
FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 1 of 14

FIPS 140-2 Security Policy

SIEMENS PLM Software Teamcenter Cryptographic Module

SIEMENS PLM Software
5800 Granite Parkway, Suite 600

Plano, TX 75024
USA

Jun 10, 2014

Document Version 2.0

Based on OpenSSL

This product includes cryptographic software written by

Eric Young (eay@cryptsoft.com)
Tim Hudson (tjh@cryptsoft.com)

Non-Proprietary and Unrestricted:
This document contains information that is non-proprietary to Siemens PLM Software
Inc. and its use is unrestricted.

Trademarks:
Siemens and the Siemens logo are registered trademarks of Siemens AG. Teamcenter
is a trademark or registered trademark of Siemens Product Lifecycle Management
Software Inc. or its subsidiaries in the United States and in other countries. All other
trademarks, registered trademarks, or service marks belong to their respective holders.

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 2 of 14

 FIPS 140-2 Security Policy

SIEMENS PLM Software Teamcenter Cryptographic
Module

1. Introduction
The following describes the security policy for the SIEMENS PLM Software Teamcenter
Cryptographic Module (TCM). This module provides FIPS-validated encryption,
hashing, digital signatures, random number generation, and Secure Sockets Layer (SSL) /
Transport Layer Security (TLS) encryption for HTTPS. This Security policy contains the
details for both TCM version 1.1.1 and TCM version 2.0.

The TCM is a software module that is dynamically linked as a DLL by Teamcenter
applications that require cryptographic capabilities. Any Teamcenter product that uses
this library as its sole source of cryptographic functionality and that has adhered to the
guidelines of this document may be operated in a FIPS-compliant manner.

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 3 of 14

1.1. Purpose
This document covers the secure operation of the TCM including the initialization, roles,
and responsibilities of operating the product in a secure, FIPS-compliant manner.

1.2. References

OpenSSL http://www.openssl.org/

1.3. Glossary
Term/Acronym Description
TCM Teamcenter Cryptographic Module
CO Cryptographic-officer or Crypto-officer

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 4 of 14

2. Roles, Services, and Authentication
The TCM provides a single role and a set of services. The TCM will starts up with an
application calling an initialize function, and then provides cryptographic capabilities on
behalf of the user.

2.1. Roles
All operations occur on behalf of the application running operations for the user of the
application software. For a complete description of all services, please see the
Teamcenter Cryptographic Module Application Program Interface documentation (TCM
API Guide).
The TCM supports both User and Crypto-officer roles. Both of these roles have access to
all services of the TCM.

2.2. Authentication Mechanisms and Strength
No authentication is performed, since the TCM simply provides cryptographic primitives
for use by higher-level Teamcenter applications.

2.3. Algorithms

2.3.1. Approved
Algorithm TCM Version

2.0 (Cert#)
TCM Version
1.1.1 (Cert#)

Triple-DES (3-Keys) 1694 443
AES 2834 410
SHA 2376 477
HMAC(key length >= 112 bits) 1776 183
RNG 1277 204
RSA(key length >= 2048 bits & SHA >= 224 bits) 1476 150
DSA(Signature Verification) 852 170

2.3.2. Non-Approved (non-FIPS mode only)
 MD5
 DSA (Signature Generation)
 DES
 HMAC (key length < 112 bits)
 RSA (key length < 2048 bits & SHA-1)

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 5 of 14

2.4. Exportable Functions
The following table contains a list of the exportable functions that provide access to the
TCM.

Notes:

 The functions prefixed with TcCrypto_System_ control the operation of the library
(these are listed last in the table below).

 The library may be initialized in a FIPS or non-FIPS (Domestic) mode. The table
below is a complete list of functions, some of which have restricted functionality
when the library is operating in a FIPS-compliant mode.

