
© COPYRIGHT 2004 KASTEN CHASE APPLIED RESEARCH.  THIS DOCUMENT MAY ONLY BE REPRODUCED IN ITS 
ENTIRTY (WITHOUT REVISION) 

 

 
 
 

Kasten Chase Cryptographic Engine 
 

Security Policy 
 
 
 
 

Synopsis: This document is the non-proprietary security policy of the Kasten Chase 
Cryptographic Engine (KCCE) version 2.0.  KCCE is a FIPS 140-2 Level 
1 and Level 2 (as a function of the target environments) validated 
cryptographic module that allows for the secure implementation of 
cryptographic protocols.  KCCE provides a reliable and secure Application
Programming Interface (API) allowing software developers to build secure
cryptographic applications. 

 
 
 
 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 2 of 32 

Table of Contents 

1. INTRODUCTION 4 
1.1 Purpose.....................................................................................................................................................4 
1.2 References ................................................................................................................................................4 

2. CRYPTOGRAPHIC MODULE DEFINITION 4 
2.1 Target Environments ................................................................................................................................6 
2.2 FIPS 140-2 Security Level .......................................................................................................................7 
2.3 KCCE Interfaces ......................................................................................................................................8 
2.4 Finite State Model ....................................................................................................................................8 

3. SECURITY POLICY 8 
3.1 FIPS 140-2 Approved Operational Modes ...............................................................................................9 
3.2 Roles.........................................................................................................................................................9 

3.2.1 Default Security Officer................................................................................................................9 
3.2.2 Security Officer...........................................................................................................................10 
3.2.3 User.............................................................................................................................................10 
3.2.4 User Authentication ....................................................................................................................10 

3.3 Installation Guidance..............................................................................................................................10 
3.3.1 KCCE FIPS 140-2 Level 1 Environments ..................................................................................10 
3.3.2 Physical Security Policy for KCCE FIPS 140-2 Level 2 Environments.....................................10 

3.4 Cryptographic Key Management ...........................................................................................................11 
3.4.1 Key Material and Critical Security Parameters...........................................................................11 
3.4.2 Key Generation ...........................................................................................................................11 
3.4.3 Key Entry and Output .................................................................................................................12 
3.4.4 Key Storage.................................................................................................................................12 
3.4.5 Key Archival...............................................................................................................................12 
3.4.6 Key Destruction ..........................................................................................................................12 
3.4.7 Secret Sharing .............................................................................................................................12 

3.5 Operational Environment .......................................................................................................................12 
3.5.1 Level 1 Mode of Operation.........................................................................................................12 
3.5.2 Level 2 Mode of Operation.........................................................................................................13 

3.6 Self Tests................................................................................................................................................13 
3.7 Mitigation Against Specific Attacks ......................................................................................................14 
3.8 Administrative Services .........................................................................................................................14 

3.8.1 Initialize ......................................................................................................................................14 
3.8.2 Finalize .......................................................................................................................................14 
3.8.3 Self Test ......................................................................................................................................14 
3.8.4 Zeroize ........................................................................................................................................14 
3.8.5 Login...........................................................................................................................................14 
3.8.6 Logout.........................................................................................................................................14 

3.9 Key Management Services.....................................................................................................................14 
3.9.1 Set Public Key Method ...............................................................................................................14 
3.9.2 Generate Key Pair .......................................................................................................................15 
3.9.3 Generate Key Material ................................................................................................................15 
3.9.4 Delete Key ..................................................................................................................................15 
3.9.5 Set User Passphrase ....................................................................................................................15 
3.9.6 Generate Key ..............................................................................................................................15 
3.9.7 Export Key..................................................................................................................................15 
3.9.8 Import Key..................................................................................................................................15 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 3 of 32 

3.9.9 Generate Key From a Passphrase................................................................................................15 
3.10 Key Exchange Services ..........................................................................................................................15 

3.10.1 Generate a Shared Secret ............................................................................................................15 
3.10.2 Generate Token Encryption Key.................................................................................................15 

3.11 Data Encryption and Decryption Services..............................................................................................16 
3.11.1 Symmetric Encryption ................................................................................................................16 
3.11.2 Symmetric Decryption ................................................................................................................16 
3.11.3 Asymmetric Encryption ..............................................................................................................16 
3.11.4 Asymmetric Decryption..............................................................................................................17 

3.12 Hashing and Digital Signature Services .................................................................................................17 
3.12.1 Hash Services..............................................................................................................................17 
3.12.2 Keyed-Hash Services ..................................................................................................................17 
3.12.3 Digital Signature .........................................................................................................................17 
3.12.4 Verification of a Signed Data Entity........................................................................................... 18 
3.12.5 Signing a Public Key ..................................................................................................................18 
3.12.6 Verification of the Signature of a Public Key.............................................................................18 

3.13 Key Exchange Services ..........................................................................................................................18 
3.14 Secret Sharing Services ..........................................................................................................................18 

3.14.1 Splitting a Secret into Shares ......................................................................................................18 
3.14.2 Recovering a Split Secret............................................................................................................18 
3.14.3 Recovering Key Material ............................................................................................................18 

3.15 Random Number Services......................................................................................................................18 
3.15.1 Seeding the Random Number Generator ....................................................................................18 
3.15.2 Generate a Random Number.......................................................................................................19 

4. KCCE CRYPTOGRAPHIC ALGORITHMS 19 

5. CRYPTOGRAPHIC SERVICES, ROLES AND ACCESS TO CSPS AND KEYS 20 
 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 4 of 32 

1. Introduction 
1.1 Purpose 
This document is the non-proprietary security policy for the Kasten Chase Cryptographic Engine (KCCE) 
Version 2.0.  This security policy describes how KCCE meets the requirements of FIPS 140-2 Level 1 for 
specified target environments and FIPS 140-2 Level 2 for other specified target environments and how 
applications using KCCE may operate in a FIPS 140-2 mode. 

Its purpose is to specify the identification and authentication, access control, physical security, mitigation 
against specific attacks policies and to specify rules for secure operation. 

FIPS 140-2 is a US Government publication describing the requirements for cryptographic modules.  
Additional information can be obtained on the NIST website: http://csrc.nist.gov/ 

The Kasten Chase Cryptographic Engine is a shared library that provides for the secure implementation of 
cryptographic protocols within an application program.  KCCE provides a reliable and secure Application 
Programming Interface (API) enabling software developers to build secure cryptographic applications. 

1.2 References 

Ref. Document Identification  Document Title 
[1] KCCE Application Programming 

Interface 
Kasten Chase Cryptographic Engine Application 
Programming Interface Specification 

[2] RSA Data Security, Inc. Public Key 
Cryptography Standards (PKCS) 

PKCS #5 v2.0: Password-Based Cryptography 
Standard, March 25, 1999 

[3] csrc.nist.gov/CryptoToolkit/kms/key-
wrap.pdf 

AES Key Wrap Specification, 17 November 2001 

[4]  Shamir, A, How to Share a Secret, Communications 
of the ACM Vol.22 No. 11, November 1979 

[5] KCCE Finite State Model Kasten Chase Cryptographic Engine (KCCE) Finite 
State Model 

 

2. Cryptographic Module Definition 
KCCE consists of the following three general components:       

• One of the commercially available, general-purpose hardware computing platforms listed in 
Table 1 (for FIPS 140-2 Level 1 validation) and in Table 2 (for FIPS 140-2 Level 2 
validation).  A high level view of the target computing platform and the cryptographic 
boundary is shown in Figure 1. 

