
Credant CmgCryptoLib Version 1.7
Credant Cryptographic Kernel Version 1.5

FIPS 140-2 Non-Proprietary Security Policy, Version 1.7
Level 1 Validation

October 2007



2

1. INTRODUCTION 3

2. PRODUCT, BOUNDARY, MODULE DEFINITION 4

3. ROLES, SERVICES, POLICY 7

4. FINITE STATE MODEL 10

5. KEY MANAGEMENT 11

6. MODULE INTERFACE 13

7. SELF TESTS 13

8. DESIGN ASSURANCE 14

9. SECURE INSTALLATION AND OPERATION 14



3

COPYRIGHT @ 2007, Credant Technologies, Inc. All Rights Reserved.

“Credant”, “Credant Mobile Guardian” and all Credant logos are registered trademarks of
Credant Technologies Corporation. This document may be copied without the author’s
permission provided that it is copied in its entirety without modification.

1. Introduction

Companies are increasingly using diverse mobile devices to store critical business
information, improve productivity and enhance customer relationships. These mobile
devices represent one of the most severe and often overlooked security threats to the
enterprise. Frequently left unmanaged and with little to no enforced security, these
devices are an open door to corporate applications, networks and databases and represent
potentially significant financial, legal and regulatory liabilities. Without sufficient
management tools and enforced security policies, companies have no way to prevent
mobile security breaches, know if information is misused, or trace the source of mobile
security incidents.

Architected to protect the mobile enterprise, Credant Mobile Guardian (CMG) is the first
security solution that addresses an organization's mobile security issues with centrally
managed policy administration and strong on-device user authentication and policy
enforcement. This cost-effective solution enables organizations with a growing mobile
population to take full advantage of the benefits of today's mobile workplace and remain
confident that business critical information is secure.

The Credant Cryptographic Kernel (CCK) is the library of cryptographic functions used
by the Credant Mobile Guardian (CMG) Suite of mobile security solutions. The CCK
takes the form of a dynamic link software library (or a shared library on Palm for version
1.5) which provides an API to cryptographic functions, including AES, Triple DES,
SHA-1, HMAC(SHA-1), and an ANSI X9.31compliant pseudorandom number generator.

CMG Suite comprises the CMG Server, CMG Gatekeeper, and CMG Shield software
products. These three components work together to ensure the security of data on mobile
devices. The CMG Shield installs on the mobile device and protects its data from
unauthorized access. The CMG Gatekeeper receives policy information from the Server
and communicates it to the devices running the Shield. An administrator sets company
policies via CMG Server software, and the Server forwards these settings to the instances
of the CMG Gatekeeper. When a device synchronizes with its host PC, the Gatekeeper
communicates these policies to the device.

Note that the Credant Technologies cryptographic library has changed names from
Credant Cryptographic Kernel (or CCK) in version 1.5 to CmgCryptoLib in version 1.7.
The names CmgCryptoLib, Credant Cryptographic Kernel, and CCK are synonymous
throughout this document.



4

2. Product, Boundary, Module Definition

The CCK library and header file constitute the cryptographic software module for this
FIPS 140-2 validation. The logical boundary contains the software modules that
comprise the CCK library. The physical boundary for the module is defined as the
enclosure of the computer system on which the functions of the library execute.



5

Video Display
Driver

Power
Supply

PC Card
Interface

Network
Interface

Mouse
Interface

Keyboard
Interface

Monitor

Power
Source

Optional
Hardware

Network

Mouse

Keyboard

Parallel
Interface

Serial
InterfaceOS Data

Micro-
processor

Parallel
Port

Files and
Software

Serial
Interface

Serial
Port

Physical Cryptographic Boundary
System Bus

Windows Physical and Logical Cryptographic Boundaries

Data and Control

Data

Display Information

User Commands

Data and parameters

User Commands

CCK
DLL

System
Memory

Logical
Cryptographic
Boundary



6

Video Display
Driver

Power
Supply

PC Card
Interface

Network
Interface

Screen Input
Interface

Keyboard
Interface

Screen

Power
Source

Optional
Hardware

Network

Touch
Screen

Keyboard

Universal
Port Interface

Serial
Interface
OS Data

Micro-
processor

Universal
Port

Files and
Software

Serial
Interface

Serial
Port

Physical Cryptographic BoundarySystem Bus

Windows Mobile 5, Windows Mobile 6, Symbian, and Palm Physical and Logical
Cryptographic Boundaries

