

FIPS 140-2 Non-Proprietary Security Policy

Document Version 1.0

May 3, 2017

Brocade Communications Systems, Inc.

Copyright Brocade Communications 2017 May be reproduced only in its original entirety [without revision].

Revision History

Revision History	Revision	Summary of changes
5/03/2017	1.0	Initial version

© 2017 Brocade Communications Systems, Inc. All Rights Reserved.

This Brocade Communications Systems, Inc. Security Policy for Brocade® NetIron® CER 2000 series Ethernet Routers and Brocade CES 2000 series Routers embodies Brocade Communications Systems' confidential and proprietary intellectual property. Brocade Systems retains all title and ownership in the Specification, including any revisions.

This Specification is supplied AS IS and may be reproduced only in its original entirety [without revision]. Brocade Communications Systems makes no warranty, either express or implied, as to the use, operation, condition, or performance of the specification, and any unintended consequence it may on the user environment

Table of contents:

1	Intro	duction	10
2	Over	view	10
2.1	. Е	Brocade CER 2000 series /CES 2000 series	10
2.2	: Т	Famper Evident Seal Application requirement	10
2.3	, Δ	Additional overview information	11
2	2.3.1	Power Supply support	11
2	2.3.2	Physical Layer interface for ports CER 2000 series / CES 2000 series	11
2.4	. E	Block Diagram	12
3	Broc	ade CER 2000 series	13
4	Broc	ade CES 2000 series	17
5	Ports	s and Interfaces	21
5.1	. Е	Brocade CER 2000 series/CES 2000 series	22
5	5.1.1	CER 2024C	22
5	5.1.2	CER 2024F	22
5	5.1.3	CES 2024C	22
5	5.1.4	CES 2024F	22
5	5.1.5	CER 2000 series / CES 2000 series Status LED	23
5.2		Modes of Operation	24
5.3	N	Module Validation Level	24
6	Roles	s and Services	25
6.1	F	Roles	25
6	6.1.1	The Crypto-officer role	25
6	6.1.2	Port Configuration Administrator role	25
6	6.1.3	User role	25
6	6.1.4	NTP Peer role	25
6.2		Services (Services in Approved mode)	25
6	5.2.1	Services accessible by Crypto-officer role	27
	6.2.1	1.1 Console	27
	6.2.2	1.2 NTP	27
	6.2.1	1.3 SCP	27
	6.2.1	1.4 SNMP	27
	6.2.1	1.5 SSHv2	28
	6.2.2	1.6 Syslog	29
	6.2.2		
6	5.2.2	Services accessible by Port Configuration Administrator role	
	6.2.2		
	6.2.2		
	622		30

	6.2.2	2.4	SSHv2	30
	6.2.	2.5	Syslog	30
	6.2.	2.6	TLS client	30
	6.2.3	Serv	ces accessible by User role	30
	6.2.3	3.1	Console	30
	6.2.	3.2	NTP	30
	6.2.3	3.3	SNMP	30
	6.2.3	3.4	SSHv2	31
	6.2.	3.5	Syslog	31
	6.2.	3.6	TLS client	31
	6.2.4	Serv	ces accessible by NTP Peer role	31
	6.2.4	4.1	NTP	31
6.3	1 8	Non-Ap	proved Mode Services	32
	6.3.1	Non-	Approved Algorithms	36
7	Algo	rithm c	ertificates	38
7.	1 /	Algorith	m certificates in CER 2000 series / CES 2000 series	38
7.	2 1	Non-Ap	proved but allowed cryptographic methods	39
3	Polic	ies		40
8.	1 9	Security	/ Rules	40
	8.1.1	Cryp	tographic Module Operational Rules	42
8.2	2 <i>A</i>	Authen	tication	43
	8.2.1	Line	Authentication Method	44
	8.2.2	Enal	ole Authentication Method	44
	8.2.3	Loca	l Authentication Method	44
	8.2.4	RAD	IUS Authentication Method	44
	8.2.5	TAC	ACS+Authentication Method	44
	8.2.6	Stre	ngth of Authentication	45
8.3	3 <i>A</i>	Access	Control and Critical Security Parameters (CSPs)	46
	8.3.1	Acce	ss Control and Critical Security Parameters (CSPs) for the Crypto-officer role	46
	8.3.2	Acce	ss Control and Critical Security Parameters (CSPs) for Port Configuration Administrator role	48
	8.3.3	Acce	ss Control and Critical Security Parameters (CSPs) for User role	49
	8.3.4	Acce	ss Control and Critical Security Parameters (CSPs) for NTP Peer role	50
	8.3.5	CSP	Zeroization	50
8.4	4 F	Physica	l Security	51
9	Cryp	to-offic	er Guidance	53
9.:			proved Mode Status	
9.:	2 F	· FIPS Ap	proved Mode	55
	9.2.1		ring FIPS Approved Mode	
	9.2.	1.1	Invoking FIPS Approved Mode for Brocade CER 2000 series and CES 2000 series Devices	s.55