• The target platform’s associated operating system listed in Table 1 (for FIPS 140-2 Level 1 
validation) and in Table 2 (for FIPS 140-2 Level 2 validation). 

• An independent library of cryptographic object modules, which are linked to an application 
via the KCCE Application Programming Interface (API), that executes within the specified 
operating system and on the specified computing platform. 

The FIPS 140-2 cryptographic boundary for KCCE from a hardware perspective is shown in Figure 1.  



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 5 of 32 

Figure 1  KCCE Cryptographic Boundary from a Hardware Perspective 

 

Designed and developed by Kasten Chase, the Kasten Chase Cryptographic Engine (KCCE) was written in 
the C programming language with the exception of performance-critical functions that were written in the 
host platform’s assembly language.  With the exception of the platform-specific software integrity test, the 
source code of KCCE is independent of the target environment.  For each platform, KCCE is compiled into 
an independent module. 

KCCE is linked to an application via the KCCE Application Programming Interface (API).  The API is 
detailed in Ref [1].   The application program uses the KCCE API in order to gain access to the 
cryptographic services provided by KCCE.  Figure 2 is a block diagram of a typical KCCE implementation 
and shows KCCE’s cryptographic boundary from a software perspective. 

Host Processor
Mouse 

Interface
Keyboard 
Interface

Video Monitor 
Interface

System 
Memory

Disk Drive 
Interface

Network 
Interface

Mouse Keyboard Display

Files Network

System Bus

Cryptographic Boundary



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 6 of 32 

Figure 2:  Typical KCCE Environment from a Software Perspective 

2.1 Target Environments 
For the purpose of FIPS 140-2, KCCE is implemented as a multi-chip stand-alone module, and as such has 
been tested upon the target environments listed in Table 1. 

Table 1  FIPS 140-2 Level 1 Target Environments  

Target Platform Operating System Mode 
IBM Compatible PC with a x86 processor WindowsTM2000  User Mode 
IBM Compatible PC with a x86 processor WindowsTM 2000  Kernel Mode 
IBM Compatible PC with a x86 processor Linux ver 2.4 User Mode 
IBM Compatible PC with a x86 processor Linux with 2.4 kernel Kernel Mode 
IBM server with a PowerPC processor AIX V5.2  User Mode 
IBM server with a PowerPC processor AIX V5.2 Kernel Mode 
Sun SPARCTM processor based systems Sun SolarisTM version 9  User Mode 
Sun SPARCTM processor based systems Sun SolarisTM version 9  Kernel mode 
Sun SPARCTM processor based systems Sun Trusted SolarisTM 

Version 8 4/01  
Kernel mode 

 

Table 2 lists the target environments on which KCCE has been tested for FIPS 140-2 Level 2, together with 
their Common Criteria Evaluated Assurance Level (EAL) and Protection Profile. 

 Note 1:  KCCE has been validated with Win2000 but also remains FIPS 140-2 compliant when used with 
WIN98/ME/XP/2003. 

Nore 2:  All operating systems specified for level 1 are configured in single-user mode. 

Kasten Chase 
Cryptographic Engine 

Operating 
System & 
Computing 
Platform 

KCCE API

 
 

User 
Interface 

Data Network

Data 
Storage 

Application Utilizing 
Cryptographic Services 

Cryptographic 
Boundary 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 7 of 32 

 

Table 2:  FIPS 140-2 Level Two Target Environments, EAL and Protection Profile 

Target Platform Operating System Mode Common 
Criteria 
Assurance 
Level 

Protection 
Profile 

Sun SPARCTM processor based 
systems 

Sun Trusted SolarisTM Version 8 
4/01 

User 
mode 

EAL 4 
(note 1) 

CAPP 

IBM Compatible PC with a x86 
processor 

WindowsTM 2000 Professional, 
Server and Advanced Server 
with SP3 and Hotfix Q326886  

User 
Mode 

EAL 4 
Augmented  
(note 2) 

CAPP 
v1.d, 
10/8/99 

IBM eServer pSeries systems 
with a PowerPCTM processor 

AIX 5L for POWER V5.2  User 
Mode 

EAL 4+  
(note 3) 

CAPP 
v1.d 

 

Note 1:  Certification report available at 
http://www.cesg.gov.uk/site/iacs/itsec/media/certreps/CRP170v3.pdf 

Note 2:  Validation report available at http://niap.nist.gov/cc-scheme/st/ST_VID4002-VR.pdf 

Note 3:  Certification report available at http://www.bsi.bund.de/zertifiz/zert/reporte/0217a.pdf 

 

2.2 FIPS 140-2 Security Level 
KCCE is validated to meet the FIPS 140-2 security requirements at the levels listed in Table 3 for the target 
environments listed in Table 1. 
 

Table 3 KCCE Security Levels for Level 1 Target Environments 

FIPS 140-2 Security Requirements Section  Level 
1. Cryptographic Module Specification 1 
2. Cryptographic Module, Ports and Interfaces 1 
3. Roles, Services and Authentication 3 
4. Finite State Model 1 
5. Physical Security N/A 
6. Operational Environment 1 
7. Cryptographic Key Management 1 
8. EMI / EMC 1 
9. Self Tests 1 
10. Design Assurance 2 
11. Mitigation of Other Attacks N/A 

 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 8 of 32 

 
KCCE is validated to meet the FIPS 140-2 security requirements at the levels listed in Table 4 for the target 
environments listed in Table 2. 
 

Table 4:  KCCE Security Levels for Level 2 Target Environments 

FIPS 140-2 Security Requirements Section  Level 
1. Cryptographic Module Specification 2 
2. Cryptographic Module, Ports and Interfaces  2 
3. Roles, Services and Authentication 3 
4. Finite State Model 2 
5. Physical Security N/A 
6. Operational Environment 2 
7. Cryptographic Key Management 2 
8. EMI / EMC 2 
9. Self Tests 2 
10. Design Assurance 2 
11. Mitigation of Other Attacks N/A 

2.3 KCCE Interfaces 
KCCE operates within the confines of a host-computing platform with physical interfaces consisting of a 
mouse, keyboard, serial ports, network adaptors and a monitor. 

KCCE’s logical interface is defined by its Application Programming Interface and is specified in Ref [1].  
Control input to KCCE is made through the API calls.  Data input to KCCE and output from KCCE is 
through the arguments of the API functions.  Each API function returns a status or an error value – the 
meaning of which is detailed in Ref [1]. 

2.4 Finite State Model 
KCCE behaves in accordance with the finite state model described in Ref [5]. 

3. Security Policy 
This chapter contains the security policy for the Kasten Chase Cryptographic Engine as identified in 
chapter 2. 
KCCE operates under several rules that form the basis for its security policy: 

• Cryptographic services are permitted only after authentication via login.  Login requires the 
presentation of Private Key material that is wrapped using a symmetric key derived in part 
from a User supplied Passphrase.  The PBKDF2 passphrase-based key derivation algorithm, 
as specified in PKCS#5 Ref [2], is used.  Although the private key material is wrapped, it 
must be considered as plaintext with regard to its handling or transmission over a network 
since the key encrypting the private key material is not generated by a FIPS Approved 
method. 

