
SureWave Mobile Defense Security Kernel Security Policy

1

SureWave Mobile

Defense Security

Kernel

JP Mobile®

www.jpmobile.com

FIPS 140-2 Non-Proprietary Security Policy

Version 5.0.050623

©2004 JP Mobile, Inc. All rights reserved. SureWave, PDA Defense, and JP Mobile are trademarks of JP Mobile, Inc.

This document may be freely reproduced and distributed provided that it is copied in its entirety without any

modification.

SureWave Mobile Defense Security Kernel Security Policy

2

1. Table of Contents
1. TABLE OF CONTENTS ... 2

2. INTRODUCTION... 3

2.1 PURPOSE .. 3
2.2 REFERENCES .. 3
2.3 SUPPLEMENTAL DOCUMENTATION LISTING... 3

3. MODULE DESCRIPTION AND DETAILS.. 4

3.1 CRYPTOGRAPHIC MODULE SPECIFICATION .. 4
3.2 CRYPTOGRAPHIC MODULE PORTS AND INTERFACES.. 6
3.3 ROLES, SERVICES, AND AUTHENTICATION... 7
3.4 APPROVED MODE OF OPERATION .. 7
3.5 FINITE STATE MODEL .. 8
3.6 PHYSICAL SECURITY .. 8
3.7 OPERATIONAL ENVIRONMENT ... 8
3.8 CRYPTOGRAPHIC KEY MANAGEMENT ... 8
3.9 SERVICES ... 9
3.10 EMI/EMC.. 10
3.11 SELF-TESTS.. 10
3.12 DESIGN ASSURANCE .. 10
3.13 MITIGATION OF OTHER ATTACKS .. 11

4. TPDACRYPTOMANAGER METHODS .. 11

4.1 NEWL AND NEWLC... 11
4.2 ENUMBLOCKCIPHERPROVIDERSL ... 12
4.3 GETBLOCKCIPHERPROVIDERNAME... 12
4.4 ENUMHASHPROVIDERSL ... 13
4.5 GETHASHPROVIDERNAME... 13
4.6 GETBLOCKCIPHERSUPPORTEDKEYLENGTHL.. 13
4.7 SETCIPHERSCRAMBLEDKEYL ... 14
4.8 GETCIPHERSCRAMBLEDKEYL... 14
4.9 SETCIPHERPLAINKEYL.. 15
4.10 ISCIPHERMASTERKEYASSIGNED ... 15
4.11 WIPEALLINTERNALKEYS... 16
4.12 PROCESSMEMORYBLOCKL.. 16
4.13 GENERATEHASHL.. 17
4.14 GETHASHLEN .. 18
4.15 RANDSEED ... 18
4.16 RANDOM .. 18
4.17 RANDXKEY ... 19
4.18 POWERUPTESTL .. 19
4.19 GETPOWERTESTSTATE .. 20
4.20 ISNOTBLOCKED ... 20
4.21 SETFIPSMODE... 21
4.22 GETFIPSMODE .. 21
4.23 TESTBLOCKCIPHER.. 21
4.24 TESTHASHPROVIDER ... 22
4.25 TESTPRNG .. 22

SureWave Mobile Defense Security Kernel Security Policy

3

2. Introduction

2.1 Purpose

This document is JP Mobile’ non-proprietary security policy for the SureWave

Mobile Defense Security Kernel. This security policy describes how the SureWave

Mobile Defense Security Kernel 5.0.050107 conforms to the level 1 security

requirements imposed by the Federal Information Processing Standard (FIPS) 140-2.

The SureWave Mobile Defense Security Kernel controls the cryptographic functions

of various versions of the SureWave Mobile Defense 4.0 software for Palm, Pocket

PC, and Symbian OS enabled devices. Although the same kernel is used in all

versions of SureWave Mobile Defense 4.0, it has only been tested and validated for

use on the Pocket PC 2003 Premium OS. The major role of this kernel is the

implementation of the AES, DES, 3-DES, Blowfish, SHA-1, and MD5 algorithms.