	9.2.2	Neg	ating FIPS Approved Mode	56
	9.2	2.2.1	Negating FIPS Approved Mode for Brocade CER 2000 Series and CES 2000 Series D 56	evices
10	Mit	igation (of other attacks	56
11	Glo	ssary		57
12	Арр	oendix A	: Tamper Evident Seal Application Procedure	58
12	2.1	Brocad	e CER 2000 series	58
	12.1.	1 CER	2024C-4X-RT devices	58
	12.1.	2 CER	2024F-4X-RT devices	61
12	2.2	Brocad	e CES 2000 series devices	64
	12.2.	1 CES	2024C-4X devices	64
	12.2.	2 CES	2024F-4X devices	66
13	Арр	oendix B	3: Critical Security Parameters	68
13	3.1	Authen	tication Key	68
13	3.2	KDF		69
13	3.3	Manag	ement card (MP) DRBG	70
13	3.4	Private	Keys	72
13	3.5	Public I	Keys	73
13	3.6	Session	n Keys	76
13	3.7	Shared	Secret	77
14	App	oendix C	C: CKG as per SP800-133	80
15	App	oendix D	2: Components Excluded from FIPS 140-2 Requirements	80

Table of tables:

Table 1 Overview - Power Supply support for CER 2000 series and CES 2000 series products	11
Table 2 Overview - Port Physical Layer interface for CER 2000 series and CES 2000 series products	11
Table 3 CER 2000 series Firmware Version	13
Table 4 CER 2000 series Part Numbers	13
Table 5 CER 2000 series Power Supply Module Part Numbers	14
Table 6 CER 2000 Software License	14
Table 7 Validated CER 2000 series Configuration	14
Table 8 - CES 2000 series Firmware Version	17
Table 9 - CES 2000 series Part Numbers	17
Table 10 - CES 2000 series Power Supply Module Part Numbers	18
Table 11 - Validated CES 2000 series Configuration	18
Table 12 Physical/Logical Interface Correspondence	21
Table 13 Power and fan status LEDs for the CER 2000 series and CES 2000 series models	23
Table 14 NetIron Security Levels	24
Table 15 – List of services in Approved mode of operation	25
Table 16 FIPS Approved Cryptographic Functions	26
Table 17 Non-Approved Cryptographic Functions Allowed in FIPS Approved Mode	26
Table 18 Functions/Services, Roles in Non-Approved Mode Services	35
Table 19 Non-Approved Algorithms	36
Table 20 Algorithm Certificates for CER 2000 series / CES 2000 series	38
Table 21 Power-Up Self-Tests - Cryptographic Known Answer Tests (KAT)	40
Table 22 Conditional Self-Tests	41
Table 23 - Summary of authentication methods available for each role	43
Table 24 - Access Control and CSPs for the Crypto-officer role	47
Table 25 - Access Control and CSPs for the Port Configuration role	49
Table 26 - Access Control and CSPs for the User role	50
Table 27 - Access Control and CSPs for the NTP Peer role	50
Table 28 Inspection of Physical Security Mechanisms	51
Table 29 Sample output – CES/CER in non-Approved mode	53
Table 30 Sample output – CES/CER in FIPS Approved mode	54
Table 31 Mitigation of other attacks	56
Table 32 Glossary	57
Table 33 - SKU Excluded from FIPS 140-2 requirement - CES 2000 series and CER 200 series DC Power Supply	00

