, materials and process of the seal manufacturer that was selected
needs to be strictly adhered to. In general, the application of the seals is a short process.

® Determine appropriate locations on the PC that seals are to be applied

e Clean surfaces

e Apply seals

¢ Allow adhesive to cure
Cleanliness of surfaces to be bonded are very important for proper adhesion to occur.
Often equipment surfaces are contaminated by manufacturing, shipping or office cleaning
chemicals resulting in drastically reduced adhesive properties. All surfaces must be
appropriately cleaned and dried before the application of the seal. During application,

proper pressure needs to be applied to the seal and then allowed to cure before the
adhesive reaches specified strength.

Inspection:

Tamper evidence is effective only when the evidence is actually observed by a person that
will take action appropriate with the evidence. This means that the user organization
needs to implement procedures to train operators on what evidence to look for and what
action to take. Periodic inspections or audits on the equipment may also need to be

performed by crypto officers. These inspections should all be conducted in accordance
with the user organization security policy.

InfoGard Laboratories Inc. Page 2