2.2 References

For more information on the FIPS 140 Cryptographic Module Validation Program,

please visit the National Institute of Standards and Technology (NIST) web site at:

http://csrc.nist.gov/cryptval/

For more information about SureWave Mobile Defense’s parent company, JP Mobile

please visit:

http://www.jpmobile.com/

To find out more about the SureWave Mobile Defense product, please visit:

http://www.pdadefense.com/

2.3 Supplemental Documentation Listing

The following documents must accompany this Security Policy for the FIPS 140-2

validation package. These documents are proprietary to JP Mobile and are available

only under appropriate non-disclosure agreements.

• Design Documents

• FIPS Finite State Model

The following Documents are available from JP Mobile upon request:

• SureWave Mobile Defense Administrator Guide

• SureWave Mobile Defense End User Guide

• SureWave Mobile Defense Installation Walkthrough

• SureWave Mobile Defense Upgrade Instructions

• SureWave Mobile Defense Installation Flowchart

SureWave Mobile Defense Security Kernel Security Policy

4

3. Module Description and Details

3.1 Cryptographic Module Specification

Specification of Cryptographic Module

The SureWave Mobile Defense Security Kernel is a specific set of instructions that

perform all cryptographic functions, approved and unapproved, of the SureWave

Mobile Defense software. The SureWave Mobile Defense Security Kernel has been

designed to meet the criteria for FIPS-140-2 Level 1 validation.

The SureWave Mobile Defense Security Kernel has a specific mode in which will

disable all unapproved security functions such as MD5 and Blowfish. This specific

mode is the FIPS Mode. FIPS Mode is initiated by the method BOOL

SetFIPSMode(BOOL bMode). The actual state of the SureWave Mobile Defense

Security Kernel may be queried with the method BOOL GetFIPSMode(BOOL

bMode).

The temporary keys that are used for data ciphering/deciphering could compromise

the security of the console. To ensure that the security of the module is not

compromised, the TPDACryptoManager class has a method called

WipeAllInternalKeys which erases all internal keys. The class object performs this

action automatically each time the object is destroyed.

When tested on the specified device, the SureWave Mobile Defense Security Kernel

is considered by FIPS140-2 to be a “Multi-Chip Standalone cryptographic module”

and has been tested as such.

The MD5HashProvider and BlowfishCipherProvider Classes are disabled while the

module has been set to FIPS validated mode.

SureWave Mobile Defense Security Kernel Security Policy

5

Block Diagram:

The black line around the edge of the Block Diagram is representative of the

module’s Cryptographic Boundary. All input or output from the module must go

through the TPDACryptoManager class using the TPDACryptoManager API as

shown.

Each function of the SureWave Mobile Defense Security Kernel is contained within a

specific class noted in the block diagram. These classes are TDPACryptoManager,

PRNGProvider, TBlockCipherProvider, THashProvider, AESCipherProvider,

BlowfishCipherProvider, DESCipherProvider, 3DESCipherProvider,

SHA1HashProvider, MD5HashProvider.

SureWave Mobile Defense Security Kernel Security Policy

6

DES (for legacy use only) (transitional phase only – valid until May 19, 2007)

Details

DES accepts either 64-bit key with parity check bits according DES standard FIPS

46-3 or 56-bit key without parity check bits.

Supported modes: ECB and CBC.

3DES Details

3DES accepts either combined 168-bit key as a bundle of three DES 56-bit keys or

192-bit key as a bundle of three DES 64-bit keys according to FIPS 46-3.

The following three keying options can be used with 3DES

• Keying option 1: K1, K2, and K3 are independent keys.

• Keying option 2: Supported if combined key is constructed from K1, K2, and

K3 = K1.

• Keying option 3: Supported if combined key is constructed from K1, K2 =

K1, and K3 = K1. In this keying option, the strength of encryption is 56 bits at

best.

Supported modes: ECB and CBC

AES Details

AES supports 128, 192, or 256-bit keys according to FIPS-197.

