
1 of 11

FIPS 140-2 Level 1 Security Policy for

ZixCorp Crypto Module

version 1.0

Version 1.6
May 26, 2009

2 of 11

Table of Contents
Overview ... 3
Security Requirements .. 4

Cryptographic Module Specification .. 4
Security Functions ... 5

Cryptographic Module Ports and Interfaces .. 6
Physical Interfaces ... 6
Logical Interfaces ... 6

Roles, Services and Authentication ... 8
Physical Security ... 8
Operational Environment ... 9
Cryptographic Key Management ... 9
Self-Tests .. 9

Power On Self Tests .. 10
Security Requirements .. 10

Secure Installation ... 10
Design Assurance ... 11
Mitigation of Other Attacks .. 11

Table of Figures
Figure 1 – Generic Computer Hardware Functional Block Diagram 4
Figure 2 – Software Architecture Functional Block Diagram 5

Table of Tables
Table 1 – Security Functions .. 5
Table 2 – Logical Interfaces .. 7
Table 3 – Roles and Services ... 8
Table 4 – Cryptographic Keys and CSPs .. 9
Table 5 – Known Answer Tests .. 10

3 of 11

Overview
The ZixCorp Crypto Module version 1.0 is a software cryptographic library that
provides cryptographic services to the overall ZixCorp Email Encryption Service.
The software token contains implementations of the following Approved
cryptographic algorithms:

• AES
• Triple-DES
• RSA
• SHA-1
• HMAC SHA-1
• FIPS 186-2 Appendix 3.1 RNG

The cryptographic module consists of a software token implemented as a single
shared object library with the filename “libsoftokn3.so”. It runs in the operational
environment of a standard Intel-based computer running the Linux operating
system. The cryptographic module boundary is the case of the computer,
containing the integrated circuits of the motherboard, the CPU, random access
memory, keyboard, mouse, video interfaces, hard drive, and other hardware
components. The term “module” is used to refer to the software token working in
the operational environment described above.

.

4 of 11

Security Requirements

Cryptographic Module Specification
The cryptographic module is the “libsoftokn3.so” shared object library, version
1.0, running in the operational environment of a standard Intel-based computer
running the Linux operating system. Per section 4.5 of FIPS PUB 140-2, the
module is a multiple-chip standalone module. No custom integrated circuits are
used by the module.

Legend

Cryptographic Boundary

PCI Bus

System
ControllerProcessor

Random
Access
Memory

Cache

Clock
Generator Video Network

ISA
AcceleratorHard Drive CD-ROM

Keyboard/
Mouse

Controller

ISA Bus

Ciphertext

Plaintext

Data Source

Data Destination

Figure 1 – Generic Computer Hardware Functional Block Diagram

5 of 11

Figure 1 shows the functional block diagram for the computer on which the
software token runs. All components shown in the diagram are within the
physical cryptographic boundary of the module, and the diagram shows
interconnections among the major components of the module. Dashed lines
represent connections to equipment or components outside the cryptographic
boundary.

Software is stored on the hard drive of the system, and loaded into random
access memory for execution. The processor component shown in Figure 1
executes all software.

Application

Operational
Environment

FIPS Token

Figure 2 – Software Architecture Functional Block Diagram

Figure 2 is a functional block diagram that demonstrates how the software token
fits into the overall operational environment. The software token is the shaded
gray box which represents the libsoftokn3.so token. The functionality of the
token is exercised by the application, The libsofttokn3.so file contains all of the
module’s cryptographic functions.

The logical boundary between the FIPS token and the application is the
PKCS#11 API that exposed by the library.

Security Functions
Table 1 lists the cryptographic algorithms implemented by the software token.

Table 1 – Security Functions

Algorithm Approved Algorithm Certificate

AES Y #321

Triple-DES Y #385

RSA Y1 #108

1 RSA is used for key wrapping. 1024-bit modulus keys provide an effective symmetric key
strength of 80 bits, and 2048-bit keys provide an effective symmetric key strength of 112 bits.

6 of 11

SHA-1 Y #394

HMAC SHA-1 Y #127

FIPS 186-2 RNG Y #145

Diffie Hellman Y2

DSA N3

Elliptic Curve N4

MD2 N

MD5 N

HMAC MD5 N

The interface to the software token is a PKCS#11 based API.