Table of figures:

Figure 1 - Block Diagram	12
Figure 2 - BR-CER-2024F-4X-RT-DC with Base: BR-CER-2024F-4X-RT-DC and License: SW-CER-2024-RTUPG	15
Figure 3 - BR-CER-2024F-4X-RT-DC backside with Power supply RPS9DC (DC Power Supply)	15
Figure 4 - BR-CER-2024C-4X-RT-DC with Base: BR-CER-2024C-4X-RT-DC and License: SW-CER-2024-RTUPG	15
Figure 5 - BR-CER-2024C-4X-RT-DC backside with Power supply RPS9DC (DC Power Supply)	15
Figure 6 - BR-CER-2024F-4X-RT-AC with Base: BR-CER-2024F-4X-RT-AC and License: SW-CER-2024-RTUPG	15
Figure 7 - BR-CER-2024F-4X-RT-AC backside with Power supply RPS9 (AC Power Supply)	16
Figure 8 - BR-CER-2024C-4X-RT-AC with Base: BR-CER-2024C-4X-RT-AC and License: SW-CER-2024-RTUPG	16
Figure 9 - BR-CER-2024C-4X-RT-AC backside with Power supply RPS9 (AC Power Supply)	16
Figure 10 - Front view of BR-CES-2024C-4X-AC	19
Figure 11 - BR-CES-2024C-4X-AC backside with Power supply: RPS9 (AC Power supply)	19
Figure 12 - Front view of BR-CES-2024C-4X-DC	19
Figure 13 - BR-CES-2024C-4X-DC backside with Power supply: RPS9DC (DC Power supply)	19
Figure 14 - Front view of BR-CES-2024F-4X-AC	19
Figure 15 - BR-CES-2024F-4X-AC backside with Power supply: RPS9 (AC Power supply)	20
Figure 16 - Front view of BR-CES-2024F-4X-DC	20
Figure 17 - BR-CES-2024F-4X-DC backside with Power supply: RPS9DC (DC Power supply)	20
Figure 18 - Top front view of Brocade CER 2024C-4X-RT device with security seals	59
Figure 19 - Right view of Brocade CER 2024C-4X-RT device with security seals	59
Figure 20 - Left side view of Brocade CER 2024C-4X-RT device with security seals	60
Figure 21 - Rear view of Brocade CER 2024C-4X-RT device with security seals	60
Figure 22 - Bottom view of Brocade CER 2024C-4X-RT device with security seals	61
Figure 23 - Top front view of Brocade CER 2024F-4X-RT device with security seals	62
Figure 24 - Right side view of Brocade CER 2024F-4X-RT device with security seals	62
Figure 25 - Left side view of Brocade CER 2024F-4X-RT device with security seals	62
Figure 26 - Rear view of Brocade CER 2024F-4X-RT device with security seals	63
Figure 27 - Bottom view of Brocade CER 2024F-4X-RT device with security seals	63
Figure 28 - Top front view of Brocade CES 2024C-4X device with security seals	64
Figure 29 - Right side view of Brocade CES 2024C-4X device with security seals	64
Figure 30 - Left side view of Brocade CES 2024C-4X device with security seals	65
Figure 31 - Rear view of Brocade CES 2024C-4X device with security seals	65
Figure 32 - Bottom view of Brocade CES 2024C-4X device with security seals	65
Figure 33 - Top front view of Brocade CES 2024F-4X device with security seals	66
Figure 34 - Right side view of Brocade CES 2024F-4X device with security seals	66
Figure 35 - Left side view of Brocade CES 2024F-4X device with security seals	67
Figure 36 - Rear side view of Brocade CES 2024F-4X device with security seals	67
Figure 37 - Bottom view of Brocade CES 2024F-4X device with security seals	67