Supported modes: ECB and CBC.

PRNG Details

The PRNG implementation present in the SureWave Mobile Defense Security Kernel

is based on FIPS 186-2 appendix 3.1.

3.2 Cryptographic Module Ports and Interfaces

All logical input and output is done through the TPDACryptoManager API. Physical

input and output is done through the handheld device’s standard I/O ports. The API

function calls represent the Control Input Interface. The Data Input Interface consists

of the parameters sent to the API and the Data Output Interface consists of the

parameters returned from the API. The status output interface is made up of the

return values and error codes provided by each function in the API. More specific

information is defined below.

Interface Logical Interface Physical Port

Data Input API parameters IrDA port, Key Pad

controller, LCD controller,

USB port

Data Output Parameters returned from

API

IrDA port, controller, LCD

controller, USB port

Control Input API parameters and API

calls

IrDA port, Key Pad

controller, LCD controller,

USB port

Status Output Error codes and return LCD controller

SureWave Mobile Defense Security Kernel Security Policy

7

values from API

Power Not available Battery or DC port

Interface Parameters

Data Input Key, key length, algorithm ID, plain text, cipher text,

encode/decode flag, IV, IV length, plain text length,

cipher text length, CBC mode flag, hash input data, hash

input data length, buffer memory pointer, buffer size

Data Output Cipher text block, plain text block, algorithm ID, key

length, hash digest, filled memory block*

Control Input EnumBlockCipherProvidersL,

GetBlockCipherProviderName, EnumHashProvidersL,

GetHashProviderName,

GetBlockCipherSupportedKeyLengthL,

SetCipherScrambledKeyL, GetCipherScrambledKeyL,

SetCipherPlainKeyL, GetCipherPlainKeyL,

WipeAllInternalKeys, ProcessMemoryBlockL,

GenerateHashL, GetHashLen, RandSeed, Random,

PowerUpTestL, GetPowerTestState, IsNotBlocked,

SetFIPSMode, SetFIPSMode**

Status Output TEST_OK, TEST_FAIL, TEST_NOT_DONE,

FALSE/TRUE as result of operation
* Memory block is filled with pseudo random values

** Control input methods parameters depend on particular method. It may be encryption key vector,

key length, etc. See detailed description of each method below.

3.3 Roles, Services, and Authentication

The SureWave Mobile Defense Kernel does not perform user role authentication

because it conforms to the level 1 security requirements imposed by the Federal

Information Processing Standard (FIPS) 140-2. FIPS 140-2 Level 1 validation does

not require authentication.

The operator assumes roles (User or Crypto Officer) implicitly when invoking these

services.

3.4 Approved Mode of Operation

The module provides a specific FIPS approved mode of operation. The Crypto

Officer may initiate this approved mode of operation via the Security kernel method

SetFIPSMode(BOOL). Only FIPS 140-2 approved algorithms are available in this

mode. Unapproved algorithms such as Blowfish and MD5 will be disabled in the

approved mode of operation. Please refer to the Secure Installation and Setup section

for detailed information on how to place the module in FIPS mode.

SureWave Mobile Defense Security Kernel Security Policy

8

3.5 Finite State Model

The Finite State Model is in a document folder labeled “Finite State Model.” This

folder contains finite state model of the module. For a copy of this Finite State Model,

please contact JP Mobile.

3.6 Physical Security

As a software product, the Physical Security requirements proposed by FIPS 140-2

are not applicable to SureWave Mobile Defense Security Kernel. The iPAQ 2215

used to test the SureWave Mobile Defense Security Kernel uses production grade

components.

3.7 Operational Environment

The SureWave Mobile Defense Security Kernel has been tested using a HP iPAQ

2215 running the Pocket PC 2003 OS Premium (version 4.20.0). This single operator

device runs on the 400 MHz PXA255 Intel Xscale processor. This is an ARM-based

processor.

3.8 Cryptographic Key Management

Key generation and management mechanisms

The module does not generate cryptographic keys. Keys come outside of the module.