The module supports AES, Triple-DES, and RSA cryptographic keys, X.509
certificates, and HMAC for message authentication and module integrity.

Diffie Hellman, DSA, Elliptic Curve, MD2, MD5, and HMAC MD5 algorithms shall
not be used in FIPS mode of operations.

Cryptographic Module Ports and Interfaces
This section will first detail the physical interfaces to the module, and then the
logical interfaces.

Physical Interfaces

The physical interfaces are those of a standard Intel-based computer system,
including the computer keyboard and mouse, network ports, CD-ROM drive,
video monitor port, and power plug. All port connectors used in the module are
standard. The system has a serial port which is not used.

Logical Interfaces
The logical interface to the module is the Application Programming Interface
(API) of the software token. The overall NSS library treats the software token as
a PKCS#11 token implementation, and as such the API of the software token is
based on PKCS#11 version 2.2. Physical data and control input is translated into
logical data and control inputs and passed to the software token via the API.
Data output is a result of the API function calls, and status output is provided as
return values from API function calls.

2 DH is approved for key establishment, but is not included in the FIPS mode of operations..
3 DSA is an approved algorithm, but it is not compliant. It is not included in the FIPS mode of
operations.
4 Elliptic curve is an approved algorithm, but it is not compliant. It is not included in the FIPS
mode of operations.

7 of 11

The operating system controls separation of these logical interfaces when the
module communicates over the same physical interfaces. Logical interfaces are
separated by the structure of the API and the definition of the interfaces. Each
input is directed to a particular API call and each output returned from a particular
API call.

The operating environment obtains data from various sources, including network
and keyboard interfaces, and prepares that data to become input to the software
token. The data might be stored on the hard disk before being used as input
data.
Table 2 – Logical Interfaces

FIPS 140-2
Interface

Physical Interface Logical Interface

Data Input Network,
Keyboard

Input parameters of API function calls

Data Output Network,
Video

Output parameters of API function calls

Control Input Network,
Keyboard

API function calls

Status Output Network,
Video

Function calls that return status information
and return codes provided by each API
function call

Power Interface GPC Power Connector None

When the module enters an error state, it no longer will send or receive data. If
an error state is encountered, the module will reset and will not send or receive
any data until the reset is completed.

The module performs its self tests during the token initialization process. Until
token initialization is complete, no data can be processed by the module, thus
data output and input are inhibited during self testing. If self testing fails, the
module will enter an error state and the initialization routine will fail. When this
occurs, any function calls to the token will result in the
CKR_CRYPTOKI_NOT_INITIALIZED error result, and thus data output will not be
possible.

The output data path is physically and logically disconnected from the processes
that perform key generation and zeroization. No key information is output
through data output interfaces during key generation or zeroization.

8 of 11

Roles, Services and Authentication
The token supports two roles, a User and a Security Officer Role. The User Role
and Security Officer Roles are implicitly assumed by the calling application. The
Security Officer Role is primarily responsible for initializing the token for first time
use. Table 3 lists the roles and the services that they can access.
Table 3 – Roles and Services

Role Services and Access Keys and CSPs

Security
Officer

Token initialization (r, w, x)

Reading and writing public token objects (e.g.
certificates) (r, w)

RSA public keys
X.509 certificates

Self-test (x) HMAC key

User Key wrap/unwrap (r,x)

RSA private keys
used to wrap Triple-
DES or AES keys
RSA public keys used
to unwrap Triple DES
or AES keys

Encryption/decryption (r,x)

Triple-DES keys
AES keys

Message authentication (x) HMAC secrets

Signing (w, x)

RSA private keys

Verification (r, x) RSA public keys
X.509 certificates

Reading and writing public token objects (e.g.
certificates) (r, w)

RSA public keys
X.509 certificates

Reading and writing private token objects (e.g.
private and secret keys) (r, w)

Triple-DES keys
AES keys
RSA private keys

Show Status (r)

Physical Security
FIPS 140-2 level 1 physical security requirements are met by the commercially
available general-purpose hardware computing platform on which the module
runs. It shall include production-grade components with standard passivation,
and a production–grade enclosure with a removable cover.