• The provided cryptographic services have permission restrictions based on the role of the 
user, which in turn is determined at login. A matrix designating the functions available for 
each role is presented in Section 5. Table 14. 

• No private key of an asymmetric key pair is permitted outside the cryptographic boundary in 
the clear.  A private key can only be exported from KCCE after being wrapped using a 
symmetric key.  In instances where this symmetric key is derived from a passphrase using the 
PBKDF2 algorithm as specified in PKCS#5, then the exported private key must be considered 
as plaintext with regard to its handling or transmission over a network since the key wrapping 
the private key is not generated by a FIPS Approved method. 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 9 of 32 

• No symmetric key is permitted outside the cryptographic boundary in the clear.  A symmetric 
key can only be exported from KCCE after being wrapped using a symmetric key derived 
from a shared secret computation. 

• When keys are imported or exported, the wrapping algorithm conforms to the technique 
described in AES Key Wrap Specification Ref [3], regardless of the symmetric algorithm 
specified in the function call. 

• The Default Security Officer selects and sets the Public Key Method prior to the creation of a 
Root Security Officer’s key material.  Ref [1] enumerates the cryptographic algorithms that 
are recommended based on the selected Public Key Method. 

• The Default Security Officer must re-seed the random number generator before the Default 
Security Officer generates key material.  It is also recommended that a Security Officer re-
seed the random number generator prior to generating key material. 

• A context must be terminated by calling one of: Logout, Finalize or Zeroize functions.  
Among these, the Logout function is preferred as it both zeroizes the context and updates the 
key material with additional random data. 

• The cryptographic application program accessing KCCE must obscure the feedback of 
authentication (passphrase) data to the operator of the application program. 

3.1 FIPS 140-2 Approved Operational Modes 
KCCE operates in FIPS mode at all times except when one of the following conditions exists: 

• An application makes a call to the K_Hash_HASHALG_Init or K_HMAC_Init functions (see 
Ref [1]) with MD5 as the specified algorithm.  Then, the KCCE context goes into a non-FIPS 
mode of operation and remains in a non-FIPS mode until the hash termination function, 
K_HASHALG_FINALIZE or HMAC termination function, K_HMAC_Finalize is called and 
completes.  

• An application makes a call to the asymmetric encryption initialization function 
K_Asymmetric_Encrypt_Init (see Ref [1]) or decryption initialization function 
K_Asymmetric_Decrypt_Init (see Ref [1]).  The KCCE context goes into a non-FIPS mode of 
operation and remains in a non-FIPS mode until the context is terminated. 

• The key derived from K_Generate_Key_Passphrase is intended to be used as a symmetric 
session key between two communicating parties.  The KCCE context goes into a non-FIPS 
mode of operation upon the application call to K_Generate_Key_Passphrase and remains in a 
non-FIPS mode until the context is terminated. 

 
Keys generated in a FIPS mode of operation may not be used in a non-FIPS mode of operation and keys 
generated in a non-FIPS mode of operation may not be used in a FIPS mode of operation. 

3.2 Roles and Authentication 
There are three roles within the Kasten Chase Cryptographic Engine - Default Security Officer, Security 
Officer and User.  The roles are identified within the key material required for Login to KCCE.  Each role 
requires a user identifier and a passphrase.  Only one role may be active per context. 

3.2.1 Default Security Officer 
Along with the object libraries for KCCE, Kasten Chase also provides Key Material for the Default 
Security Officer.  This Key Material has a globally known username and passphrase.  The services provided 
to this role are limited to those needed to create Root Security Officer Key Material.  This role is used to 
“bootstrap” the creation of key material for an organization and for this reason the key material should be 
physically protected.  KCCE cannot be used to create Default Security Officer key material.  



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 10 of 32 

3.2.2 Security Officer 
While formally within KCCE there is only one Security Officer role, it is strongly recommended that in 
practice there are two – a Root Security Officer and a Local Security Officer.  The distinction between the 
two has to do with what is recommended they do, rather than what they may do. 

3.2.2.1 Root Security Officer 

The Root Security Officer for an organization is a Security Officer that only creates private/public key pairs 
and signs public keys of Local Security officers.  The Root Security Officers private key material should be 
physically protected because it is from the signatures generated by the root’s public key that all trust is 
derived for a community of users.  A copy of the Root Security Officer’s Public Key is included in all 
subsequently created Private Key Material. 

3.2.2.2 Local Security Officer 

Local Security Officers for an organization are Security Officers that only create private-public key pairs 
for Users and sign their public keys. 

3.2.3 User 
Users have full access to the suite of cryptographic algorithms; however, some of their choices may be 
limited based on selections made by the Security Officers. Users are not permitted to sign public keys, 
generate key material, or establish the public key method to use.  These functions are reserved for the 
Security Officers and/or the Default Security Officer.  

3.2.4 User Authentication 
A passphrase (Security Officer or User) must have at least eight ASCII characters and less than 256 
characters.   

Login must occur before any cryptographic service is made available through the API.  Login includes the 
presentation of Private Key material.  

After 10 consecutive failures to login using an incorrect passphrase, KCCE is zeroized and must be 
initialized before another login may be attempted 

3.3 Installation Guidance 

3.3.1 KCCE FIPS 140-2 Level 1 Environments 
For the KCCE FIPS 140-2 Level 1 Environments, identified in Table 1, installation guidance can be found 
in the API [Ref 1]. 

3.3.2 Physical Security Policy for KCCE FIPS 140-2 Level 2 Environments 
For the KCCE FIPS 140-2 Level 2 Environments, identified in Table 2, tamper-evident labels must be 
applied to locations on the host computing platform enclosure such that any attempt to penetrate the host 
computing platform would be evident by broken seals or residual adhesive from removed seals.  The 
tamper-evident seals must be controlled by the local security officer so that seals may not be removed, the 
platform penetrated, and new seals reapplied.  A typical use of the seals is shown in Figure 3.  Additional 
installation requirements are described in API [Ref 1]. 
      



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 11 of 32 

                                                
 

Figure 3:  Location of Tamper-Evident Seals on Level 2 computing Platforms 

3.4 Cryptographic Key Management 

3.4.1 Critical Security Parameters 
KCCE employs the critical security parameters listed in Table 5. 

Table 5  Critical Security Parameters 

Key and Cryptographic Sensitive Parameters 
Asymmetric private keys 
Symmetric keys - Session or message encryption keys (MEKs) and      
Token encryption keys (TEKs) 
Shared Secrets 
Passphrases 
Split-secret share 
HMAC Keys 
Random Number Seeds 

 

Each time an application invokes the ‘initialize’ function, K_Initialize, a unique KCCE context is created 
within which there are neither keys nor CSPs.  After ‘initialization’ keys can be imported by two specific 
function calls (Login, Import).  Login imports a private key (Security Officer or User) and stores the key 
within KCCE while the Import function imports a key of a specified type and also stores it within KCCE. 

It is not possible to extract a key from KCCE in plaintext. 

3.4.2 Key Generation 
Keys can be generated from a random number by the following processes: 

• using either of the functions: Generate_Key (see Ref [1]) or Generate_Key_Pair(see Ref [1]), 

• derived from a key exchange computation using either of the functions: Shared_Secret (see 
Ref [1]) or Generate_TEK (see Ref [1]), 

Tamper Seals 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 12 of 32 

• or derived from a passphrase and random salt using Generate_Key_Passphrase (see Ref [1]). 