Key Input/Output

Keys are input by the Administrator through the Data Input Interface. Keys can be

retrieved only in encrypted form from the module.

Key Storage and Zeroization

The module provides temporary storage for keys that are used by the algorithms.

Keys may be retrieved only via the Data Output interface. Keys are zeroized when the

module is unloaded or by request from an operator.

CSP CSP type Generation Storage

location

Key usage Key zeroization

AES key Symmetric External Process space

of the module

Encryption/

Decryption

WipeAllInternalKeys*

DES key

(For

Legacy

Use Only)

Symmetric External Process space

of the module

Encryption/

Decryption

WipeAllInternalKeys*

SureWave Mobile Defense Security Kernel Security Policy

9

3-DES

key

Symmetric External Process space

of the module

Encryption/

Decryption

WipeAllInternalKeys*

Triple-

DES-

MAC key

Message

Authenticat

ion code

External Hard coded in

the module

Calculation of

Triple-DES-

MAC for

software

integrity test

Hard reset the iPAQ

*WipeAllInternalKeys is the method which zeroizes keys.

3.9 Services

Services Cryptographic

Keys and CSPs

Role (CO, User or

both)

Access (R,W,Z)

AES Encryption AES cryptographic

key

CO, User R

AES Decryption AES cryptographic

key

CO, User R

AES

Encryption/Decryption

Key Entry

AES cryptographic

key

CO W

AES Encrypted Key

Output

AES cryptographic

key

CO R

DES Encryption DES cryptographic

key

CO, User R

DES Decryption DES cryptographic

key

CO, User R

DES

Encryption/Decryption

Key Entry

DES cryptographic

key

CO W

DES Encrypted Key

Output

DES cryptographic

key

CO R

3DES Encryption 3DES

cryptographic key

CO, User R

3DES Decryption 3DES

cryptographic key

CO, User R

3DES

Encryption/Decryption

Key Entry

3DES

cryptographic key

CO W

3DES Encrypted Key

Output

3DES

cryptographic key

CO R

Generate SHA-1 hash N/A CO, User

Seed PRNG N/A CO, User

Generate pseudo

random bytes, PRNG

N/A CO, User

Wipe internal keys Cryptographic key

AES, DES, 3DES

CO, User Z

Perform self test N/A CO, User

SureWave Mobile Defense Security Kernel Security Policy

10

Put the module in

FIPS mode

N/A CO

Get module status N/A CO, User

Access:

• R – Read

• W – Write

• Z – Zeroize

3.10 EMI/EMC

The iPAQ 2215 that the SureWave Mobile Defense Security Kernel has been tested

with for FIPS Validation meets applicable Federal Communication Commission

(FCC) Electromagnetic Interference and Electromagnetic Compatibility requirements

for business use.

3.11 Self-Tests

Power-up Self Tests

To ensure secure and successful operation, the SureWave Mobile Defense Security

Kernel performs the following algorithmic self-tests upon module power-up.

a. Calculates and compares the TDES-MAC 8 bytes value of the module –

self integrity check.

b. SHA-1 Known Answer Test

c. AES Known Answer Test

d. 3-DES Known Answer Test

e. DES Known Answer Test (For Legacy Use Only)

f. Approved PRNG (FIPS 186-2, Appendix 3.1) Known Answer Test

Conditional Self Tests

The SureWave Mobile Defense Crypto Kernel performs a continuous random number

generator (CRNG) test upon use of the implemented Pseudo Random Number

Generator (PRNG) according FIPS 186-2, Appedix 3.1. This test is done by

generating 40 bytes on each round and comparing the generated block with

previously saved block. The first block is generated during the power-up self-test and

its value is used for CRNG testing only. Also, the module implements a CRNG test

for the non-Approved PRNG.

3.12 Design Assurance

Configuration Management

To ensure consistent configuration management, version 3.0 of an application known

as SourceOffsite is used. Each new build is uniquely identified using the date that the

SureWave Mobile Defense Security Kernel Security Policy

11

file was compiled. The date used for this build number is of the format YYMMDD,

which corresponds to the Year, Month, and Day of the build.