9 of 11

Operational Environment
The module’s operational environment is described above, and consists of a
commercially available general-purpose hardware computing platform and Linux
Red Hat Enterprise 5 configured for use in single-user mode.

While cryptographic processing is in use, keys and CSPs are protected by
process separation.

When the token starts up, it performs an integrity self-check using the HMAC-
SHA1 algorithm.

Cryptographic Key Management
Table 4 shows the cryptographic keys and CSPs used by the module in
Approved mode of operations. The third column of Table 3 shows the
relationship between the keys and CSPs and the security services provided by
the module.

The module does not retain keys internally, and keys inside the software
boundary are not accessible from outside. The operating system protects
memory and process space from unauthorized access. All API functions are
executed by the invoking a process in a non-overlapping sequence such that no
two API functions will execute concurrently. In addition, libsoftokn3.so does not
perform persistent storage of keys.

Table 4 – Cryptographic Keys and CSPs

Algorithm Description

AES AES keys, context for AES key wrapping

RSA

X.509 certificate and the associated RSA private key, X.509
certificate’s fields, including RSA public key Array of raw (unparsed)
X.509 certificates, with RSA public keys

Triple-DES Triple-DES keys

HMAC secret The secret value for HMAC, used in HMAC_Create()

FIPS 186-2 RNG RNG context information, including seed

RSA RSA private key

RSA RSA public key

Self-Tests
The following self tests occur during module operations. Messages are logged
according to the module logging settings – either to the internal event log or to
the console. All of these tests are run without inputs or action from an operator.

10 of 11

Power On Self Tests
The power on self tests consist of a software integrity test, and known answer
tests for the cryptographic algorithm implementations.

Software Integrity Test
A HMAC SHA-1 value is calculated on the module and compared to a stored
value calculated when the library was built.

Cryptographic Algorithm Self-Tests
The module performs the following Self-Tests at Power-on:
Table 5 – Known Answer Tests

Algorithm Test Procedure

AES KAT

Triple-DES KAT

RSA Sign/Verify KAT

RNG KAT,

SHA-1 KAT

Table 6 – Conditional Self-Tests

Algorithm Test Procedure

RSA Pairwise Consistency Test

RNG Continuous Test

Security Requirements

Secure Installation
The cryptographic module is the “libsoftokn3.so” shared object library, version
1.0, that is installed at manufacturing on a Linux operational environment of the
ZIX Gateway. The object library can be installed in the standard library path on
the destination platform operation system by copying it to the appropriate
location. The object library file shall be accompanied by the “libsoftokn3.chk” file
which is used to verify file integrity during module startup.
The following steps must be performed to install and initialize the cryptographic
module for operating in a FIPS 140-2 compliant manner:

• The OS must be configured to a single user mode of operation
• Upon initialization, the module must run its power-up self tests. Successful

completion of the power-up self tests ensures that the module is operating in
the FIPS mode of operation.

11 of 11

Invoking the Approved Mode of Operation

The following policy must always be followed in order to achieve a FIPS 140-2
mode of operation:

• As the module has no way of managing keys, any keys that are input or output from

applications utilizing the module must be input or output in encrypted form using
FIPS approved algorithms.

• Only FIPS “Approved” algorithms may be used in FIPS mode of operation.
• Calling the compound function “SECMOD_DeleteInternalModule(PR_smprintf("%s",

SECMOD_GetInternalModule()->commonName))” will place the module in FIPS
mode of operations. This will return SECSuccess if the operation succeeded.

• The function “PK11_IsFIPS()” returns true if the module is in FIPS mode of
operation.

Design Assurance
All source code and documentation is stored in a version control system called
Subversion. Information about Subversion is available at

http://subversion.tigris.org/

The structure of the module’s components corresponds directly to the security
policy’s rules of operation. The security mechanisms provided by the software
including access control and cryptographic functionality, are addressed in the
Security Policy. The Security Policy contains explicit instructions about how the
module is accessed.

The libsoftokn3.so file is coded in C.

Mitigation of Other Attacks
The module is not designed to mitigate any other attacks.

