
 MULTOS
Technical Paper
Composite Evaluations:
Evaluations of Applications in High Security Multiple
Application Modules

Authors: Brian McKeon, PhD, & Raymond Makewell

Abstract: In this paper we discuss the emergence of Multi-Application High-Security
Modules, in particular smartcards, and the impact on FIPS140 security evaluation
 techniques. The FIPS140-2 standard has been used for evaluation of such modules
however the evaluations typically involve a single application or a fixed set of applications,
preventing the mix-and-match of applications that are desired by some end-users. This
paper describes product security requirements, derived from FIPS140-2, that would allow
security evaluations of different application configurations to be accepted as a composite
evaluation spanning a set of applications.

Introduction

Security design principles require that security
modules have the minimum of functionality required
for the intended purpose. This ideal is often
compromised with modern High Security Modules
(HSMs) because of the desire of HSM designers to
offer single multi-purpose architectures to cater for

a wide variety of applications. This compromise
does have a trade-off benefit for security in that it
allows HSM designers to concentrate on the
security of a single architecture rather than the
effort being diluted across many dedicated designs.
Good examples of flexible HSM products are multi-
application smartcards such as JavaCard
[JavaCard] and MULTOS [MULTOS] and personal

KEYCORP LIMITED

Composite Evaluations: Evaluations of Applications in High Security Multiple Application Modules

KEYCORP LIMITED Page 2 of 9

computer-based products such as the IBM 4758
PCI card [IBM4758].

Some HSMs address the multi-purpose
requirement by assuming that fundamentally all that
is required is a key storage sub-system which
allows various applications to store their keys within
the HSM and perform simple cryptographic
transforms within the HSM. This does address
many typical requirements however there are some
applications which require that a sequence of
operations, a “secure transaction”, be performed
within the HSM which leads to the requirement that
the HSM be capable of being programmed with
some form of executable code.

When the HSM environment needs to support a
number of such transaction applications, the
requirements on such an environment are the same
as those on any secure multi-application operating
system [GASSER-88].

Current HSM security evaluation standards such as
FIPS140 originated in the early to mid-1990s
[FIPS140-1] and are based on fixed-functionality
(when first introduced, the IBM 4758, which had
486 processor hardware capable of multi-
application support, had a software architecture
only able to support a single application). If a multi-
application HSM is presented for security evaluation
it is typically presented with an application or set of
applications configured for an end-customer. When
the set of applications is varied the HSM would
require to be presented for evaluation again, a
significant cost penalty, and delaying the
introduction of security solutions.

In particular, modern smartcard systems are being
offered with a variety of applications and the ability
to combine security evaluations of different
applications on a smartcard to produce a composite
evaluation would be a very desirable outcome.

This paper suggests a basis whereby security
evaluations of different applications can be
combined without requiring a further evaluation.
This does have some impact on the security
architecture of the underlying operating systems
and hardware.

Smartcard Platforms

Multiple-application smartcard technology has now
matured to the point where it is in widespread use
in mobile phones, banking, user authentication and
user data protection. The dominant platforms are
currently JavaCard [JAVACARD] and MULTOS
[MULTOS]. Both platforms have a similar core

architecture with a small virtual machine interpreting
application bytecode. This model allows
applications to be run, without change, on different
hardware. [SC2002] is a good introduction to
smartcard technology and a number of different
platforms, including JavaCard and MULTOS.

To illustrate the similarity of the JavaCard and
MULTOS platforms the following text describing the
MULTOS system was taken from [MULTOS-ST].

MULTOS is an operating system for integrated
circuit cards (also known as smartcards). It is
designed to allow multiple smartcard applications to
be securely loaded and executed on a smartcard.
The user of the smartcard accesses the
applications loaded on it via an Interface Device
(IFD), which could be a Point-of-Sale terminal,
Automatic Teller Machine, or some other device
which supports ISO 7816 [ISO7816] smartcard
protocols.