Secure Installation and Setup

Administrator should place two files FIPSExtDLL.dll and FIPSExtDLL.sig into folder

“\Windows” on target PocketPC device. Required steps to place the module into FIPS

mode:

1. Load FIPSExtDLL.DLL;

2. Create instance of TPDACryptoManager object;

3. Perform power-up self test via call of PowerUpTestL method;

4. Call method TPDACryptoManager::SetFIPSMode(TRUE);

5. If method returned TRUE value then FIPS mode was enabled successfully,

FALSE indicates error state.

Steps 1, 2, 3 are essential part of module initialization.

Guidance Documents

For more information please see the SureWave Mobile Defense Enterprise User

Guide and SureWave Mobile Defense Enterprise Administrator Guide

documentation. These guides are available from JP Mobile upon request.

3.13 Mitigation of Other Attacks

No mitigations against attacks occur within the cryptographic boundary of module.

4. TPDACryptoManager methods

4.1 NewL and NewLC

Prototype

static TPDACryptoManager* NewL();

static TPDACryptoManager* NewLC();

Parameters

None.

Return value

Pointer to created object. NULL – fail.

SureWave Mobile Defense Security Kernel Security Policy

12

Description

These methods construct and return initialized object of class TPDACryptoManager.

Method ConstructL is called for created class object. There is no difference between

NewL and NewLC on PocketPC. These methods are different for SymbianOS only.

Method NewL cleanup the Symbian object stack, but NewLC does not cleanup the

stack.

4.2 EnumBlockCipherProvidersL

Prototype

BOOL EnumBlockCipherProvidersL(CipherType** pBlockCiphersID, int*

pNumCiphers);

Parameters

pBlockCiphersID – pointer to address of pointer that receives pointer to allocated

array of cipher algorithms ID. This array should be deallocated later using of delete

operator.

pNumCiphers – pointer to address of pointer that receives number of available cipher

algorithms. This array should be deallocated later using of delete operator.

Return value

TRUE indicates success, FALSE indicates fail.

Description

This method queries for list of available cipher algorithms. Method returns number of

available cipher algorithms and array of cipher IDs. These IDs should be used in

methods which expect cipher algorithms ID as parameter.

4.3 GetBlockCipherProviderName

Prototype

BOOL GetBlockCipherProviderName(CipherType cipherID, TString<Character>&

sName);

Parameters

cipherID – ID of cipher algorithm. There are several predefined IDs:

• CIPHER_AES

• CIPHER_BLOWFISH

• CIPHER_DES

• CIPHER_3DES

sName – reference to string object which receives cipher algorithm name.

Return value

TRUE indicates success, FALSE indicates fail.

SureWave Mobile Defense Security Kernel Security Policy

13

Description

Method allows getting of printable name of specified cipher algorithm ID.

4.4 EnumHashProvidersL

Prototype

BOOL EnumHashProvidersL(HashType** pHashID, int* pNumHash);

Parameters

pHashID – pointer to address of pointer that receives pointer to allocated array of

hash algorithms ID. This array should be deallocated later using of delete operator.

pNumHash – pointer to address of pointer that receives number of available hash

algorithms. This array should be deallocated later using of delete operator.

Return value

TRUE indicates success, FALSE indicates fail.

Description

This method queries for list of available hash algorithms. Method returns number of

available hash algorithms and array of cipher IDs. These IDs should be used in

methods which expect hash algorithms ID as parameter.

4.5 GetHashProviderName

Prototype

BOOL GetHashProviderName(HashType hashID, TString<Character>& sName);

Parameters

hashID – ID of cipher algorithm. There are several predefined IDs:

• HASH_MD5

• HASH_SHA1

sName – reference to string object which receives cipher algorithm name.

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method allows getting of printable name of specified hash algorithm ID.