Calls to the following API-level functions generate keys as indicated: 

• Generate_Key_Pair – generates an asymmetric key pair of the same type as the login key 
material, stores the key pair within KCCE and provides a reference for subsequent use of the 
key pair, 

• Generate_Key – generates a symmetric key for a specified symmetric algorithm, stores the 
key within KCCE and provides a reference for subsequent use, 

• Shared_Secret – generates a shared secret, stores it within KCCE and provides a reference for 
subsequent use, 

• Generate_TEK − generates a token encryption key, stores it within KCCE and provides a 
reference for subsequent use. 

• Generate_Key_Passphrase – derives a key from a passphrase following the method described 
in Ref [2] (employs the ANSI X9.62 deterministic random number generator), stores the key 
within KCCE and provides a reference for subsequent use. 

3.4.3 Key Entry and Output 
Symmetric Keys can be exported by the function Export_Key (see Ref [1]) or imported by the function 
Import_Key (see Ref [1]).  The function Export_Key wraps the key to be exported and exports the wrapped 
key.  Import_Key imports a wrapped key and unwraps the imported key. 

3.4.4 Key Storage 
KCCE does not provide persistent storage of keys.  Keys exported from KCCE can be safely stored in their 
encrypted form, but this is outside the scope of the cryptographic module. 

3.4.5 Key Archival 
KCCE does not directly archive cryptographic keys.  Keys can be exported and safely stored in their 
encrypted form; however, management of the archival of such a key is the responsibility of the user or the 
application that is using KCCE. 

3.4.6 Key Destruction 
All keys (regardless of context) are destroyed by the Zeroize function (see Ref [1]). 
All keys associated with a specific context are destroyed by the Finalize function (see Ref [1]). 
A specific key within a context is destroyed by the Delete Key function (see Ref [1]). 

3.4.7 Secret Sharing 
A secret (key) may be split into an arbitrary number of shares such that subsets of those shares (containing a 
pre-determined number of shares) can be used to recover the original secret.  One’s key material wrapping 
key (derived from the passphrase) can be split and this mechanism used to recover the wrapping key if 
one’s passphrase is forgotten. 

3.5 Operational Environment 
KCCE operates within a general purpose operational environment 

3.5.1 Level 1 Mode of Operation 
For KCCE to operate in a FIPS mode each of the FIPS 140-2 Level 1 target environments (listed in Table 
1) must be configured as a single user mode of operation. 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 13 of 32 

The operating system must be configured such that the KCCE shared library is only allowed to support one 
application program. 

The operating system must be configured to ensure that no other process can interrupt the execution of 
KCCE. 

The software must be installed in the secure manner.  The specific installation and O/S configuration 
instructions are described in Ref [1]. 

3.5.2 Level 2 Mode of Operation 
KCCE must be installed on one of the FIPS 140-2 Level 2 target environments (listed in Table 2).  Specific 
installation instructions are found in Ref [1]. 

The cryptographic application linked to KCCE must output the following events to an operating system 
log: 

• Attempts to provide invalid input for all Default Security Officer (DSO) and Security Officer 
(SO) functions, 

• The addition or deletion of user to/from a DSO or SO role 
• Access to all DSO and SO functions 
• Logins to KCCE 
• Attempts by a User to implement a DSO or SO function 

 
In addition to the requirements identified in section 3.5.1 all  Level 2 target environment’s operating 
systems must be configured to provide an audit mechanism to record modifications, accesses, deletions, 
and additions of crytographic data and CSPs.  In addition, Level 2 target environment’s operating systems 
must provide operations to process audit data stored in the audit trail. 

3.6 Self Tests 
In order to ensure that KCCE is functioning properly, KCCE performs power-up (Initialization) tests upon 
invocation.  KCCE also executes conditional self-tests whenever certain conditions exist.   

The power-up (Initialization) tests consist of cryptographic algorithm tests and a software integrity test.  
Cryptographic algorithm or “known answer” tests are executed for the following cryptographic algorithms: 

• ECC public key cryptography algorithm 
• RSA public key cryptography algorithm 
• AES symmetric algorithm 
• Triple DES symmetric algorithm 
• SHA1, SHA256, SHA384 and SHA512 hashing algorithms 
• HMAC-SHA-1, HMAC-SHA256, HMAC-SHA384 and HMAC-SHA512 keyed hashing 

algorithms 
• ANSI X9.62 Random Number Generator 

In the cases where there is more than one key size for a specified algorithm, only the largest key size is 
tested.  The power-up tests must be performed and passed before any cryptographic function / service can 
be used.  In addition to performing these tests on ‘power-up’, with the exception of the software integrity 
they are also performed when the K_Self_Test function is invoked. 

In the context of the KCCE, “Power-up” occurs the first time an application allocates a context to perform 
cryptographic functions (i.e. the K_Initialize function is called). If the power-up tests fail, then a context is 
not allocated and KCCE enters an error state that prevents all other cryptographic functions from 
performing operations. If the power-up tests pass a success indicator and a context ID are returned to the 
calling application.  If a subsequent direct call to K_Self_Test fails then the error state is also entered. 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 14 of 32 

KCCE executes pair wise consistency tests when K_Generate_Key_Pair is called, continuous random 
generator tests when the random number generator is invoked 

If KCCE fails a self-test, the following occurs: 1) an error state is entered 2) an error indicator is output (via 
status output interface) to the cryptographic application program, 3) KCCE is ‘zeroized’ - causing all data 
input and output to and from KCCE to be inhibited and constituting a Major Error State.  

3.7 Mitigation Against Specific Attacks  
KCCE is not designed to mitigate any known specific attacks to the Cryptographic Module. 

3.8 Administrative Services 

3.8.1 Initialize 
This administrative service initializes a new context and, if the first call to initialize, performs a self-test of 
internal cryptographic functions.  A valid context must be created before any cryptographic service can be 
accessed. 

3.8.2 Finalize 
This administrative service securely terminates a KCCE session (context).  The service zeroizes all CSPs 
and private data before freeing all space allocated to the specific context. This service must be executed 
before the user application terminates. 

3.8.3 Self Test 
This service causes the power-up self tests, with the exception of the software integrity test, to execute.  If a 
self-test fails all the contexts are zeroized. 

3.8.4 Zeroize 
This service zeroizes the CSPs and private data of all contexts and prevents any further use of the same 
instance of KCCE. 

3.8.5 Login 
This service authenticates the session by unwrapping the Key Material to obtain the private key, state 
information and known data.  Login has to be successfully executed before any cryptographic service is 
provided. 

3.8.6 Logout 
This service closes the specific session and securely stores persistent data – user’s private key, state of the 
random number generator - in the user’s Key Material. The Key Material is wrapped using a derived key 
generated during the login process from the user’s passphrase and login name.  Although the private key 
material is wrapped, it must be considered as plaintext with regard to its handling or transmission over a 
network since the key encrypting the private key material is not generated by a FIPS Approved method. 