 The library also exports all of the symbols from the OpenSSL library, except for a
limited set that would allow too much control over the operation of the library.

o Non-exported OpenSSL symbols: BIO_set_cipher, ENGINE_set_ciphers,
SSL_CTX_new, SSL_CTX_set_cipher_list, SSL_CTX_set_ssl_version,
SSL_set_cipher_list, SSL_set_ssl_method, RAND_cleanup,
EVP_cleanup, ERR_free_strings, CRYPTO_cleanup_all_ex_data

o All other OpenSSL functions are exported. For information on the
OpenSSL functionality, please visit http://www.openssl.org/ and read the
documentation.

Public Instance Methods

TcCrypto_Asymmetric_GetContext Called to initialize a new TcCryptoContext for
use in asymmetric (public / private key)
encryption.

TcCrypto_Asymmetric_GetOutputSize Can be called after
TcCrypto_Asymmetric_SetPublicKey to
determine the maximum buffer size needed to
hold encrypted data.

TcCrypto_Asymmetric_PrivateKey_Decrypt Performs decryption of a value encrypted with
TcCrypto_Asymmetric_PublicKey_Encrypt. This
should only be used to decrypt crypto keys,
not data.

TcCrypto_Asymmetric_PublicKey_Encrypt Performs asymmetric encryption, using the
public key. Only the recipient of the private key
will be able to decrypt the resulting message
with with
TcCrypto_Asymmetric_PrivateKey_Decrypt. This
should only be used to encrypt crypto keys,
not data.

TcCrypto_Asymmetric_SetPrivateKey Loads the TcCryptoContext object with a private
key and password to decrypt the private key, in
preparation for decrypting data encrypted via a
call to TcCrypto_Asymmetric_PublicKey_Encrypt

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 6 of 14

TcCrypto_Asymmetric_SetPublicKey Loads the TcCryptoContext object with a public
key, in preparation for data encryption.

TcCrypto_Cipher_Final Finishes the encryption or decryption operation.
This effectively flushes any buffered data from a
partial final block into the output buffer, and
shuts down the cipher.

TcCrypto_Cipher_GetBlockLength Returns the cipher block length, which is 8 for
DES or 3DES, and 16 for AES.

TcCrypto_Cipher_GetContext Creates a TcCryptoContext that can be used for
encryption. The cipher associated with the
requested cipherType parameter may not
always be available, depending on the system
mode (FIPS, Domestic).

TcCrypto_Cipher_Init Sets the key and initialization vector (IV) to be
used by the cipher, as well as configuring
whether the cipher is set to encrypt or decrypt
data that is processed.

TcCrypto_Cipher_SetPadding Allows cipher padding to be turned on or off.

TcCrypto_Cipher_Update Called to encrypt or decrypt data (based on how
the cipher was configured in
TcCrypto_Cipher_Init. Can be called one or more
times to encrypt data into the output buffer.

TcCrypto_Digest_Final Called after all data to hash has been passed
through TcCrypto_Digest_Update. This produces
a hash, which is a unique bit pattern based on
the bits of data passed through
TcCrypto_Digest_Update. If even a single bit of
input changes, the entire output value will
change in approximately 50% of the bits.

TcCrypto_Digest_GetContext Called to initialize a new TcCryptoContext for
use in hashing. The context contains hash-
related state.

TcCrypto_Digest_Init Initializes the digest state to prepare it for
computing a new hash value via
TcCrypto_Digest_Update.

TcCrypto_Digest_Update Processes one or more blocks of data through
the hash function. This method can be called
one or more times with all the data that is to be
hashed.

TcCrypto_Hmac_Final Called after all data to hash has been passed
through TcCrypto_Hmac_Update. This produces

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 7 of 14

an HMAC hash, which is a unique bit pattern
based on the bits of data passed through
TcCrypto_Hmac_Update, using the secret HMAC
key supplied in TcCrypto_Hmac_Init.

TcCrypto_Hmac_GetContext Called to initialize a new TcCryptoContext for
use in keyed hashing, using the HMAC construct
defined in RFC 2104,
http://www.faqs.org/rfcs/rfc2104.html.

TcCrypto_Hmac_Init Initializes the hmac and underlying digest state
to prepare it for computing a new hash value via
TcCrypto_Hmac_Update.