Data and Control

Data

Display Information

User Commands

Data and parameters

User Commands

Serial
Interface

Add-on Memory
Interface

Add-on
Memory

System
Memory

CCK
DLL

Logical
Cryptographic
Boundary



7

The module constitutes a multi-chip stand-alone device (listed below), as defined by the
FIPS 140-2 standard. The devices on which the CCK runs include:

 Intel-CPU-based computers running the Windows operating system:
o Windows Vista (32 bit) , and
o Windows XP, service pack SP2

 Windows Mobile 5 and 6 Pocket PC and Smartphone handheld computers and
mobile phones.

 Symbian Series 60 handheld computers
 Personal digital assistants running PalmOS (versions 3.5.1 through 5.4.5)

For version 1.5, the CCK was tested as a shared library on a standard, commercially
available Palm Treo 650 running Palm OS 5.4.5.

For version 1.7, the CCK was tested as a dynamic link library on the following devices:

Device CPU OS
Sprint PocketPC 6700 Intel PXA 270 XScale ARM Windows Mobile 5

Motorola Q Smartphone TI OMAP 2420 ARM Windows Mobile 6
Dell OptiPlex 740 AMD Athlon 64X2 5200+ Windows XP
Dell OptiPlex 740 AMD Athlon 64X2 5200+ Windows Vista

Nokia E62-1 TI OMAP 1710 ARM Symbian Series 60

3. Roles, Services, Policy

The CCK supports both Crypto Officer (CO) and User roles, where a “user” is the
application using CCK services to perform encryption, decryption, hashing, and random
number generation. It does not support a maintenance role or a bypass capability. The
CCK supports one Approved mode and it supports only FIPS 140-2 approved services
(shown in Figure 1).

In the CO role, the CO installs the CCK on a device. It is the CO’s responsibility to
install the CCK in the Approved mode according to the instructions specified in Section 9
of this Security Policy.



8

The cryptographic services provided by the software module are shown in the Figure 1.
Note that the supported services do not include authentication.

Service Type Algorithm FIPS Available in Modes
Symmetric Cipher AES 197 Approved
Symmetric Cipher Triple DES 46-3 Approved
Message Authentication HMAC(SHA-1) 198 Approved
Message Digest SHA1 180-1 Approved
Random Number
Generation

ANSI X9.31 186-2 Approved

Figure 1. Services offered by the Credant Cryptographic Kernel, applicable algorithm
applicable FIPS specification, and availability.



9

The access granted to security relevant data items of these services for each role is shown
in Figure 2. Note that the CCK FIPS 140-2 Vendor Evidence document enumerates the
CCK API’s in this table along with the parameters passed to each in Appendix E.

Service Access
(Role)

Accessible
SRDI

Type of
Access

CCK
API(s)

Installation CO None Execute --None--
Initialization User None Execute CCK_initialize
Run Self
tests

User None Execute CCK_self_tests,
CCK_conditional_test

Show
status

User None Execute/
Read

CCK_fips_mode,
CCK_status,
CCK_test_status

AES User Read access to keys
passed as pointer
parameters to
constant structures;
no other access.

Execute CCK_set_AES_block_
size_and_key,

CCK_AES_encrypt,
CCK_AES_decrypt,
CCK_AES_CBC_encrypt,
CCK_AES_CBC_decrypt

Triple DES User Read access to keys
passed as pointer
parameters to
constant structures;
no other access.

Execute CCK_DES3_encrypt,
CCK_DES3_decrypt,
CCK_DES3_CBC_encrypt,
CCK_DES3_CBC_decrypt

HMAC
(SHA-1)

User Read access to keys
passed as pointer
parameters to
constant structures;
no other access.