Brocade® NetIron® CER 2000 Series Ethernet Routers and Brocade NetIron® CES 2000 Series Ethernet Switches	

1 Introduction

The Brocade NetIron CER 2000 series is a family of compact 1U routers that are purpose-built for high-performance Ethernet edge routing, as well as providing connectivity between sites using MPLS/VPLS. These fixed-form routers can store a complete Internet table and support advanced MPLS features such as Traffic Engineering and VPLS. They are ideal for supporting a wide range of applications in Metro Ethernet, data center and campus networks. The NetIron CER 2000 series is available in 24-port 1 Gigabit Ethernet (GbE) copper and hybrid fiber configurations with two optional 10 GbE uplink ports. To help ensure high performance, all the ports are capable of forwarding IP and MPLS packets at wire speed without oversubscription. With less than 5 watts/Gbps of power consumption, service providers can push up to 136 Gbps of triple-play services through the NetIron CER 2000 series while reducing their carbon footprint.

The Brocade NetIron CES 2000 series is a family of compact 1U, multiservice edge/aggregation switches that combine powerful capabilities with high performance and availability. The switches provide a broad set of advanced Layer 2, IPv4, IPv6, and MPLS capabilities in the same device. As a result, they support a diverse set of applications in metro edge, service provider, mobile backhaul wholesale, data center, and large enterprise networks.

2 Overview

Brocade routers provide high-performance routing to service providers, metro topologies, and Internet Exchange Points. Each router is a multi-chip standalone cryptographic module. Each device has an opaque enclosure with tamper detection tape for detecting any unauthorized physical access to the device. The Brocade NetIron family of products include both chassis and fixed-port devices.

2.1 Brocade CER 2000 series / CES 2000 series

The cryptographic boundary of a Brocade CER 2000 series / CES 2000 series device includes the following components:

- The outer perimeter of the metal chassis, including the removable cover and pre-installed fan assembly.
- The power supplies

NOTE: The CER 2000 series and CES 2000 series are fixed-port devices

2.2 Tamper Evident Seal Application requirement

For a CER 2000 series and CES 2000 series to operate as a validated cryptographic module, the tamper evident seals supplied in Brocade XBR-000195 must be installed as defined in section, 12 - Appendix A: Tamper Evident Seal Application Procedure

The security officer is responsible for storing and controlling the inventory of any unused seals. The unused seals shall be stored in plastic bags in a cool, dry environment between 60° and 70° F (15° to 20° C) and less than 50% relative humidity. Rolls should be stored flat on a slit edge or suspended by the core.

The security officer shall maintain a serial number inventory of all used and unused tamper evident seals. The security officer shall periodically monitor the state of all applied seals for evidence of tampering. A seal serial number mismatch, a seal placement change, a checkerboard destruct pattern that appears in peeled film and adhesive residue on the substrate are evidence of tampering. The security officer shall periodically view each applied seal under a UV light to verify the presence of a UV wallpaper pattern. The lack of a wallpaper pattern is evidence of tampering. The security officer is responsible for returning a module to a validated cryptographic state after any intentional or unintentional reconfiguration of the physical security measures.

2.3 Additional overview information

This section provides a top level overview of features and services unique to specific NetIron hardware platforms. Additional details about some of these services may be found in this document or other reference documents on myBrocade.com.

2.3.1 Power Supply support

Tables below show the available power supply support for CER 2000 series and CES 2000 series product families.

	CER 2000 series and CES 2000 series Power Supplies		
Product Family	RPS9 power supply	RPS9DC power supply	
CER 2000 series	AC	DC	
CES 2000 series	AC	DC	

Table 1 Overview - Power Supply support for CER 2000 series and CES 2000 series products

2.3.2 Physical Layer interface for ports CER 2000 series / CES 2000 series

Table below shows the available variations for optical and electrical interface network ports (physical layer connection) for CER 2000 series and CES 2000 series product families.