3.9 Key Management Services 

3.9.1 Set Public Key Method 
This service is only available to the Default Security Officer.  It must be executed prior to the generation of 
the Private/Public Key Pair for the Root Security Officer.  The selected Public Key Method becomes the 
defined Public Key method for all Key Material generated from this Root Security Officer and subordinate 
Security Officers. 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 15 of 32 

3.9.2 Generate Key Pair 
This service generates an Elliptic Curve Cryptography (ECC) or RSA key pair and stores the private key 
internally. 

3.9.3 Generate Key Material 
This service generates key material to be given to a Security Officer or a User. The Security Officer or User 
will then be able to use the key material data to login to KCCE.  This function will return an error if there 
has not been a prior call to seed the random number generator.   The key material exported by this service 
is wrapped using a symmetric key derived in part from a user passphrase according to the PBKDF2 
algorithm Although the private key material is wrapped, it must be considered as plaintext with regard to its 
handling or transmission over a network since the key encrypting the private key material is not generated 
by a FIPS Approved method. 
 

3.9.4 Delete Key 
This service zeroizes a specific internal key that is no longer needed 

3.9.5 Set User Passphrase 
This service changes the passphrase associated with the Key Material from the previous Login.  The actual 
change does not take place until the Logout function is completed. 

3.9.6 Generate Key 
This service generates a key appropriate for use with a symmetric encryption/decryption algorithm and 
stores the key internally. 

3.9.7 Export Key 
This service wraps (encrypts) an internal key for exporting and subsequent secure transfer to another party.  
In instances where the wrapping key is derived from a passphrase using the PBKDF2 algorithm as 
specified in PKCS#5, then the exported key must be considered as plaintext with regard to its handling or 
transmission over a network since the key wrapping the private key is not generated by a FIPS Approved 
method. 
  

3.9.8 Import Key 
This service imports a wrapped key and unwraps (decrypts) it for internal use. 

3.9.9 Generate Key From a Passphrase 
This service generates a key from a user-supplied passphrase according to the method described in Ref [2] 
and stores the key internally.  

3.10 Key Exchange Services 

3.10.1 Generate a Shared Secret 
This service computes a shared secret. The shared secret can be used as a key for encryption or decryption 
with a symmetric encryption algorithm.  A shared secret generated by this service cannot be used to 
generate a token encryption key. This function is only accessible if ECC is the public key method used by 
the calling user. In this case, ECDH is performed.   

3.10.2 Generate Token Encryption Key 
This service generates a Token Encryption Key (TEK) appropriate to wrap or unwrap a key for symmetric 
encryption / decryption algorithm.  



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 16 of 32 

3.11 Data Encryption and Decryption Services 

3.11.1 Symmetric Encryption 
The symmetric encryption service encrypts plaintext using one of the algorithms and modes listed in Table 
6.   

Table 6 Symmetric Encryption / Decryption Functions Supported By KCCE 

Symmetric 
Function 

Modes Block Size 
(bytes) 

Key Size 
(bits) 

FIPS Approved 
Algorithm 

AES128 ECB, CBC 16 128 Yes 
AES192 ECB, CBC 16 192 Yes 
AES256 ECB, CBC 16 256 Yes 
TDES ECB, CBC 8 168* Yes 

*Note: due to the nature of the TDES algorithm the key’s effective strength is 112 bits 

3.11.2 Symmetric Decryption 
The symmetric decryption service decrypts ciphertext using one of the algorithms and modes listed in 
Table 6. 

3.11.3 Asymmetric Encryption 
The asymmetric encryption service encrypts plaintext using one of the asymmetric algorithms listed in 
Table 7.  Use of this asymmetric encryption service puts KCCE into a non-FIPS mode of operation. 
 

Table 7 Asymmetric Encryption / Decryption Functions Supported by KCCE 

Asymmetric Function Key Size (bits) 
ECC_NISTK163 163 
ECC_NISTK233 233 
ECC_NISTK283 283 
ECC_NISTK409 409 
ECC_NISTK571 571 
ECC_NISTB163 163 
ECC_NISTB233 233 
ECC_NISTB283 283 
ECC_NISTB409 409 
ECC_NISTB571 571 
ECC_NISTP192 192 
ECC_NISTP224 224 
ECC_NISTP256 256 
ECC_NISTP384 384 
ECC_NISTP521 521 
RSA_512 512 
RSA_1024 1024 
RSA_2048 2048 
RSA_4096 4096 

 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 17 of 32 

3.11.4 Asymmetric Decryption 
The asymmetric decryption service decrypts ciphertext or an Internal Key using one of the asymmetric 
algorithms listed in Table 7. Use of this asymmetric decryption service puts KCCE into a non-FIPS mode 
of operation. 

3.12 Hashing and Digital Signature Services 

3.12.1 Hash Services 
The hash service creates a message digest of a data entity using one of the hashing algorithms listed in 
Table 8.  
 

Table 8 Hash Functions Supported by KCCE 

Hashing Function Digest Size [bits] FIPS Approved Algorithm 
SHA1 160 Yes 
SHA256 256 Yes 
SHA384 384 Yes 
SHA512 512 Yes 
MD5 128 No 

3.12.2 Keyed-Hash Services 
The keyed-hash service creates a message digest of a secret key and a data entity using one of the methods 
listed in Table 9.  

Table 9 Key-Hash Services 

Hashing Function Digest Size [bits] FIPS Approved Algorithm 
HMAC-SHA-1 160 Yes 
HMAC-SHA256 256 Yes 
HMAC-SHA384 384 Yes 
HMAC-SHA512 512 Yes 
HMAC-MD5 128 No 

3.12.3 Digital Signature  
KCCE supports the Digital Signature algorithms listed in Table 10 

Table 10 Digital Signature Algorithms Supported by KCCE 

Digital Signature Algorithm FIPS Approved Algorithm 
ECDSA (ANSI X9.62) 
Curves sizes:  K163, K233, 
K283, K409, K571, B163, 
B233, B283, B409, B571, 
P192, P224, P256, P384, 
P521 

Yes 

RSA      (PKCS#1) 
Key sizes:  512*, 1024, 
2048, 4096 

Yes 

 
*RSA keys of size smaller than 1024 are not recommended for use in FIPS mode. 
The digital signature service signs the data entity (typically a message digest) with a private key. 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 18 of 32 

3.12.4 Verification of a Signed Data Entity  
This service verifies the signature of a signed data entity (typically a message digest) with the appropriate 
public key. 

3.12.5 Signing a Public Key 
This security officer service signs a public key (User or Security Officer) and appends the public key of the 
signer to the signature. 

3.12.6 Verification of the Signature of a Public Key 
This service verifies the signature chain associated with a signed public key. 

3.13 Key Exchange Services 
The key exchange service provides for the secure exchange of a symmetric encryption key between two 
parties.  KCCE supports the key exchange protocols listed in Table 11. 
 

Table 11 Key Exchange Protocols Supported by KCCE 

Key Exchange Protocol 
ECDH 
KEA 

3.14 Secret Sharing Services 
The secret sharing service securely splits using Shamir’s method described in Ref [4]. 

3.14.1 Splitting a Secret into Shares 
This service splits a secret into a number of shares such that a pre-determined number of these shares can be 
used to recover the secret.   

3.14.2 Recovering a Split Secret 
This service recovers the split secret from a subset of the split secret’s shares. 

3.14.3 Recovering Key Material 
One must use the “Recovering a Split Secret” service to recover one’s key material wrapping key before 
using this service.   The Recovering Key Material service generates new key material from pre-existing key 
material by changing the passphrase. 