Communications across the IFD-MULTOS interface
comprise a message transmitted by the smartcard
when it is reset (the Answer-to-Reset or ATR
message), followed by command-response pairs,
where a command is a message from the IFD to
MULTOS and a response is a message from
MULTOS to the IFD.

By means of these command-response pairs,
MULTOS allows:

a) Applications to be loaded onto and deleted from
the smartcard.

b) An IFD to access data and applications which
are loaded on the card.

c) Information specific to the card to be retrieved
by an IFD.

MULTOS is a single-threaded operating system.
Only one application can be executing at any given
time. MULTOS does not provide mechanisms for
concurrency or multi-tasking. Following power-on of
the smartcard and initialisation, the basic execution
sequence for MULTOS is as follows:

a) Wait for input from the IFD.
b) Parse the input.
c) If the input is a MULTOS command, process

the command and write a response to the IFD.
d) Otherwise, execute the currently selected

application and write to the IFD any output
created by the application.

e) Loop back to a).

Applications to be loaded on MULTOS-based
smartcards are written in a hardware-independent
language called MULTOS MEL. MEL applications

Composite Evaluations: Evaluations of Applications in High Security Multiple Application Modules

KEYCORP LIMITED Page 3 of 9

are interpreted by MULTOS, rather than being
compiled and executed directly on the smartcard
processor.

If the word "MULTOS" in this text was replaced by
"JavaCard" and the "MULTOS MEL" by "JavaCard
bytecode" the text is then just as valid for JavaCard,
highlighting the similarity of the two architectures.

Analysis Method

The intent of this paper is to determine potential
revisions of the FIPS140 standard. The analysis
starts with a review of operating system platform
requirements from FIPS140-2, including the
referenced Controlled Access Protection Profile
[CAPP]. These requirements are compared with
typical security targets of the MULTOS and
JavaCard platforms and referenced protection
profiles. A cross-check on the outcome is then
performed against core smartcard operating system
requirements as identified in a multi-application
smartcard protection profile [PP/0010] referenced
by the JavaCard and MULTOS Security Targets.

Review of FIPS140-2

The FIPS140-2 documentation has specific
requirements for operating systems that support the
cryptographic functions.

In the following analysis different sources use the
terms process, thread and application for similar
concepts. As this paper is primarily interested in
smartcard operating systems which are single-
thread, single-process for any one command-
response pair (ref [ISO7816]), the term application
will be used. This is more familiar in the smartcard
world.

The following extracts are intended to highlight
aspects that are relevant to multi-application, multi-
function operating systems that can be reconfigured
with different application functionality:

The principles behind the evaluation at the different
security levels of FIPS140 are:

• Plaintext key material of one application within
the HSM will not be accessible to other
applications

• The code and data of an application within the
HSM will not be readable nor writeable by
another application or by an entity external to
the HSM.

• Applications spawned by an application within
the HSM are owned by the spawning
application and no other

• During execution, an application of the HSM
cannot be interrupted by another application
(not relevant to the smartcard application
execution model).

• Application software will be installed in the HSM
in a form that prevents tampering and allows
confidentiality

• A confidential channel mechanism will be
provided to applications, the confidentiality
being protected from other applications and
from entities external to the HSM, excepting the
intended communicating entity

• A role-based authentication mechanism will be
provided

• The loading/installation of applications to the
HSM will be restricted to authorized roles

• The execution of applications in the HSM will be
restricted to authorized roles

• The (re)loading of key material to the HSM will
be restricted to authorized roles

• The use of key material in the HSM will be
restricted to authorized roles

• Recording of the above actions or rejection of
failed actions to be recorded in an audit log.

Controlled Access Protection Profile

For evaluation at FIPS140-2 security levels 2 and
above, a supporting operating system is required to
be evaluated under Common Criteria [CC] to the
Controlled Access Protection Profile [CAPP]
developed by the NSA.1 2

The [CAPP] Protection Profile states that the
“assurance level is EAL 3 and the minimum
strength of function is SOF-medium.”. This EAL3
level is really only directly applicable to FIPS140-2
evaluation up to level 3 which specifies that the
supporting operating system be evaluated to CC
EAL3. As a level 3 evaluation is tending to the
desired target of smartcard evaluations the CAPP is
directly relevant to the analysis of this paper.