Execute CCK_HMAC_init,
CCK_HMAC_destroy,
CCK_HMAC_restart,
CCK_HMAC_update,
CCK_HMAC_truncated_final

SHA1 User None Execute CCK_SHA1_reset,
CCK_SHA1_get_hash,
CCK_SHA1_update,
CCK_SHA1_truncate_

and_report,
CCK_SHA1_final_and_report,
CCK_SHA1_final

RNG User None Execute CCK_X931RNG_generate_
byte

Figure 2. Access to Security Relevant Data Items (SRDI) for each service and role.



10

Note that installation differs from initialization in that installation does not involve
execution of CCK services. Initialization must occur after installation is invoked by the
CCK client, and results in execution of several CCK services in the process of creating
memory and starting services necessary to support subsequent CCK operation.

The inputs and outputs of each service are shown in Figure 3.

The methods of the cryptographic software module are designed to be invoked by a
single process per session handle.

Service Input/Output
Installation Input: Installation CD

Output: Installed CCK software
Initialization Input: Installed CCK software

Output: Initialized CCK software (and client application)
Run Self tests Input: none

Output: self test status
Show status Input: none

Output: module status indicator
AES encryption
(ECB & CBC modes)

Input: plaintext, key, IV in CBC mode
Output: ciphertext

AES decryption
(ECB & CBC modes)

Input: ciphertext, key, IV in CBC mode
Output: plaintext

Triple DES encryption
(ECB & CBC modes)

Input: plaintext, key, IV in CBC mode
Output: ciphertext

Triple DES decryption
(ECB & CBC modes)

Input: ciphertext, key, IV in CBC mode
Output: plaintext

HMAC(SHA-1) Input: a file, key
Output: authentication code

SHA1 Input: a file
Output: hash value

RNG Input: date/time (D/T) & seed (V)
Output: a random byte

Figure 3. Inputs and outputs of each service provided by the CCK.

4. Finite State Model

The CCK uses a finite state model (FSM) to keep track of whether the module is in a
valid state for performing cryptographic operations. The FSM resides in a thin layer of
code between the API and the underlying cryptographic functions. The FSM guards
access to all cryptographic functions and requires that the software module be properly
initialized and must pass self tests before allowing cryptographic functions to be
performed. It also tracks the state of conditional tests and continuous RNG tests. If any



11

of these tests fail, the FSM goes into an error state, preventing any further cryptographic
functioning.

The FSM has the states shown in Figure 4.

State Description
FSM_CRYPTOOFFICER Crypto officer installs the CCK
FSM_POWER_ON Initial (startup) state - self tests not yet run
FSM_RUNNING_SELF_TESTS Self tests are running
FSM_RUNNING_CONDITIONAL_TEST Test of specific method being invoked

from FSM_USER state
FSM_USER Self tests have passed. Ready to accept

service requests
FSM_ERROR Self test or conditional tests failed
FSM_POWER_OFF CCK has been installed but is not running

Figure 4. States of the Finite State Model.

5. Key Management

The CCK does not perform key generation or key establishment.

The CCK does not perform key storage. Other than the key used to decrypt the library
authentication data, the CCK maintains keys only in memory and does not store keys to
persistent media. Therefore it does not provide the means for key storage or retrieval
between successive power up cycles of the device.

The CCK does perform key input. All key values and initial values are generated by
code outside the cryptographic software boundary and are passed to the methods in the
CCK by pointer reference. That is, they are stored in memory at an address allocated by
code outside the cryptographic software boundary. This is then passed to the methods of
the CCK.

The CCK does not perform key output. It has no key output methods nor any methods
that have the effect of key output.

All secret keys and CSPs (including RNG seeds) used by the CCK are protected by the
absence of any methods provided by the CCK API that enable, allow, or contribute to the
disclosure, modification, or substitution (authorized or unauthorized) of any key, initial
value, or seed passed into or used by the CCK.

All CSPs used internally by the CCK (i.e. not passed to the CCK), such as those used by
the random number generator, are protected by being zeroized immediately after use.



12

However, since the CCK does not own the memory in which the keys and initial values
passed to it are stored, zeroization of these keys and initial values is the responsibility of
the client code that calls the CCK. The Crypto Officer could also zeroize these keys and
initial values by reformatting the hard drive on a PC, or by hard-resetting a Windows
Mobile, Symbian, or Palm device.