3.15 Random Number Services 
KCCE uses one of the FIPS approved Deterministic Random Number Generators allowed by FIPS 186-2 
and listed in Table 12 

Table 12 Pseudo Random Number Generator Employed by KCCE 

Pseudo Random Number Generation FIPS Approved 
ANSI X9.62 Yes 

3.15.1 Seeding the Random Number Generator 
This service adds entropy to the existing seed (originally derived from the private key material and internal 
system specific information) for the Pseudo Random Number Generator.  Before the Default Security 
Officer can generate new key material the Pseudo Random Number Generator must be re-seeded. 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 19 of 32 

3.15.2 Generate a Random Number 
This service generates a random number of a requested size (number of bits).  The random number 
generated by this service cannot be used as a key.   
 

4. KCCE Cryptographic Algorithms 
KCCE supports the following cryptographic algorithms listed in Table 13 

Table 13  KCCE Cryptographic Algorithms 

 

 

 

 

 

 

 

 

 

FIPS Approved Cryptographic Algorithms: Other Cryptographic Algorithms 
AES  
SHA-1,  SHA-256, SHA-384, SHA-512 MD5 
HMAC-SHA-1,  HMAC-SHA-256, HMAC- SHA 
384 HMAC-SHA-512 

HMAC-MD5  

Triple-DES  
RSA, ECDSA KEA, ECDH 



Kasten Chase Cryptographic Engine        Security Policy Revision 2.0 
 
 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 20 of 32 

  
 

 

5. Cryptographic Services, Roles and Access to CSPs and Keys 
The cryptographic services available to the three KCCE defined roles and the CSPs and Keys available to the role for the specificed service are presented in Table 14.  
Passphrases and  random number seeds are available, to the specified role, in the clear while private key material, imported keys, exported keys that are available to the 
role are wrapped.  For some functions the right-most three columns have been merged into one cell where this occurs the information in the merged cells applies to DSO, 
SO and User access rights to Keys/CSPs and authentication mechanism. 

Table 14  Cryptographic Services, Roles and Access to CSPs Matrix 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Initialize* SHA-1, SHA-256, SHA-
384, SHA-512, AES, 
TDES, HMAC-SHA-1, 
HMAC-SHA-256, 
HMAC-SHA-384, 
HMAC-SHA-512, RSA, 
ECDSA, RNG 

None No CSP access 
 
No authentication 

K_Finalize None AES keys(w), TDES keys(w), 
HMAC-SHA-1 keys(w), 
HMAC-SHA-256 keys(w), 
HMAC-SHA-384 keys(w), 
HMAC-SHA-512 
keys(w)RSA private key(w), 
ECDSA private key(w), RNG 
state(w) 

AES keys(w), TDES keys(w), HMAC-SHA-1 keys(w), HMAC-SHA-256 keys(w), 
HMAC-SHA-384 keys(w), HMAC-SHA-512 keys(w), RSA private key(w), ECDSA 
private key(w), RNG state(w) 
 
No authentication 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 21 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Self_Test* SHA-1, SHA-256, SHA-
384, SHA-512, AES, 
TDES, HMAC-SHA-1, 
HMAC-SHA-256, 
HMAC-SHA-384, 
HMAC-SHA-512, RSA, 
ECDSA, RNG 

None None 
 
No authentication 

None 
 
No authentication 

None 
 
No authentication 

K_Get_Role None None None 
 
Authenticated state if 
context authentication flag is 
set

None 
 
Authenticated state if 
context authentication 
flag is set

None 
 
Authenticated state if 
context authentication 
flag is set

K_Get_Public_ 
Key_Method 

None None None 
 
Authenticated state if 
context authentication flag is 
set 

None 
 
Authenticated state if 
context authentication 
flag is set 

None 
 
Authenticated state if 
context authentication 
flag is set 

K_Zeroize None AES keys(w), TDES keys(w), 
HMAC-SHA-1 keys(w), , 
HMAC-SHA256 key(w), 
HMAC-SHA384 key(w), 
HMAC-SHA512 key(w), 
RSA private key(w), ECDSA 
private key(w), RNG(w) state 

AES keys(w), TDES keys(w), HMAC-SHA-1 keys(w), HMAC-SHA-256 keys(w), 
HMAC-SHA-384 keys(w), HMAC-SHA-512 keys(w), RSA private key(w), ECDSA 
private key(w), RNG state(w) 
 
No Authentication 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 22 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Login AES, TDES, HMAC-
SHA-1, HMAC-SHA-
256, HMAC-SHA-384, 
HMAC-SHA-512, RNG 

RSA private key(rw), ECDSA 
private key(rw), RNG(rw) 

RSA private key(rw), 
ECDSA private key(rw), 
RNG(rw) 
 
Authentication with 
passphrase, username and 
key material 

RSA private key(rw), 
ECDSA private key(rw), 
RNG(rw) 
 
Authentication with 
passphrase, username and 
key material 

RSA private key(rw), 
ECDSA private key(rw), 
RNG(rw) 
 
Authentication with 
passphrase, username and 
key material 

K_Logout AES, TDES, HMAC-
SHA-1, HMAC-SHA-
256, HMAC-SHA-384, 
HMAC-SHA-512, RNG 

RSA private key(rw), ECDSA 
private key(rw), RNG(rw) 

RSA private key(rw), 
ECDSA private key(rw), 
RNG(rw) 
 
Authenticated state if 
context authentication flag is 
set

RSA private key(rw), 
ECDSA private key(rw), 
RNG(rw) 
 
Authenticated state if 
context authentication 
flag is set

RSA private key(rw), 
ECDSA private key(rw), 
RNG(rw) 
 
Authenticated state if 
context authentication 
flag is set

K_Set_Public_ 
Key_Method 

None None No access to CSPs 
Authenticated state if 
context authentication flag is 
set

N/A N/A 

K_Generate_Key_
Pair* 

RSA, ECDSA, RNG RSA private key(rw), ECDSA 
private key(rw), RNG 
state(rw), RSA public 
key(rw), ECDSA public 
key(rw) 

RSA private key(rw), 
ECDSA private key(rw), 
RNG state(rw), RSA public 
key(rw), ECDSA public 
key(rw) 
 
Authenticated state if 
context authentication flag is 
set 

RSA private key(rw), 
ECDSA private key(rw), 
RNG state(rw), RSA 
public key(rw), ECDSA 
public key(rw) 
 
Authenticated state if 
context authentication 
flag is set 

RSA private key(rw), 
ECDSA private key(rw), 
RNG state(rw), RSA 
public key(rw), ECDSA 
public key(rw) 
 
Authenticated state if 
context authentication 
flag is set 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 23 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Generate_Key_
Material* 

AES, TDES, HMAC-
SHA-1, HMAC-SHA-
256, HMAC-SHA-384, 
HMAC-SHA-512, RNG  

RSA private key(r), ECDSA 
private key(r), RNG state(r) 

RSA private key(r), ECDSA 
private key(r), RNG state(r) 
 
Authenticated state if 
context authentication flag is 
set 

RSA private key(r), 
ECDSA private key(r), 
RNG state(r) 
 
