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Abstract

Security of cryptographic systems might be considered under many
points of view. Traditionally, security of cryptology is seen on an abstract
way: we make sure that the algorithms do not present any mathemati-
cal weaknesses which would make a cryptanalysis possible. However, for
a few years, in an extended security model, physical attacks which use
potential vulnerabilities of the material implementations are taken into
consideration. One of the most threatening physical attack is presently
the DPA attack (Differential Power Analysis), invented by Kocher in 1998
and presented in [1]. In this model, the assailant finds the secret keys used
by the algorithms by analysing electric signals of the current consumed
by the smart card. From this time, many countermeasures have been pro-
posed in order to make those attacks difficult or just impossible. One of
the most popular countermeasures consists currently in varying the inter-
nal clock frequency, in order to make DPA inappropriate. In this article,
we propose a new way to launch an attack upon the smart card despite
the desynchronisation of signals. This approach consists in analysing the
curves of electric current by wavelets, and then to resynchronize them
thanks to a minimization algorithm which will be presented in the follow-
ing. The last step consists in selecting only well resynchronised curves,
using statistical sorting algorithms, and then to perform a classical DPA
attack on this selection. The result is better than the one we would obtain
without doing those operations and will be explained and justified with
many graphs in this article.

1 Introduction

Many papers have been published on the side channel topic since the first pub-
lication by Paul Kocher. In most cases, such articles are focused on plausible
attacks against cryptographic implementations. In fact, only few papers deal
with the problem of the countermeasure effects, often the authors keep this
problem secret. Power analysis is a particular and efficient type of side channel
attack. By monitoring devices power consumption or electromagnetic emanation
during operations and manipulation of data it is possible to collect information
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leakage about these data. If information leakage about the data can be directly
observed this is called a SPA attack (Simple Power Analysis). In other cases, if
it is necessary to use statistical method, this is called DPA attack (Differential
Power analysis) [5]. In fact, the DPA needs to compute one mean on a large
number of power consumption samples to establish one correlation between the
data being manipulated (and depending on few key bits) and the information
leakage. This kind of attacks supposes there is an observable difference in the
power consumption when a bit is set or clear.

Countermeasures proposed for DPA may be classified in two groups: al-
gorithmic countermeasures on one hand and physical countermeasures on the
other hand.

Among the first category, we can mention the duplication method, invented
by L.Goubin and J.Patarin [2]. Another method which has been proposed by M.-
L.Akkar and C.Giraud [3] consists in masking all the intermediate variables by
the same random variable. However, both methods are sensitive to an high-order
DPA. Since then, L.Goubin and M.-L. Akkar proposed [4] a generic protection,
but which would also not be completely secure.

Among the physical countermeasures, the most natural countermeasure con-
sists in increasing noise in order to make the number of data acquisition very
high. This method does not make a DPA impossible, but only more difficult
and particularly slow. The second countermeasure which has been considered
consists in varying the instant where the critical calculation is being performed
from an acquisition to another. We can proceed by executing useless operations
on a random number or by varying the internal clock frequency. In this way, the
DPA computation (sum/subtract on the traces) will be on elementary instruc-
tions which have no connection to each other. We can also imagine physical
countermeasures which consist in limiting leakages, but the practical realization
might be tricky on smart cards with restricted size.

In the following, we focus our presentation on smart cards with a random
internal CPU clock to desynchronize the power consumption. In this article
we propose a real methodology to attack a recent component with one of its
hardware countermeasure activated. We show how a wavelet analysis enables a
smoothing of the power consumption curves in order to resynchronize themselves
with a general process. In the final step we show its efficiency in the DPA process
in relation to a classical DPA treatment.

2 Experimental plateform

2.1 Measurement setup

The basic equipment is a standard digital oscilloscope with a 500 MHz bandwith
and a sample rate of 500 MSamples/s to measure the probe’s output signal. This
probe is an active differential probe to measure the differential voltage (and so
the current consumption) through a shunt resistance on the power supply line of
the smart card. This smart card reader power supply has been replaced with a
voltage generator to reduce the signal noise. Moreover, to collect and store the
power consumption curves, the oscilloscope is connected to a PC via a GPIB
bus.
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2.2 DES implementation

The standard algorithm DES is implemented in C without masking or blinding
protections. In fact to speed up and facilitate the power consumption acquisi-
tion only the first round is entirely implemented. Then, this round is repeated
16 times instead of the other standard rounds. Consequently, our DPA partition
function tries to guess the first bit of the Sbox’s output after the last permu-
tation. If the hypothesis is true a bias peak will appear on the DPA curves.
DPA curves represent the difference between the average power consumption
when the bit is set and when the bit is cleared. To easily manage the hardware
countermeasure effects, a specific command has been implemented, in the card,
to choose one security level among three. The three modes are:

• External clock,

• Internal clock,

• Internal clock plus hardware random clock frequency.