The CAPP profile clarifies the generalised FIPS140
“roles” into three fundamental divisions,
(unauthorised) users, authorised users and
(authorized) administrators.

1 FIPS140-2 provides for “an equivalent evaluated
trusted operating system” to a Common Criteria
evaluated operating system. The analysis in this
paper focuses on the more regular Common
Criteria-based path.
2 In any revision of FIPS140 it is likely that Appendix
A of FIPS140 would reference the multi-application
smartcard protection profile PP/0010 as an
alternative to CAPP.

Composite Evaluations: Evaluations of Applications in High Security Multiple Application Modules

KEYCORP LIMITED Page 4 of 9

Tests will be run at startup, periodically or on
administrator request, to demonstrate correct
operation of security assumptions including domain
separation [CAPP, s5.5.1.1]. CAPP also states
that this generally refers to the hardware platform
with the stated assumption that the hardware
platform was providing the domain separation
mechanism. FIPS140-2 allows that administrator
request can be implemented as the ability to reset
or power cycle the HSM to trigger a power-on self
test.

Domain separation is further clarified [CAPP s5.5.3]
as providing a separate domain for the operating
system and separate domains for each application.
This prevents the operating system from
interference from untrusted subjects and prevents
applications from interference from other
applications.

Security Policy enforcing functions should be
invoked and succeed before each attempt to
perform an action between a subject and an object
that requires security enforcement [CAPP s5.5.2].
The intent here seems to be to avoid use of security
enforcing functions that are invoked either remote in
time or code position, to the point of object access.
Such remoteness allows more likelihood of design
flaws and opportunities for security attacks.

Object reuse is addressed in CAPP s4.1 which
states that information in protected resources must
be destroyed when the resource is recycled.

FIPS140 Requirements Compared to Smartcard
Security Targets

It is expected that next revisions of the FIPS-140
will continue to align with Common Criteria for
generic requirements such as operating systems
and will probebly include a reference to the
smartcard-specific protection profile [PP/0010] as
well as [CAPP].

The above emphasis towards Common Criteria and
the increasing availability of smartcard security
targets based on common protection profiles means
that the Common Criteria is a useful basis for
comparison of the different solutions against FIPS-
140 requirements.

Although the Common Criteria appears to be a
common basis for the different security targets, the
available security targets for Javacard and
MULTOS cannot be directly compared. They do
not all span the same lifecycle phases and,
although the security targets would be expected to
be individually consistent with referenced protection
profiles etc, the different security targets have

chosen difference approaches. So there needs to
be some degree of interpretation when trying to
compare the different documents. Previous
attempts to develop smartcard security targets
addressing multiple protection profiles have
identified similar problems [GAMMA-02].

For example, the multi-application smartcard
lifecycle is defined with seven phases from design
through to end use and end of life [PP/0010]. The
heavily-referenced multi-application smartcard
protection profile [PP/0010] evaluation scope only
covers phases 1-3 up to the end of IC manufacture
and test. The Global Platform Security Target
Guidelines [GP-ST], even though recent and
heavily based on the multi-application Javacard,
also only span lifecycle phases 1-3. The Gemplus
2002 (EAL4) ST [JC-ST-GP-1] scope does not
include application loading after card production as
this seems to have been intended for a SIM market
with fixed application set. The Oberthur 2002
(EAL4) ST [JC-ST-OCS-1] covers only phases 1
(prepersonalisation requirements and software
design) and 7 (end-use). The MULTOS ST
[MULTOS-ST] spans the full product lifecycle.

[MULTOS-ST] and [JC-ST-OCS-1] were chosen for
further analysis as both documents spanned the
lifecycle phases to do with product design and end-
use including application loading and deletion in an
unprotected environment.

In the following text, when a Common Criteria
heading abbreviation such as FDP_ACC is
referenced it will be prefixed by a “CC:” to
distinguish from references to documents.