4.6 GetBlockCipherSupportedKeyLengthL

Prototype

BOOL GetBlockCipherSupportedKeyLengthL(CipherType nCipherType, int**

ppKeyArray, int* pKeyNum);

SureWave Mobile Defense Security Kernel Security Policy

14

Parameters

nCipherType – ID of cipher algorithm

ppKeyArray – pointer to address of pointer which receives address of allocated array

with supported key length in bytes of specified cipher algorithm. This array should be

deallocated later using of delete operator.

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method allows getting of array of supported key length for specified cipher

algorithm. For example actual DES implementation supports 7 bytes key length (key

without parity bits) and 8 bytes key (expanded key with parity bits).

4.7 SetCipherScrambledKeyL

Prototype

BOOL SetCipherScrambledKeyL(BYTE* pScrambledMasterKey, size_t

nMasterKeyLen, CipherType idDesiredAlg, CipherType idScrambledAlg, BYTE*

pScrambleKey, size_t nScrambleKeyLen, BYTE* pIV, size_t nIVSize);

Parameters

pScrambledMasterKey – pointer to cipher key

nMasterKeyLen – length of cipher key

idDesiredAlg – cipher type ID

idScrambledAlg – scramble cipher ID

pScrambleKey – pointer to cipher key of scrambling cipher algorithm

nScrambleKeyLen – length of scramble cipher key

pIV – pointer to initializing vector

nIVSize – length of initialization vector

Return value

TRUE indicates success, FALSE indicates fail.

Description

Methods initializes cipher with specified cipher algorithm ID idDesiredAlg with

cipher key pScrambledMasterKey using of length nMasterKeyLen. Method expects

the cipher key in encrypted form. It decrypts the cipher key using of cipher algorithm

with ID idScrambledAlg using of key pScrambleKey with length nScrambleKeyLen.

Master key is encrypted using of CBC mode of scrambling cipher. pIV is pointer to

initialization vector.

4.8 GetCipherScrambledKeyL

SureWave Mobile Defense Security Kernel Security Policy

15

Prototype

BOOL GetCipherScrambledKeyL(BYTE* pScrambledMasterKey, size_t*

pMasterKeyLen, CipherType* pIDSelectedAlg, CipherType idScrambledAlg,

BYTE* pScrambleKey, size_t nScrambleKeyLen, BYTE* pIV, size_t nIVSize);

Parameters

pScrambledMasterKey – pointer to cipher key

nMasterKeyLen – length of cipher key

pIDSelectedAlg – cipher type ID

idScrambledAlg – scramble cipher ID

pScrambleKey – pointer to cipher key of scrambling cipher algorithm

nScrambleKeyLen – length of scramble cipher key

pIV – pointer to initializing vector

nIVSize – length of initialization vector

Return value

TRUE indicates success, FALSE indicates fail.

Description

Methods retrieves cipher key from actual initialized cipher and encrypts it using of

the same or another cipher algorithm. Method retrieves the cipher key in encrypted

form. It encryots the cipher key using of cipher algorithm with ID idScrambledAlg

using of key pScrambleKey with length nScrambleKeyLen. Master key is encrypted

using of CBC mode of scrambling cipher. pIV is pointer to initialization vector.

4.9 SetCipherPlainKeyL

Prototype

BOOL SetCipherPlainKeyL(BYTE* pMasterKey, size_t nMasterKeyLen,

CipherType idDesiredAlg);

Parameters

pMasterKey – pointer to cipher key

nMasterKeyLen – length of cipher key

idDesiredAlg – cipher type ID

Return value

TRUE indicates success, FALSE indicates fail.

Description

Methods initializes specified cipher using of idDesiredAlg and set cipher key in plain

form pMasterKey.

4.10 IsCipherMasterKeyAssigned

SureWave Mobile Defense Security Kernel Security Policy

16

Prototype

BOOL IsCipherMasterKeyAssigned();

Parameters

None.

Return value

TRUE indicates that cipher key is assigned. FALSE indicates that there is no cipher

key.

Description

Method returns status of presence of assigned cipher key.