TcCrypto_Hmac_Update Processes one or more blocks of data through
the HMAC function. This method can be called
one or more times with data that is to be
hashed.

TcCrypto_Legacy_NTLM_DES_ecb_encrypt Legacy method. Should only be used to support
NTLM headers in applications (like cUrl) that
require legacy NTLM support.

TcCrypto_Legacy_NTLM_DES_set_key Legacy method. Should only be used to support
NTLM headers in applications (like cUrl) that
require legacy NTLM support.

TcCrypto_Legacy_NTLM_DES_set_odd_parity Legacy method. Should only be used to support
NTLM headers in applications (like cUrl) that
require legacy NTLM support.

TcCrypto_Rand_GetBytes Uses a cryptographically strong random number
generation technique to produce as many
random bytes as requested.

TcCrypto_Rand_Init Initializes the random number subsystem. This
operation can take a bit, while the random
number generator 'warms' up, accumulating
entropy.

TcCrypto_Rand_Seed Accumulates variable data into the Pseudo-
Random Number Generator (PRNG), allowing the
output to become more random.

TcCrypto_Rand_SetPrngKey Loads an application-specific key into the
Pseudo-Random Number Generator (PRNG).

TcCrypto_Rand_Status Indicates if the random number generator has
been seeded with enough entropy so that it can
be used to generate random output bytes.

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 8 of 14

TcCrypto_Signature_GetContext Called to initialize a new TcCryptoContext for
use in digital signatures using the RSA or DSA
algorithms.

TcCrypto_Signature_SetPrivateKey Loads the TcCryptoContext object with a private
key and password to decrypt the private key, in
preparation for computing a digitial signature.

TcCrypto_Signature_SetPublicKey Loads the TcCryptoContext object with a public
key, in preparation for verifying a digitial
signature.

TcCrypto_Signature_SignFinal Called after all data has been signed using
TcCrypto_Signature_SignUpdate, producing the
final digital signature.

TcCrypto_Signature_SignInit Initializes the TcCryptoContext to prepare it for
computing a digital signature.

TcCrypto_Signature_SignUpdate Called one or more times to supply data that is
to be 'signed'.

TcCrypto_Signature_VerifyFinal Called after all data has been verified using
TcCrypto_Signature_SignUpdate, producing the
final digital signature. If this value matches a
pre-computed digital signature, then the data is
valid.

TcCrypto_Signature_VerifyInit Initializes the TcCryptoContext to prepare it for
verifying a pre-computed digital signature.

TcCrypto_Signature_VerifyUpdate Called one or more times to supply data that is
to be 'verified'.

TcCrypto_SSL_CTX_new Creates a new SSL context which can be used to
create an SSL connection info.

TcCrypto_System_FreeContext Releases the resources associated with a
TcCryptoContext, freeing any allocated memory
and zeroing out the internal state.

TcCrypto_System_GetDigestSize Returns the number of bytes needed to store the
output digest from the hash function that has
been initialized via TcCrypto_Digest_GetContext,
TcCrypto_Hmac_GetContext, or
TcCrypto_Signature_GetContext

TcCrypto_System_GetLastError Retrieves information about the last error that
occurred for the system.

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 9 of 14

TcCrypto_System_GetType Retrieves an enum that indicates the type of
system that is currently allocated.

TcCrypto_System_GetTypeString Retrieves a string that indicates the type of
system that is currently allocated.

TcCrypto_System_Initialize Factory method to create a crypto system. The
system contains the mode the library will run in
("Fips", "Domestic"), as well as the random
number generator state.

TcCrypto_System_SetLastError Sets the thread's last error state, retrievable by
TcCrypto_System_GetLastError.

TcCrypto_System_Shutdown Shutdown releases any allocated memory and
frees up system resources consumed by the
crypto library. This should be called before the
application exits. Note that only the first call to
this method will have an affect.

TcCrypto_Watermark_Generate

TcCrypto_Watermark_GetData

TcCrypto_Watermark_IsValid

These functions are not intended to be called by
any consumers of this library – they are used
internally and exported for use by our
watermarking utility, which is beyond the scope
of this document.