Plaintext key material of one application within
the HSM will not be accessible to other
applications
Smartcard operating systems generally have no
mechanisms to distinguish critical data stores of
applications.

The Javacard architecture allows for applications to
store key material within Security Domain
applications however this is more of a convenience
for sharing of keysets across applications where a
number of applications may share a security
domain because they share a common application
issuer for instance. A JavaCard application is free
to store key or other sensitive material within its
dataspace.

The Security Domain architecture of JavaCard has
an impact on application separation in that, when
an application is deleted, it's key material should
also be deleted. If this key material is stored in a
separate application, a Security Domain, then this

Composite Evaluations: Evaluations of Applications in High Security Multiple Application Modules

KEYCORP LIMITED Page 5 of 9

key material should also be deleted. At present this
is the responsibility of the application owning the
key material and the operating system platform
does not manage this.

MULTOS has not defined a Security Domain
application concept although it could support this
model. Present MULTOS applications store key
material within their data spaces. Therefore, like
JavaCard, the underlying operating system cannot
determine what data of an application is key
material or otherwise sensitive material.

The operating system needs to treat all application
code and data as sensitive. This FIPS-140 key
material requirement has therefore been
generalized to the next FIPS-140 requirement
concerning protection of code and data of an
application.

The code and data of an application within the
HSM will not be readable nor writeable by
another application or by an entity external to
the HSM
There are three aspects to be covered here. The
first concerns protection of application code and
data while it is loaded on the HSM, the second
concerns protection of code and data when the
application has been deleted from the HSM and
application resources released and the third
concerns access by an external entity.

Application Separation
There is some ambiguity in in [MULTOS-ST] and
[JC-ST-OCS-1] with respect to the use of the term
“Security Domain” and it is useful to first examine
[CAPP] to try for a basis of comparison.

CC:FPT_SEP.1, Domain Separation, is the CAPP
requirement for separation of the domains of the
operating system and applications, each consisting
of code and data resources.

[JC-ST-OCS-1] addresses CC:FPT_SEP.1 TSF,
but specifically states that this is for Security
Domains, specialized JavaCard applications that
are intended for keys and passwords. Other
applications call the Security Domain applications
for specific services. [JC-ST-OCS-1] does
introduce a firewall concept but this is not under
Domain Separation and is introduced under
CC:FDP_ACF.1 to do with access control.
JavaCard needs to introduce a firewall at this more
abstract level as application structure in JavaCard
can be distributed into a number of objects with
objects capable of being in a number of states, e.g.
active, inactive, sharable etc.

A recent formal model of JavaCard [JAVACARD-
FM] attempts to determine security requirements of
this platform. However it is focussed on the Security
Domain model where Security Domains are
repository of all cryptographic keys, cardholder
PINs (CHVs) etc. This leaves any critical
application state variables in an unclear position.
The need or otherwise for off-card application
bytecode verification (see next) was also not stated
in this proof.

Current JavaCard technology is based on an off-
card bytecode verifier which “ensures that the CAP
file has the correct format. The bytecodes are
verified using a simple theorem prover which
establishes a set of structure constraints on the
bytecodes” [JC-ST-OCS-1]. [JAVACARD-SEC]
states that, without this off-card verification, a
malicious application could run and domain
separation could be threatened. With applications
loaded over a trusted path from the card issuer the
card issuer can ensure that the verifier is run on all
applications that are to be loaded on the JavaCard.
This does place reliance on the off-card bytecode
verifier and maintenance of the integrity of that tool.
This is further complicated by bytecode verification
not being 100% specified [JAVACARD-SEC].

The MULTOS application architecture is more
simplified and application separation has a direct
mapping to CC:FPT_SEP.1 subdivided into 1.1 and
1.2. Subsection 1.1 defines that the Operating
System will maintain a security domain for its own
use and subsection 1.2 states that the Operating
System will maintain security domains for each of
its subjects (applications). Note the use of the term
“security domain”. This is an abstract term for
[MULTOS-ST] but describes applications with
specific functionality in the [JC-ST-OCS-1] model.
The concept of an application firewall in MULTOS
would be directly traceable to FPT_SEP.1.