Authenticated state if 
context authentication 
flag is set

N/A 

K_Delete_Key None AES key(w), TDES key(w), 
RSA private key(w), ECDSA 
private key(w), RSA public 
key(rw), ECDSA public 
key(rw), HMAC-SHA256 
key(rw), HMAC-SHA384 
key(rw), HMAC-SHA512 
key(rw), HMAC-SHA-1 
keys(rw) 

AES key(w), TDES key(w), 
RSA private key(w), 
ECDSA private key(w), 
RSA public key(rw), 
ECDSA public key(rw) , 
HMAC-SHA256 key(rw), 
HMAC-SHA384 key(rw), 
HMAC-SHA512 key(rw), 
HMAC-SHA-1 keys(rw) 
 
Authenticated state if 
context authentication flag is 
set 

AES key(w), TDES 
key(w), RSA private 
key(w), ECDSA private 
key(w), RSA public 
key(rw), ECDSA public 
key(rw) , HMAC-
SHA256 key(rw), 
HMAC-SHA384 
key(rw), HMAC-
SHA512 key(rw), 
HMAC-SHA-1 keys(rw) 
 
Authenticated state if 
context authentication 
flag is set

AES key(w), TDES 
key(w), RSA private 
key(w), ECDSA private 
key(w), RSA public 
key(rw), ECDSA public 
key(rw) , HMAC-
SHA256 key(rw), 
HMAC-SHA384 
key(rw), HMAC-
SHA512 key(rw), 
HMAC-SHA-1 keys(rw) 
 
Authenticated state if 
context authentication 
flag is set

K_Set_User_ 
Passphrase 

AES, TDES, HMAC-
SHA-1, HMAC-SHA-1, 
HMAC-SHA-256, 
HMAC-SHA-384, 
HMAC-SHA-512, RNG 

RSA private key(rw), ECDSA 
private key(rw), RNG 
state(rw) 

N/A RSA private key(rw), 
ECDSA private key(rw), 
RNG state(rw) 
 
Authenticated state if 
context authentication 
flag is set

RSA private key(rw), 
ECDSA private key(rw), 
RNG state(rw) 
 
Authenticated state if 
context authentication 
flag is set



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 24 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Generate_Key* RNG AES key(w), TDES key(w), 
RNG state(rw) , HMAC-
SHA256 key(rw), HMAC-
SHA384 key(rw), HMAC-
SHA512 key(rw), HMAC-
SHA-1 keys(rw) 

N/A N/A AES key(w), TDES 
key(w), RNG state(rw) , 
HMAC-SHA256 
key(rw), HMAC-
SHA384 key(rw), 
HMAC-SHA512 
key(rw), HMAC-SHA-1 
keys(rw) 
 
Authenticated state if 
context authentication 
flag is set 

K_Export_Key AES AES key(r), TDES key(r), 
RSA private key(rw), ECDSA 
private key(rw) , HMAC-
SHA256 key(rw), HMAC-
SHA384 key(rw), HMAC-
SHA512 key(rw), HMAC-
SHA-1 keys(rw) 

N/A N/A AES key(r), TDES 
key(r), RSA private 
key(rw), ECDSA private 
key(rw) , HMAC-
SHA256 key(rw), 
HMAC-SHA384 
key(rw), HMAC-
SHA512 key(rw), 
HMAC-SHA-1 keys(rw) 
 
Authenticated state if 
context authentication 
flag is set 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 25 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Import_Key AES AES key(rw), TDES key(rw), 
RSA private key(rw), ECDSA 
private key(rw) , HMAC-
SHA256 key(rw), HMAC-
SHA384 key(rw), HMAC-
SHA512 key(rw), HMAC-
SHA-1 keys(rw) 

N/A N/A AES key(rw), TDES 
key(rw), RSA private 
key(rw), ECDSA private 
key(rw) , HMAC-
SHA256 key(rw), 
HMAC-SHA384 
key(rw), HMAC-
SHA512 key(rw), 
HMAC-SHA-1 keys(rw) 
 
Authenticated state if 
context authentication 
flag is set 

K_Generate_Key_
Passphrase 

HMAC-SHA-1, HMAC-
SHA-256, HMAC-SHA-
384, HMAC-SHA-512 

AES key(w), TDES key(w) N/A AES key(w), TDES 
key(w) 
 
Authenticated state if 
context authentication 
flag is set 

AES key(w), TDES 
key(w) 
 
Authenticated state if 
context authentication 
flag is set 

K_Shared_Secret 
(Uses ECDH) 

SHA-1 AES key(w), TDES key(w), 
EC private key(r) 

N/A N/A AES key(w), TDES 
key(w), EC private key(r) 
 
Authenticated state if 
context authentication 
flag is set 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 26 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Generate_TEK
(Uses KEA) 

SHA-1 AES key(w), TDES key(w), 
EC private key(r) 

N/A N/A AES key(w), TDES 
key(w), EC private key(r) 
 
Authenticated state if 
context authentication 
flag is set 

K_Encrypt_ 
SYMALG_Init 

AES, TDES AES key(rw), TDES key(rw) N/A N/A AES key(rw), TDES 
key(rw) 
 
Authenticated state if 
context authentication 
flag is set 

K_Encrypt_ 
SYMALG_ 
Update 

None None N/A N/A None 
 
Authenticated state if 
context authentication 
flag is set 

K_Encrypt_ 
SYMALG_ 
Finalize 

None AES key(w), TDES key(w) N/A N/A AES key(w), TDES 
key(w) 
 
Authenticated state if 
context authentication 
flag is set 

K_Asymmetric_ 
Encrypt_Init 

SHA-1, SHA256, 
SHA384, SHA512, 
HMAC-SHA-1, HMAC-
SHA-256, HMAC-SHA-
384, HMAC-SHA-512 

ECDSA private  key(rw), 
RSA public key(rw), ECDSA 
public key(rw) 

N/A N/A ECDSA private key(rw), 
RSA public key(rw), 
ECDSA public key(rw) 
 
Authenticated state if 
context authentication 
flag is set 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 27 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Asymmetric_ 
Encrypt_Update 

AES, HMAC-SHA-1, 
HMAC-SHA-256, 
HMAC-SHA-384, 
HMAC-SHA-512 

None N/A N/A None 
 
Authenticated state if 
context authentication 
flag is set 

K_Asymmetric_ 
Encrypt_ Finalize 

HMAC-SHA-1, HMAC-
SHA-256, HMAC-SHA-
384, HMAC-SHA-512 

None N/A N/A None 
 
Authenticated state if 
context authentication 
flag is set 

K_Asymmetric_ 
Encrypt_ Secret 

SHA-1, SHA256, 
SHA384, SHA512, 
HMAC-SHA-1, HMAC-
SHA-256, HMAC-SHA-
384, HMAC-SHA-512, 
AES 

ECDSA private key(rw), AES 
key(rw), TDES key(rw), RSA 
public key(rw), ECDSA 
public key(rw) 

N/A N/A ECDSA private key(rw), 
AES key(rw), TDES 
key(rw), RSA public 
key(rw), ECDSA public 
key(rw) 
 
Authenticated state if 
context authentication 
flag is set 

K_Decrypt_ 
SYMALG_Init 

AES, TDES AES key(rw), TDES key(rw) N/A N/A AES key(rw), TDES 
key(rw) 
 
Authenticated state if 
context authentication 
flag is set 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 28 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Decrypt_ 
SYMALG_ 
Update 