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 10 of
14

3. Secure Operation and Security Rules
In order to operate the Teamcenter Cryptographic Module securely, the operator should
be aware of the security rules enforced by the module and should adhere to the physical
security rules and secure operation rules required.

3.1. Security Rules
The security rules enforced by the TCM result from the security requirements of FIPS
140-2.

FIPS 140-2 Security Rules
The following are security rules needed to operate the module securely, that stem from
the requirements of FIPS PUB 140-2. The module enforces these requirements when
initialized into FIPS mode.

1. When initialized to operate in FIPS mode, the TCM shall only use FIPS-approved
cryptographic algorithms.

2. The TCM shall employ the FIPS-approved pseudo random number generator
based on ANSI931 Standard (TDES2 Algorithm) whenever generating keys.

3. The replacement or modification of the Module by unauthorized intruders is
prohibited.

4. The Operating System enforces authentication method(s) to prevent unauthorized
access to Module services.

5. All Critical Security Parameters are verified as correct and are securely generated,
stored, and destroyed.

6. All host system components that can contain sensitive cryptographic data (main
memory, system bus, disk storage) must be located in a secure environment.

7. The referencing application accessing the Module runs in a separate virtual
address space with a separate copy of the executable code.

8. The unauthorized reading, writing, or modification of the address space of the
Module is prohibited.

9. The writable memory areas of the Module (data and stack segments) are
accessible only by a single application so that the Module is in "single user"
mode, i.e. only the one application has access to that instance of the Module.

10. The operating system is responsible for multitasking operations so that other
processes cannot access the address space of the process containing the Module.

3.2. Secure Operation Initialization Rules
Because FIPS 140-2 prohibits the use of non-FIPS approved algorithms while operating
in a FIPS compliant manner, the TCM should be initialized to ensure FIPS level 1
compliance.

1. Start a Teamcenter application that uses the TCM
2. When the TCM enters the Uninitialized state, the application should initialize the

TCM using TcCrypto_System_Initialize(TcCrypto_SystemType_Fips).
3. The application should check the return code to ensure the application

initialization was successful.

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 11 of
14

When initialized in this fashion, the TCM will only use FIPS-approved algorithms. Note
that the state of an TCM can be determined at any time by calling the
TcCrypto_System_GetType() function, which will return TcCrypto_SystemType_Fips if
the TCM is operating in FIPS mode.
Note that when configuring the random number generator, that the seed and seek key
should not be the same value.

3.3. Operating Systems

The TCM has been officially validated on the following platforms:

TCM Version 2.0

 Windows 7 SP1 (x86 / x64)
o Visual Studio 2012 (11)

 Linux SuSE 11.2 (x64)
o Compiler – g++ 4.3.4

 Mac OSX 10.8 (x64)
o Compiler - clang LLVM 4.2

TCM Version 1.1.1

 Windows XP (32-bit)
o Visual Studio 2003 (7.1)

 Solaris 8 (64-bit)
o Sun WorkShop 6 update 2 C/C++ 5.3

 Solaris 10 (64-bit)
o Sun Studio 10 C++ 5.7

In addition to the validation, the TCM has been tested by SIEMENS PLM on the
following platforms:

TCM Version 2.0

 Windows
o Windows 8 (x64) – Visual Studio 2012
o Windows 7 SP1 (x64/x86) – Visual Studio 2010

 Linux
o RedHat 6.x (x64/x86) – g++ 4.4.4
o SUSE 10.x (x64) – g++ 4.1.2

 Solaris
o Solaris 10 (32-bit /64-bit) – Solaris Studio 12.3 C++ 5.12

 Mac OS X
o OSX 10.8 (x86) – clang LLVM 4.2

 AIX
o AIX 5.3 (32-bit) – xlC 8.0

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 12 of
14

o AIX 5.3 (64-bit) – xlC 8.0
o AIX 6.0 (32-bit) – xlC 11.1
o AIX 6.0 (64-bit) – xlC 11.1