The MULTOS domain separation model is fully
implemented on-card. MULTOS places no
requirement on any off-card pre-processing of
application code.

Release of Application Resources
[CAPP] s4.1 indicated that information in protected
resources must be recycled when the resource is
recycled (CC:FDP_RIP). Both [MULTOS] and [JC-
ST-OCS-1] directly address CC:FDP_RIP.1 with
similar techniques.

See also the later section on confidential channel
mechanism for object reuse of the communications
buffer.

Composite Evaluations: Evaluations of Applications in High Security Multiple Application Modules

KEYCORP LIMITED Page 6 of 9

The release of application-owned key material was
discussed under the previous FIPS140 topic.

Access to Application Code and Data by External
Entities
As all access to application code and data is
mediated by the operating system, this requirement
falls under access controls provisions,
CC:FDP_ACF. An authorised external entity will be
allowed to load an application, perform certain state
changes on an application, and delete an
application. Any other access to application code
or data by entities external to the HSM is under
control of the application itself.

With JavaCard or MULTOS the applications are
written in an interpreted bytecode and domain
separation is commonly performed in software as
part of the operation of a virtual machine running
the application bytecode. CAPP assumed
hardware-enforced domain separation and required
testing of the domain separation hardware. This is
not relevant with software-enforced domain
separation, if the domain separation software has
not been tampered-with then the separation
mechanism will be operational. With virtual
machine-based domain separation the CAPP test of
s5.5.1.1 can therefore be translated into a
consistency check on the domain separation
software. Typically this would be part of a general
operating system code check on startup.

Applications spawned by an application within
the HSM are owned by the spawning application
and no other
This requirement is not obviously traceable into
[CAPP]. Most multi-application smartcards do
allow one application to spawn another. The
smartcard model is a single-threaded model and
therefore the calling application waits until normal
completion of the spawned application. This
FIPS140 requirement is therefore naturally satisfied
by current smartcard environments.

JavaCard applications can publish interfaces as
shared and such interfaces are callable by other
applications on the card. When the interface is
called the current context is switched, and access
permissions are then those of the called (spawned)
application. [JC-ST-OCS-1] does not explicitly link
this delegation of control to any specific Common
Criteria clauses and the only implied clause would
be access control of different applications ie
CC:FDP_ACF.

MULTOS has a less complex spawning method.
Smartcard applications in JavaCard or MULTOS
accept data in a command buffer from an external
entity, process the data, and assemble a response

which is then transmitted back to the external entity.
MULTOS allows one application to assemble data
in the command buffer and then delegate
processing to another application. The other
application processes the data as if it were received
from an external entity and returns the response to
the delegating application. Applications need to be
designed with one interface method for either
external entities or intra-application calls.
[MULTOS _ST] does discuss the concept of switch
of application context during delegation (see
“Application Execution Management SF”) but this is
not linked to any specific Common Criteria clauses.
As with JavaCard the only implied clause would be
access control of different applications together with
context switching ie CC:FDP_ACF.

There is no direct impact of this aspect of FIPS140
on the mix and match of application security
evaluations.

Application software will be installed in the HSM
in a form that prevents tampering and allows
confidentiality
Javacard and MULTOS both provide mechanisms
to allow an issuer to encrypt and sign applications
to provide confidentiality and integrity of loaded
applications.

The JavaCard loading fundamentally relies on
FTP_TRP.1, Trusted Path.

MULTOS loading is based on
authentication/identification of an authorised
external entity (CC:FIA_UAU.1 and CC:FIA_UID.1)
and encryption for confidentiality (CC:FDP_ITC.1
with support from CC:FCS_COP.1,
CC:FCS_CKM.3 and CC:FCS_CKM.4).

The two approaches are logically equivalent with
the trusted path of JavaCard more closely
associated with on-line application loading
techniques whereas MULTOS allows applications
to be encrypted and signed on-line or off-line if the
smartcard is not on-line at that time.