4.11 WipeAllInternalKeys

Prototype

BOOL WipeAllInternalKeys();

Parameters

None.

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method zeroizes and deallocates cipher key and all security relevant values.

4.12 ProcessMemoryBlockL

Prototype

BOOL ProcessMemoryBlockL(BYTE* pInMem, BYTE* pOutMem, size_t

nMemLen, CIPHER_DIRECTION eDirection, BOOL bCBCMode, BOOL

bFirstBlock, BOOL bLastBlock, BYTE* pIV, size_t nSizeIV);

Parameters

pInMem – pointer to input plain text

pOutMem – pointer to output cipher text buffer

nMemLen – length of input plain text in bytes

eDirection – required operation:

• CIPHER_ENCRYPT

• CIPHER_DECRYPT

bCBCMode – CBC mode:

• TRUE – using of CBC mode

• FALSE – using of EBC mode

bFirstBlock – indicates is the ciphered block the first (for CBC mode only)

SureWave Mobile Defense Security Kernel Security Policy

17

bLastBlock – indicates is the ciphered block the last (for CBC mode only)

pIV – pointer to initialization vector (CBC mode only)

nSizeIV – size of initialization vector

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method performs encryption of specified plain text buffer and places resulting cipher

text into output buffer or it decrypts specified cipher text and places resulting plain

text into output buffer. Input text buffer may intersect with output text buffer. Method

supports ECB or CBC mode. Parameter bCBCMode is used for indication of desired

mode. If plain text or cipher text is too large that it may be processed using of

sequence of method calls and parameters bFirstBlock and bLastBlock are used to

specify is the block first and/or last. There are possible combinations of parameters in

CBC mode. If the last block length is less than cipher block length then the last block

is

1. bFirstBlock = TRUE and bLastBlock = TRUE

Method processes the only block which is the first block and the last block at the

same time.

Initialization vector is initialized using of pIV and nSizeIV parameters.

2. bFirstBlock =TRUE and bLastBlock = FALSE

Method processes the first block and initialization vector is initialized using of pIV

and nSizeIV parameters.

3. bFirstBlock = FALSE and bLastBlock = TRUE

Method processes the last block. Initialization vector is not changed.

4. bFirstBlock = FALSE and bLastBlock = FALSE

Method processes on of the blocks. Initialization vector is not changed.

4.13 GenerateHashL

Prototype

BOOL GenerateHashL(BYTE* pMemBlock, size_t nMemLen, HashType

idHashType, BYTE* pMemHash, BOOL bFirst = TRUE, BOOL bLast = TRUE);

Parameters

pMemBlock – address of input message block

nMemLen – length of input message block

idHashType – id of hash algorithm

pMemHash – address of output message hash buffer

bFirst – TRUE indicates that processed block is the first block, FALSE indicates that

processed block is not first.

SureWave Mobile Defense Security Kernel Security Policy

18

bLast – TRUE indicates that processed block is the last block, FALSE indicates that

processed block is not first.

Return value

TRUE indicates success, FALSE indicates fail.

Description

This method generates message hash digest for specified input message. Actually

SHA-1 and MD5 is supported. The method may generate hash for very long message

which is splitted on several messages block. In this case parameters bFirst and bLast

should be used. If bLast is FALSE that method will not update hash value until bLast

will become TRUE.

4.14 GetHashLen

Prototype

BOOL GetHashLen(HashType idHashType, size_t* pHashLen);

Parameters

idHashType – id of hash algorithm;

pHashLen – address of variable which receives length of message hash

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method retrieves length of generated hash of selected hash algorithm.

4.15 RandSeed

Prototype

BOOL RandSeed(BYTE* pMemBlock, size_t nMemLen);

Parameters

pMemBlock – address of seed value;

nMemLen – length of seed value

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method seed random generator with specified value. nMemLen should be equal to 20,

otherwise method will fail.