TCM Version 1.1.1

 Windows
o Windows XP (32-bit) – Visual Studio 2003 (7.1)
o Windows XP (32-bit) – Visual Studio 2005 (8.0)
o Windows XP (64-bit) – Visual Studio 2005 (8.0)

 Linux
o SUSE 9 (32-bit: i386) – gcc 3.3.3
o SUSE 9 (64-bit: x86_64) – gcc 3.3.3

 HP-UX
o HP-UX 11.11 (32-bit: PA-RISC) – aCC 03.57
o HP-UX 11.11 (64-bit: PA-RISC) – aCC 03.57
o HP-UX 11.23 (32-bit: Itanium) – aC++/C A.06.05
o HP-UX 11.23 (64-bit: Itanium) – aC++/C A.06.05

 Solaris
o Solaris 8 (32-bit) – Sun WorkShop 6 update 2 C++ 5.3
o Solaris 8 (64-bit) – Sun WorkShop 6 update 2 C++ 5.3

 Mac OS X
o OSX 10.4.6 (32-bit: ppc) – gcc 4.0.1
o OSX 10.4.6 (32-bit: i386) – gcc 4.0.1
o OSX 10.4.6 (64-bit: ppc64) – gcc 4.0.1
o OSX 10.4.6 (32-bit: universal pcc/i386) – gcc 4.0.1

 AIX
o AIX 5.1 (32-bit) – 6.0.0.11 C++ compiler, 6.0.0.10 C compiler
o AIX 5.1 (64-bit) – 6.0.0.11 C++ compiler, 6.0.0.10 C compiler
o

 IRIX
o IRIX 6.5.22m (32-bit) – c/c++ compiler 7.4.2m
o IRIX 6.5.22m (64-bit) – c/c++ compiler 7.4.2m

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 13 of
14

Definition of SRDIs Modes of Access
This section specifies the TCM’s Security Relevant Data Items as well as the access
control policy enforced by the TCM.

3.4. Cryptographic Keys, CSPs, and SRDIs
While operating in a level 1 FIPS-compliant manner, the TCM stores no security relevant
data items. Any security relevant data, like cryptographic keys, cipher state, etc, are fully
contained in memory provided by the calling application, and thus not under control of
the TCM. All such memory is under control (stored by) higher-level applications. No
actual cryptographic items are stored in the TCM, although the TCM does provide
mechanisms to zero out memory once the calling application is finished using the
memory (OPENSSL_cleanse()) and calls the appropriate shutdown methods of the
API (TcCrypto_System_Shutdown()).

There are no cryptographic keys provided with the TCM. The operator must generate or
otherwise provide any keys to be used during operation.

3.5. Access Control Policy
Access control is assumed to be handled by higher-level applications and the operating
system, since the TCM has no mechanisms to restrict or limit calls to the APIs. The only
access control is protection around the internal FIPS-state variable, which ensures that
once the application is switched into FIPS mode, it cannot be switched out of FIPS mode
without first going through a shutdown operation. The application can then be re-
initialized in a non-FIPS mode.

3.6. Self-tests
The following list shows all the self-tests implemented in the cryptographic module.

FIPS_selftest_rng()
FIPS_selftest_sha1() //supported only in non-FIPS mode
FIPS_selftest_sha224()
FIPS_selftest_sha256()
FIPS_selftest_sha384()
FIPS_selftest_sha512()
FIPS_selftest_hmac()
FIPS_selftest_aes()
FIPS_selftest_des() // includes DES, 2-key 3DES, and 3-key 3DES tests
FIPS_selftest_rsa()
FIPS_selftest_dsa()

In addition to these self-tests, the TCM also contains an embedded watermark that will be
verified at runtime to ensure that the library has not been corrupted or modified.

Also, the library performs continuous Random Number Generator tests on the output of
the Approved RNG to ensure that it is not “stuck”.

FIPS 140-2 Security Policy Teamcenter Cryptographic Module

Unrestricted © Siemens PLM Software 2014 Page 14 of
14

Mitigation of Other Attacks
This section is not applicable.