There is no direct impact of this aspect of FIPS140
on the mix and match of application security
evaluations.

A confidential channel mechanism will be
provided to applications, the confidentiality
being protected from other applications and
from entities external to the HSM, excepting the
intended communicating entity
The FTP_TRP.1, Trusted Path, function of
JavaCard is available to applications and provides a
confidential channel to applications.

Composite Evaluations: Evaluations of Applications in High Security Multiple Application Modules

KEYCORP LIMITED Page 7 of 9

The MULTOS platform does not provide
confidential channel support due to the lack of a
standardized mechanism in the smartcard market.
Applications construct their own confidential
channel mechanisms using MULTOS cryptographic
functions.

Both MULTOS and JavaCard have a portion of
memory that is used for communication with
external entities, is shared between applications,
may contained unwrapped (decrypted) data, and is
therefore subject to object reuse. Both platforms
have policies of clearing this buffer on application
selection or card reset.

A role-based authentication mechanism will be
provided
Operating system roles with JavaCard and
MULTOS fit with the CAPP model ie (unauthorised)
users, authorised users and (authorized)
administrators.

At least one smartcard security target [JC-ST-OCS-
1] abstracted the concept of an application as a
user. This looks correct as the applications are
clearly users of operating system resources but the
domain separation aspects of these users as
applications tends to become confusing.

Although essential for controlling access there is no
direct impact of this aspect of FIPS140 on the mix
and match of application security evaluations.

The loading/installation of applications to the
HSM will be restricted to authorized roles
In both JavaCard and MULTOS this requirement is
satisfied by the mechanisms used to ensure secure
loading of applications (see earlier).

There is a requirement placed on the entity
authorised to load applications to ensure that
application IDs are allocated in a controlled manner.
This to avoid the possibility of one application
masquerading as another. This requirement would
typically fall on the card issuer.

FIPS140 does not specifically mention control of
application deletion. The mechanisms for deletion
mirror those of loading for both JavaCard and
MULTOS and fall under the access control
provisions, CC:FDP_ACC.

The recycling of application resources has been
discussed in a previous section and this
requirement from FIPS140 does not otherwise
impact the mix and match of application security
evaluations.

The execution of applications in the HSM will be
restricted to authorized roles
Neither JavaCard nor MULTOS directly enforce the
concept of restriction of execution of applications.
Any such restriction is the responsibility of individual
applications.

This requirement from FIPS140 does not directly
impact the mix and match of application security
evaluations.

The (re)loading of key material to the HSM will
be restricted to authorized roles
The JavaCard Card Manager application can have
key material loaded via a trusted path (FTP_TRP.1)
to the Card Issuer.

The MULTOS operating system key material is
configured at one point, the loading of the MULTOS
Security Manager (MSM) Controls. After this point
the key material cannot be reconfigured. This
loading is under the control of the card issuer with
generation of the MSM controls delegated to the
MULTOS Key Management Authority (KMA). Refer
to Management of TSF data (CC:FMT_MTD).

This requirement from FIPS140 does not directly
impact the mix and match of application security
evaluations.

The use of key material in the HSM will be
restricted to authorized roles
Javacard and MULTOS operating systems use key
material for validating the loading of applications
and, in the case of JavaCard, allowing card issuer
authentication to allow certain application state
transitions. This operating system key material can
therefore be exercised by unauthorised users but
with only a success/fail outcome. This key material
is therefore open to cryptographic attack and is
protected by audit mechanisms that restrict the
possible number of unsuccessful attempts, blocking
the card from further attack (CC:FAU_ARP.1,
Security Alarms).

For application key material the JavaCard
architecture with its concept of Security Domain
applications would require that key material within a
Security Domain application be owned by certain
application(s). This is not a direct requirement on
the JavaCard operating system platform and
therefore must be managed by the application(s).