3 Wavelet basis

This mathematical theory, whose first outline goes back in the 50’s to the
works of Morlet in soil mechanics and Grossmann in physical wave mechan-
ics, has known a spectacular progress in the last years. It makes possible a
time-frequency analysis of a signal and enables in a more general way, an auto-
matic analysis of the world of the transient phenomena. The most natural way
to grasp a signal is to represent the components evolution during the time. At
the beginning of the XIXth century, Fourier presents a new way to apprehend a
periodical signal, by showing that such a signal is an infinite sum of sinusoids.
This is always true for a signal of finite energy (in this case, the sum has to be
understood as an integral). The Fourier transform is:

∀f ∈ L2(R), f(t) =
1
2π

∫ +∞

−∞
f̂(ω)eiωtdω.

Each signal of finite energy is then a continuous sum of sinusoids weighted
by coefficients f̂(ω).

The principal drawback of a frequencial representation is that it completely
masks timing information. Wavelet analysis is a solution for this problem. We
only give in this article a short presentation of wavelets. Interested reader can
refer to Mallat’s book [6].

The mathematical definition of wavelet is rather simple and is given below:

Définition 1 (Wavelet) A wavelet is a function ψ with an average value of
zero, ∫ ∞

−∞
ψ(t)dt = 0

normalized ‖ψ‖ = 1, and centered around t = 0.

In fact, a wavelet ψ is a function (waveform) of limited duration. A time-
frequency atoms family might be made by dilating the wavelet ψ with a numer-
ical factor s (scale), and then by doing a translation with u:
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Définition 2 (Time-frequency atoms)

ψu,s(t) =
1√
s
ψ(
t− u
s

), u ∈ R, s ∈ R
+

form a time-frequency atoms normalized family.

We have now all we need to give the definition of the wavelet continuous
transform:

Définition 3 (Wavelet Continuous Transform) If f ∈ L2(R), its wavelet
continuous transform at time u and at scale s is

Wf(u, s) = 〈f, ψu,s〉 =
∫ +∞

−∞
f(t)

1√
s
ψ∗(

t− u
s

)dt

which is nothing else than the convolution product of f and the function

ψs(t) =
1√
s
ψ∗(

−t
s

).

4 Smoothing and resynchronization

4.1 Denoising aspect

The principal idea, as we mentioned in the beginning, is at first to find a way to
smooth acquisition curves in order to be able to fit them together. Wavelet anal-
ysis, by virtue of its correlation with multiresolution approximations, enables to
approach precisely a signal at different scales that the user can choose. This is
used for many applications in fields as various as image processing, where spe-
cific wavelets bases have been conceived (interested reader may refer to curvelets
imagined by E.C. Candès [7]) or even in speech processing, mechanics, etc...

In this article the wavelet transform have been computed with the DWT
(discret wavelet transform) algorithm (from the Matlab software). We have
analysed wavelet transform in using several families of wavelet and it seems the
best results are find with the ”Symlet” family. Figures 1, 2 and 3 put together
a few approximations of signals (from power traces) at different scales.

The Wavelet transform, at a coarse scale, displays the general pattern of the
power consumption curves. In this case, in a first approximation, the noise has
been removed.