Occasionally, the memory containing keys and CSPs can be swapped by the Windows
operating system to the hard drive of the PC. In order to avoid availability of these keys
and CSPs in plain text, these swap files must either be wiped by the user or encrypted.
When the CCK is executing in Credant's Windows-based products, the swap files are
encrypted. Windows Mobile, Symbian, and Palm devices do not have swap files.

The HMAC key and signature used to validate the CCK library are protected by being
AES-128 encrypted. After validation is performed, the decryption key, decrypted HMAC
key, and decrypted HMAC signature are all protected by being zeroized immediately
after use.



13

6. Module Interface

Figure 5 maps elements of the API to the four required components of the logical
interface.

Logical Interface
Component

Corresponding API
component

Physical Ports

Data Input API functions that accept input
data arguments

Standard Input Ports (e.g.,
Keyboard)

Data Output API functions that produce output
in arguments and return values

Standard Output Ports (e.g.,
Serial Port)

Control Input API functions to initialize and
shutdown the module and to run
self tests

N/A

Status Output API functions which return
information regarding module
status

Standard Output Ports (e.g.,
Monitor)

Power N/A Supplied by device

Figure 5. Logical interface components, API components, physical ports.

7. Self Tests

When the CCK library is initialized for the first time, self-authentication is performed to
ensure that the library has not been modified. The self-authentication is performed using
HMAC(SHA-1) to compute the message authentication code of the library and is
compared to an expected value. If the computed and expected values do not match, the
attempt to initialize the library will fail, as will all subsequent initialization attempts until
the library is re-loaded. Otherwise, it will succeed. Subsequent to successful self-
authentication, the CCK implements a number of self tests to ensure that it is functioning
properly. On startup, the CCK executes known answer tests (KATs) on all its
cryptographic functions (listed in Figure 1) before any cryptographic functions can be
executed. In addition, the required continuous RNG test ensures that the RNG generates
distinct arrays of bytes on each call.

If any of these tests fail, the FSM controlling the operation of the CCK enters an error
state, preventing any further functioning of the CCK. To recover from an error state, the
power to the CCK must be recycled. If the CCK remains in the error state after a power
recycle, the hard drive of the PC must be reformatted to ensure that all keys and CSP’s
used by the CCK are zeroized or a hard reset performed on the Windows Mobile,
Symbian, or Palm device. Thereafter, the CCK must be reinstalled. There are no other
means for recovering from an error state.



14

The self tests can be run on demand by power cycling the device running the CCK. The
CCK library also contains an API, enabling the user to execute the self tests.

8. Design Assurance

A configuration management system is used to control the versions of the source code
components of the cryptographic software module. Each source file component is
checked into the Concurrent Versions System (CVS). CVS is a well-known version
control system that allows multiple software developers to change the same source files
while maintaining records of each version and requiring resolution of conflicting
changes. As part of this, CVS assigns each version of a file a unique version number.
Each version of every file that is part of a commercial release of the software is tagged
with a unique identifying name, and the CCK library is then built from those tagged
source files.

Version information governing this Security Policy and operator documents is
maintained/tracked in a version control document, which is stored in CVS. The versions
of the operator documents are controlled in an archive system.

9. Secure Installation and Operation

Secure installation of the CCK must be performed by an employee playing the role of
Crypto Officer at Credant Technologies or by a Crypto Officer at the company using the
CCK or its associated products. Installation must be performed according to the
instructions in the Installation Guide accompanying the CCK or its associated products.
There is no special action the Crypto Officer must perform to ensure that the CCK is
operated in FIPS mode. The CCK operates in FIPS mode by default.

Secure operation of the CCK requires that each instance of the library be used by only
one user and only one user at a time. In addition, the application that constitutes the User
of the CCK must call the “CCK_initialize” method to initialize the CCK. Before
initialization, no cryptographic functions are available. When “CCK_initialize” is called,
the self tests are automatically invoked, and if and only if the tests pass, the module is
available to perform cryptographic functions.