Recording of the above actions or rejection of
failed actions to be recorded in an audit log
[CAPP] states that reliable timestamps are required
for audit records however no current commercial
smartcard technology offers real-time clock

Composite Evaluations: Evaluations of Applications in High Security Multiple Application Modules

KEYCORP LIMITED Page 8 of 9

functionality. Administrative alerts are also a
difficult concept where smartcards are intended to
be used for off-line authentication. The Department
of Defense PKI Smart Card [DOD-PP-PKI]
concluded that auditing functions were not relevant
to system requirements on a smartcard operating
system.

JavaCard maintains an audit log of certain
exceptions (CC:FAU_LST). JavaCard and
MULTOS maintain counters of critical security
events that indicate a potential security threat and
will either terminate an application or terminate the
card under specific conditions (CC:FAU_SAA.1).

FIPS140 Requirements Compared to
Smartcard Protection Profile PP/0010

The following list of requirements was identified as
core for a multi-application Smartcard Operating
System in [PP/0010].

• Integrity and confidentiality of Native and or
Loaded Applications. 3

• Prevention of encroachment of loading and
unloading of applications on Loaded-
Applications

• Maintaining secure Domain separation of
Loaded-Applications

• Integrity and confidentiality of Native and
Loaded-Application TSF data.

• Integrity and/or confidentiality of End User Data
which have been stored on the TOE when it is
required. (For example result of health check-
up, audit tracks of financial transactions…),

• Correct operation of arithmetical functions (e.g.
incrementing counters in electronic purses,
calculating currency conversation in electronic
purses...) which are part of the security chain of
the system using the TOE.

• Correct operation of application cryptographic
functions when required (e.g. electronic
signature for legal recognition , e-commerce...)
which are part of the security chain of the
system using the TOE.

• Contribution to secure data communication,

3 For the purposes of this analysis Native
applications are not considered further as they
bypass the virtual machine and therefore should be
considered as part of the operating system. The
conclusion would be that such components should
be part of the operating system security evaluation
and beyond the scope of any application mix-and-
match. In this document an “application” is defined
as containing code that is only executed by the
virtual machine of the operating system.

o Ciphering and/or stamping of
exported data

o Deciphering and/or origin
verification of imported data

Although not in the above table, management of
unexpected reset or power loss is implied and is a
critical function of smartcard design (refer “tearing”
in [SC2002]).

The current analysis is intended to achieve the mix-
and-match of security evaluations of different
applications running on an evaluated operating
system. This relates to the first five points above.

The only point that appears additional to
requirements identified from the FIPS140 analysis
is the second bullet point to do with “encroachment”
of loading and unloading of applications on loaded
applications. Unfortunately the text of this item is
not directly linked to subsequent analysis in
[PP/0010] and the term “encroachment” does not
appear elsewhere in that document. A cross-check
based on the threats to card lifecycle stages 6 and
7 in [PP/0010] show that this point does not
introduce any new requirements to those already
identified from the FIPS140-2 analysis.

Card tearing is not well addressed by FIPS140-2
nor CAPP. Power resetting is mentioned but in the
scope of initiation of self-test. The maintenance of
system transaction information across inadvertent
power loss, if required, seems to be expected to be
managed by backup power. Smartcards often need
to maintain transaction integrity and without the
option of backup power sources.

The security-enforcing functions of the operating
system should be resistant to interruptions in supply
of external power. Any critical activities of the
security-enforcing functions should be atomic such
that the HSM remains in a controlled state at all
times (a valid state might be a shutdown HSM if the
HSM determines that it is unable to recover from a
certain reset condition). This should include
security-enforcing functions involved in domain
separation and application loading and
unloading/deletion. This is not core to the mix-and-
match of applications but is a general requirement
on smartcard operating systems.

Composite Evaluations: Evaluations of Applications in High Security Multiple Application Modules

KEYCORP LIMITED Page 9 of 9

Conclusions
The mix and match of security evaluations of
applications on a given HSM operating system is
feasible if the following constraints can be achieved:
• All resources associated with an application

must be clearly identified. This would include
application code, application data, application-
owned keystores or other stores that may
reside outside the application data space,
operating-system application context, and any
references to the application resources that
may be allowed from other applications.