First, we have tried to measure the effect of wavelet transform directly on the
DPA computation. A classical DPA attack has been achieved with the lowest
security mode to test the correct behaviour of our DPA function. Figure 4 repre-
sents this DPA attack (for 1000 acquisitions based on the DES described above)
realised for 7 assumptions of subkeys, whose only one is correct. The curve
which presents two typical peaks corresponds to the good assumption for the
subkey. This graph gives an idea of the ratio signal/noise we get with our exper-
imental setup. Then, we have applied wavelet tranform (Symlet wavelet family)
on each power traces before the DPA computation. The result is presented on
Figure 5. It appears the DPA peaks are more sharper and deeper. The ratio
signal/noise is increased of 30 %. However this improvement is not sufficient (as
will be explained in Section 5) to defeat hardware protection like random clock
mechanism. In fact, we can use the denoising aspect of the power traces (after
wavelet transorm) to resynchronize them before the DPA computation.
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Figure 1: Two power consumption measurements taken during one round of the
DES - internal random clock

Figure 2: Approximation of the first signal at a coarse scale - internal random
clock
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Figure 3: Approximation of the first signal at a fine scale - internal random
clock

Figure 4: DPA attack on a smart card powered with an external clock .
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Figure 5: DPA attack on the wavelet tranform of the power traces.

4.2 Resynchronization problem

We assume in this section that we dispose of two curves which present a certain
similarity in their structure. The first one will be taken as the“reference”and will
be denoted by f1, and the second one will be the curve to fit to the reference. The
former one will be denoted by f2. The problem may be outlined like this: find
for each x axis of f1 one axis τ(x) of f2 such the covariant function cov(f1, f̃2)
be maximum with ∀x f̃2(x) = f2(τ(x)).

Of course τ(x) must check some contraints:

1. τ(x) must be strictly decreasing. Indeed, if one event A occurs before a
second event B, the order must remain unchanged after resynchronization.

2. In the same way τ(x) must not change brutally. In mathematical word
dτ(x)

dx must be limited by a constant.

3. Reciprocally, it is not desirable that τ(x) stays constant on one interval,
so 1

dτ(x)
dx

must be limited .

By this way, the resynchronization problem can be reduce to a classical min-
imization energy problem. Usually some additional constraints are incorporated
in word of energy. For example, the constraints 2 and 3 can be modulated by a
penalty coefficient in such a way that chosen functions do not show variations
too slow or too abrupt. So the system energy can be modelized like this:

U(τ) =
∫

(f1(x) − f2(τ(x)))2 + αmax τ ′(x) + βmax
1

τ ′(x)
(1)

with α, β constants correctly chosen.
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From this model, a minimization algorithm called “Simulated annealing”
(SA) will be used. In fact, this algorithm tries to simulate the behaviour of a
metal, in words of energy, when it is slowly cool down (if the temperature is
abruptly decreased the metal will not crystallize in a configuration where the
energy level is minimal).

4.3 The Simulated annealing algorithm

We let one set S of si sites, with i ∈ N. Each site is associated with a descriptor
xs whith xs ∈ E. In this case, the set of configurations (in E

S) is equal to Ω.
Moreover, we can define a function U that for each configuration x, computes
an associated energy U(x).

If we want to find a minimum to this function U(x), without estimating
the energy for all the possible configurations, U must verify some properties.
U must be the sum of “local” energy. By this word “local” we refer to energy
computed on a subset of connected sites [9]. This subset of all neighbours which
are pairwise adjacent is called a clique c and so C is the set of all c. If we call
Uc this “local” energy on a subset c, the “Simulated Annealing”(SA) algorithm
can be applied if we can write:

∀x ∈ Ω, U(x) =
∑
c∈C

Uc(x).

To use this SA algorithm it is necessary to quickly present the Gibb’s sampler.
It will be used as the “neighbour selection” algorithm. This algorithm defines
the following distribution:

P (X = x) =
1
Z

exp(−U(x))

with U(x) =
∑

c∈C Uc(x) and Z =
∑

x∈Ω exp(U(x)).
From an initial configuration x0, this algorithm gives a configuration x such

that P (X = x) = 1
Z exp(−U(x)). This algorithm is an iterative method to build

each configuration. At step n:

• Select one site s.

• For the site s, according to the configuration of the neighbours Vs asso-
ciated to the configuration xs, it is necessary to compute the local condi-
tional probability:

P (Xs = xs|Vs) =
−Us(xs|Vs)∑

ξ∈E(exp(−Us(ξ|Vs)))
.

• The site s is updated with a random draw from the probability law P (Xs =
xs|Vs).

This algorithm is iterated until the configuration is stable.
The SA algorithm selects a minimal energy among the set of possible con-

figurations. It is an iterative algorithm based on the following steps. At the
beginning, the initial state is characterized by an initial configuration x0 and a
“large” temperature T0. For the step n:
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• Simulation of one configuration xn with the energy law U(x)
T n from the

previous configuration xn−1. Here the Gibb’s sampler can be used for this
simulation.