4.16 Random

SureWave Mobile Defense Security Kernel Security Policy

19

Prototype

BOOL Random(BYTE* pMemBlock, size_t nMemLen);

Parameters

pMemBlock – address of output buffer which should be filled with pseudo random

numbers;

nMemLen – length of output buffer in bytes

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method generates specified number of pseudo random bytes and places them into

output buffer. The method uses FIPS approved PRNG which is described in FIPS

186-2, appendix 3.1 using of G function SHA-1. The method performs continuous

check of generated values – on each cycle of generation of 20 bytes xj value it

compares the value with the previously saved value. Method fails if new value is

identical to the previous value.

nMemLen should be multiplication of 40 bytes, otherwise method will fail.

4.17 RandXKey

Prototype

BOOL RandXKey(BYTE* pMemBlock, size_t nMemLen);

Parameters

pMemBlock – address of XKEY value

nMemLen – length of XKEY value in bytes

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method sets XKEY value for PRNG according FIPS 186-2, appendix 3.1. Length of

XKEY is arbitrary because methods construct “big number” value from specified

binary string. nMemLen should be equal to 20, otherwise method will fail.

4.18 PowerUpTestL

Prototype

BOOL PowerUpTestL(TString<Character>& moduleName, HashType hashID,

BYTE* pCheckSig, size_t nSigSize);

SureWave Mobile Defense Security Kernel Security Policy

20

Parameters

moduleName – name of checked module

hashID – id of hash algorithm

pCheckSig – address of hash signature

nSigSize – length of hash signature

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method performs initial self integrity check of crypto kernel and performs tests of

FIPS approved cipher algorithms (AES, DES, TDES), hash algorithms (SHA-1) and

PRNG. Methods calculates hash value of specified module and compares it with

etalon hash value. Method fails if calculated hash value and etalon hash value are

different. Method fails if one of tested algorithms do not pass test.

If method fails then crypto module blocks all hash and cipher related output

functions.

Module blocks all hash and cipher related output functions until power-up test is

completed.

4.19 GetPowerTestState

Prototype

FIPS_TEST_STATE GetPowerTestState();

Parameters

None.

Return value

• TEST_OK – test is ok.

• TEST_FAIL – test failed.

• TEST_NOT_DONE – test is in progress or was not preformed yet.

Description

Method returns state of power-up test.

4.20 IsNotBlocked

Prototype

BOOL IsNotBlocked();

Parameters

None.

SureWave Mobile Defense Security Kernel Security Policy

21

Return value

TRUE indicates module can perform cipher or hash output methods, FALSE indicates

that hash and cipher output methods are disabled.

Description

Method retrieves is crypto module disabled functionality of hash and cipher output

methods or not. It checks status of power-up test state and returns appropriate value.

4.21 SetFIPSMode

Prototype

BOOL SetFIPSMode(BOOL bFIPSMode);

Parameters

bFIPSMode – TRUE indicates FIPS mode is on, FALSE indicates FIPS mode is off.

Return value

TRUE indicates success, FALSE indicates fail.

Description

Methods triggers FIPS mode on/off. When FIPS mode is on – all non-FIPS approved

algorithms are disabled.

4.22 GetFIPSMode

Prototype

BOOL GetFIPSMode();

Parameters

None.

Return value

State of FIPS mode – TRUE indicates FIPS mode is on, FALSE indicates FIPS mode

is off.

Description

Method retrieves state of FIPS mode – TRUE indicates FIPS mode is on, FALSE

indicates FIPS mode is off.

4.23 TestBlockCipher

Prototype

BOOL TestBlockCipher(CipherType idCipher);

Parameters

idCipher – id of cipher algorithm

SureWave Mobile Defense Security Kernel Security Policy

22

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method performs self test of specified cipher algorithm.

4.24 TestHashProvider

Prototype

BOOL TestHashProvider(HashType idHash);

Parameters

idHash – ID of hash algorithm

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method performs self test of specified hash algorithm.

4.25 TestPRNG

Prototype

BOOL TestPRNG();

Parameters

None.

Return value

TRUE indicates success, FALSE indicates fail.

Description

Method performs self test of PRNG using of Known Answer Test.