• The management of these resources during the
application lifecycle from creation through to
application deletion must be identified.

• The operating system must have a robust
firewall mechanism that supports the separation
of application resources. This should not be
dependent on any off-card preprocessing of
application code or data.

• If execution of application code is based on an
operating system virtual machine then the
relevant operating system code of the virtual
machine must be subject to an integrity check.

• Resources shared across applications, such as
communications buffers, must be clearly
identified and appropriate defenses identified.

References
• [CAPP] Controlled Access Protection Profile

(CAPP), Version 1.d, Protection Profile
NoPP006, (United States) National Security
Agency (NSA), 8 October 1999.

• [CC] Common Criteria for Information
Technology Security Evaluation, Version 2.1,
August 1999.

• [DOD-PP-PKI] Department of Defense Public
Key Infrastructure and Key Management
Infrastructure Token Protection Profile (Medium
Robustness) Version 3.0 22 March 2002.

• [FIPS140-1] FIPS PUB 140-1, Security
Requirements for Cryptographic Modules, US
DOC/NIST, January 11, 1994.

• [FIPS140-2] FIPS PUB 140-2, Security
Requirements for Cryptographic Modules, US
DOC/NIST, May 25, 2001. (also - Change
Notices 2, 3 and 4: 12/03/2002).

• [GAMMA-02] A Security Architecture for Global
Platform Smart Cards, Brewer et al, e-Smart,
Nice, France, 2002.

• [GASSER-88] Building a Secure Computer
System, Gasser, M, Van Nostrand Reinhold,
New York, 1988.

• [GP-ST] GlobalPlatform Smart Card Security
Target Guidelines, Draft v0.99c for Public
review, February 2005

• [IBM4758] Building a High-Performance,
Programmable Secure Coprocessor, S Smith,
S Weingart, IBM Technical Report RC21102,
Feb 17, 1998.

• [ISO7816] Identification cards -- Integrated
circuit cards – Parts 1-4

• [JAVACARD-FM] Formal Specification of
GlobalPlatform Card Security Requirements,
Beguelin, S, INRIA, Sophia Antipolis, 15 Dec
2004.

• [JAVACARD-SEC] Computer Security from a
Programming Language and Static Analysis
Perspective, Xavier Leroy, The European Joint
Conferences on Theory and Practice of
Software (ETAPS), Warsaw, Poland, 2003.

• [JAVACARD] JavaCard V2.2.1 Platform
Specification,
http://java.sun.com/products/javacard/specs.ht
ml

• [JC-ST-OCS-1] Cosmopolic 2.1 Version 4,
JavaCard Open Platform Security Target,
Oberthur Card Systems, 2002

• [JC-ST-GP-1] ASE - Security Target, Java Card
Platform Embedded Software V3 (Core).
GemXplore Xpresso V3, Version A00P,
Gemplus, 2002

• [MULTOS] MULTOS, The high Security
Smartcard, http://www.multos.com/

• [MULTOS-ST] Keycorp MULTOS Common
Criteria Security Target, Version 2.2, 23 April
2003.

• [PP/0010] Common Criteria for Information
Technology Security Evaluation, Protection
Profile, Smartcard Integrated Circuit with Multi-
Application Secure Platform, Version 2.0,
November 2000, registered by French
Certification Board under number PP/0010.

• [SC2002] Smart Cards, The Developers Toolkit,
Jurgensen, T, Guthery, S, Prentice Hall, NJ,
2002.

Keycorp Limited
Level 5 Keycorp Tower
799 Pacific Highway Chatswood
NSW 2067 SYDNEY Australia
Tel +61 2 9414 5200 Fax +61 2 9415 1363
Email: info@keycorp.net www.keycorp.net

Authors Contact Details
Brian McKeon
brian.mckeon@sentrypm.com
+61 (0)2 9410 1300

Raymond Makewell
Rmakewell@keycorp.net
+61 (0)2 9414 5200