None None N/A N/A None 
 
Authenticated state if 
context authentication 
flag is set 

K_Decrypt_ 
SYMALG_ 
Finalize 

None AES key(w), TDES key(w) N/A N/A AES key(w), TDES 
key(w) 
 
Authenticated state if 
context authentication 
flag is set 

K_Asymmetric_ 
Decrypt_Init 

SHA-1, SHA256, 
SHA384, SHA512, 
HMAC-SHA-1, HMAC-
SHA-256, HMAC-SHA-
384, HMAC-SHA-512 

RSA private key(rw), ECDSA 
private key(rw), , ECDSA 
public key(rw) 

N/A N/A RSA private key(rw), 
ECDSA private key(rw), 
ECDSA public key(rw) 
 
Authenticated state if 
context authentication 
flag is set 

K_Asymmetic_ 
Decrypt_Update 

AES, HMAC-SHA-1, 
HMAC-SHA-256, 
HMAC-SHA-384, 
HMAC-SHA-512 

None N/A N/A None 
 
Authenticated state if 
context authentication 
flag is set 

K_Asymmetric_ 
Decrypt_Finalize 

HMAC-SHA-1, HMAC-
SHA-256, HMAC-SHA-
384, HMAC-SHA-512 

None N/A N/A None 
 
Authenticated state if 
context authentication 
flag is set 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 29 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Asymmetric_ 
Decrypt_Secret 

SHA-1, SHA256, 
SHA384, SHA512, 
HMAC-SHA-1, HMAC-
SHA-256, HMAC-SHA-
384, HMAC-SHA-512, 
AES 

RSA private key(rw), ECDSA 
private key(rw), AES 
key(rw), TDES key(rw), 
ECDSA public key(rw) 

N/A N/A RSA private key(rw), 
ECDSA private key(rw), 
AES key(rw), TDES 
key(rw), ECDSA public 
key(rw) 
 
Authenticated state if 
context authentication 
flag is set 

K_Hash_ 
HASHALG_Init 

SHA1, SHA256, 
SHA384, SHA512 

None N/A N/A None 
 
Authenticated state if 
context authentication 
flag is set 

K_Hash_ 
HASHALG_ 
Update 

SHA1, SHA256, 
SHA384, SHA512 

None N/A N/A None 
 
Authenticated state if 
context authentication 
flag is set 

K_Hash_ 
HASHALG_ 
Finalize 

SHA1, SHA256, 
SHA384, SHA512 

None N/A N/A None 
 
Authenticated state if 
context authentication 
flag is set 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 30 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_HMAC_ Init HMAC-SHA-1, HMAC-
SHA-256, HMAC-SHA-
384, HMAC-SHA-512 

AES key(r), TDES key(r), 
RSA private key(r), ECDSA 
private key(r) 
AES and TDES keys are used 
as keys for the HMAC 
algorithms 

N/A N/A AES key(rw), TDES 
key(rw) 
AES and TDES keys are 
used as keys for the 
HMAC algorithms 
 
Authenticated state if 
context authentication 
flag is set 

K_HMAC_ 
Update 

HMAC-SHA-1, HMAC-
SHA-256, HMAC-SHA-
384, HMAC-SHA-512 

None N/A N/A None 
 
Authenticated state if 
context authentication 
flag is set 

K_HMAC_ 
Finalize 

HMAC-SHA-1, HMAC-
SHA-256, HMAC-SHA-
384, HMAC-SHA-512 

None N/A N/A None 
 
Authenticated state if 
context authentication 
flag is set 

K_Sign* RSA, ECDSA, SHA1, 
SHA256, SHA384, 
SHA512, RNG 

RSA private key(rw), ECDSA 
private key(rw), RNG 
state(rw) 

N/A N/A RSA key(rw), ECDSA 
key(rw), RNG state(rw) 
 
Authenticated state if 
context authentication 
flag is set 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 31 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Sign_Public_ 
Key* 

RSA, ECDSA, SHA1, 
SHA256, SHA384, 
SHA512 

RSA private key(rw), ECDSA 
private key(rw), RSA public 
key(rw), ECDSA public 
key(rw), RNG state(rw) 

N/A RSA private key(rw), 
ECDSA private key(rw), 
RSA public key(rw), 
ECDSA public key(rw), 
RNG state(rw) 
 
Authenticated state if 
context authentication 
flag is set 

N/A 

K_Verify RSA, ECDSA, SHA1, 
SHA256, SHA384, 
SHA512 

RSA public key(rw), ECDSA 
public key(rw) 

N/A N/A RSA public key(rw), 
ECDSA public key(rw) 
 
Authenticated state if 
context authentication 
flag is set 

K_Verify_Signed_
Public_Key 

RSA, ECDSA, SHA1, 
SHA256, SHA384, 
SHA512 

RSA public key(rw), ECDSA 
public key(rw) 

N/A N/A RSA public key(rw), 
ECDSA public key(rw) 
 
Authenticated state if 
context authentication 
flag is set 

K_Split_Secret RNG RNG state(rw), AES key(rw), 
TDES key(rw), RSA private 
key(rw), ECDSA private 
key(rw) 

N/A N/A RNG state(rw), AES 
key(rw), TDES key(rw), 
RSA private key(rw), 
ECDSA private key(rw) 
 
Authenticated state if 
context authentication 
flag is set 



Kasten Chase Cryptographic Engine      Security Policy Revision 2.0 

Kasten Chase, 5100 Orbitor Drive, Mississauga ON 
Page 32 of 32 

Service Approved security 
functions used by 

service 

Cryptographic Keys/CSPs 
accessed by service 

DSO access rights to 
Keys/CSPs and 

authentication mechanism 

SO access rights to 
Keys/CSPs and 
authentication 

mechanism 

User access rights to 
Keys/CSPs and 
authentication 

mechanism 

K_Recover_Secret None AES key(rw), TDES key(rw), 
RSA private key(rw), ECDSA 
private key(rw) 

N/A N/A AES key(rw), TDES 
key(rw), RSA private 
key(rw), ECDSA private 
key(rw) 
 
Authenticated state if 
context authentication 

K_Recover_Key_
Material 

HMAC-SHA-1, HMAC-
SHA-256, HMAC-SHA-
384, HMAC-SHA-512, 
RNG, AES, TDES 

RSA private key(rw), ECDSA 
private key(rw), RNG 
state(rw) 

N/A N/A RSA private key(rw), 
ECDSA private key(rw), 
RNG state(rw) 
 
Authenticated state if 
context authentication 

K_Seed_Random None RNG state(rw), RNG 
seed(rw) 

RNG state(rw), RNG 
seed(rw) 
 
Authenticated state if 
context authentication flag is 
set 

RNG state(rw), RNG 
seed(rw) 
 
Authenticated state if 
context authentication 
flag is set 

RNG state(rw), RNG 
seed(rw) 
 
Authenticated state if 
context authentication 
flag is set 

K_Generate_ 
Random* 

RNG, SHA1 RNG state(rw) N/A N/A RNG state(rw) 
 
Authenticated state if 
context authentication 
flag is set 

 
Within the table “r” implies read access, “w” implies write access and “rw” implies read write access. 

∗ These functions execute self-tests or conditional self-tests, either explicitly or implicitly (internally). 

 