• Compute the difference ∆U = U(xn)− U(xn−1).

• If ∆U < 0 then the transition is accepted else this transition is accepted
with a probability of p = exp(−∆U

T ).

• Decrease the temperature T (not so fast).

This process is repeated until the energy is minimal and remains stable. In this
way, the algorithm must converge through a configuration of minimal energy.
Such an algorithm allows to find a global minimum for the energy and not only
a local minimum. Moreover this process is relatively independent of the initial
configuration.

4.4 Experimental resynchronization example

Figure 6 shows, after wavelet transform (with the same scale), two power current
traces taken from the same round of DES using a random internal clock. We

Figure 6: Superposition of two Wavelet Continuous Transform signal obtained
in a random clock mode at a coarse scale.

can note that the shift between the two curves is not constant with the time. It
is necessary to synchronize the curves by shifting them to the right or the left.
Once the simulated annealing has been applied, Figure 7 is obtained.

In spite of initial differences between the two curves, the SA algorithm has
clearly resynchronized these traces.
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Figure 7: Superposition of the two Wavelet Continuous Transform after resyn-
chronization by the “Simulated Annealing” .
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5 Results

To test and check the efficiency of our method it was necessary to confront it
with experimental results. In the following, we present some experimental DPA
results according to the security level of the card and to the post processing
treatment applied.

Let’s take a closer look at a classical DPA attack against a card with the
highest security mode activated (random clock oscillator). In this case the num-
ber of power consumption acquisitions has been augmented up to 100000 to try
to reduce the noise. Figure 8 shows the result of this attack and it seems the
DPA does not work, even if there is a large bias peak at the beginning it is not
associated to the good key hypothesis. This result confirms the good efficiency
of this countermeasure based on an internal random clock.

After this unsuccessful attack, in a first time, to get better results, we select
only a part of all power traces acquired. By applying a simple correlation
function to each power consumption curve it is possible to exclude the worst
curves (the curves which are very different from others) of the DPA selection
function. By this way we can reduce the noise injected in the DPA computation.
It seems from Figure 9 this solution can increase the ratio signal/noise. However,
sometimes, it is always insufficient to discriminate the good key hypothesis (the
good hypothesis of key is not associated to the larger peak).

In order to increase the ration signal/noise it was interesting to estimate
the efficiency of our method in this case. By applying wavelet transform on
the same power traces used for the previous computation and consequently
the simulated annealing to resynchronize them (before DPA computation). In
this case, Figure 10 shows the result of this approach with a large bias peak
associated to the good key hypothesis. This peak is always well characterized
and largest than in the previous graph. This result shows clearly the advantage
of our process. Nevertheless this method needs a largest amount of computations
(several hours).

In fact, wavelet transform of the power curves shows the presence of spe-
cific pattern, probably the internal random clock does not completely mask the
characteristic of the DES operation. In using wavelet transform (with a specific
scale) it is possible to display this particular pattern on all curves. So we have
developed a specific hand made algorithm (more fast as simulated annealing
algorithm) to only resynchronize these patterns (and consequently the power
curves) before applying the DPA computation.

Again, the ration signal/noise of the DPA bias is clearly increased by this
approach in relation to the previous result.
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Figure 8: DPA attack on a smart card powered with the highest security level .

Figure 9: DPA attack on a smart card powered with the highest security level
and after selection of the “good” traces (after a specific sort).
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Figure 10: The same DPA attack as previous, after denoising(wavelet) and
resynchronization(Simulated annealing) treatment.

Figure 11: The same DPA attack as previous, after denoising(wavelet) and a
specific resynchronization treatment
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6 Conclusion

In this paper we have explored a general technique to increase the ratio sig-
nal/noise of the DPA attack by using an advanced alignment algorithm. This
technique is based on the connection between a wavelet continuous transform
and a general minimization energy function. We have shown, in a first time,
the efficiency of such technique on a widely known countermeasure applied to
a recent card. Even if better results can be obtained by using a specific resyn-
chronization algorithm after wavelet transform, this algorithm is too specific to
the characteristics of the smart card’s implementation. Indeed, in this case, this
resynchronization method is not applicable for others algorithms or other cards
contrary to our general method. In fact, maybe, a general resynchronization
algorithm applied to a multi scale wavelet transform can improve the efficiency
of the DPA attack.
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