	CER 2000 series Models					00 series dels		
Physical interface for Network ports	BR-CER-2024 C -4X-RT-AC	BR-CER-2024 C -4X-RT-DC	BR-CER-2024 F- 4X-RT-AC	BR-CER-2024 F -4X-RT-DC	BR-CES-2024 C- 4X-AC	BR-CES-2024 C- 4X-DC	BR-CES-2024F-4X-AC	BR-CES-2024F-4X-DC
Optical (fiber)	N/A		Provides Optical network interface ports		N,	/A	Provide network int ports	
Electrical (Copper)	Provide network int ports	es Electrical cerface	N,	N/A		es Electrical terface	N,	/A

Table 2 Overview - Port Physical Layer interface for CER 2000 series and CES 2000 series products

2.4 Block Diagram

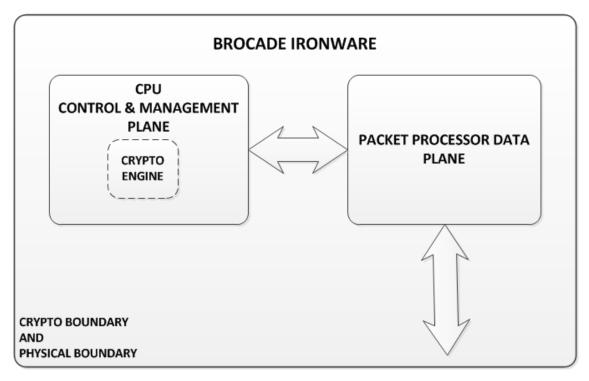


Figure 1 - Block Diagram

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

3 Brocade CER 2000 series

There are two main variations to the NetIron Carrier Ethernet Router (CER) 2000 series:

- Brocade NetIron CER Series 2024C-4X
- Brocade NetIron CER Series 2024F-4X

Firmware

Multi-Service IronWare R06.0.00aa

Table 3 CER 2000 series Firmware Version

SKU	MFG Part Number	Brief Description
BR-CER-2024C-4X-RT-AC	P/N: 80-1006530-01	 24 RJ45 ports of 10/100/1000 Mbps Ethernet Uplink ports: 4 RJ45 10/100/1000 Mbps ports or 4 10GE SFP+ uplinks 500W AC power supply (RPS9)
BR-CER-2024C-4X-RT-DC	P/N: 80-1007213-01	 24 RJ45 ports of 10/100/1000 Mbps Ethernet Uplink ports: 4 RJ45 10/100/1000 Mbps ports or 4 10GE SFP+ uplinks 500W DC power supply (RPS9DC)
BR-CER-2024F-4X-RT-AC	P/N: 80-1006529-01	24 SFP ports of 100/1000 Mbps Ethernet Uplink ports: 4 RJ45 10/100/1000 Mbps ports or 4 10GE SFP+ uplinks 500W AC power supply (RPS9)
BR-CER-2024F-4X-RT-DC	P/N: 80-1007212-01	24 SFP ports of 100/1000 Mbps Ethernet Uplink ports: 4 RJ45 10/100/1000 Mbps ports or 4 10GE SFP+ uplinks 500W AC power supply (RPS9DC)

Table 4 CER 2000 series Part Numbers

SKU	MFG Part Number	Brief Description	
RPS9	P/N: 80-1003868-01	500W AC power supply for NI CER/CES series	

Table 5 CER 2000 series Power Supply Module Part Numbers

CER Model	Configuration Details
SW-CER-2024-RTUPG (P/N: 80-1004848-01)	RT software upgrade license for NetIron CER 24-port routers (NetIron CER 2024C, NetIron CER 2024F)

Table 6 CER 2000 Software License

CER Model	Configuration Details
BR-CER-2024F-4X-RT-DC (P/N: 80-1007212-01)	Base: BR-CER-2024F-4X-RT-DC Interface line card: None / Not applicable License: SW-CER-2024-RTUPG (1) Power Supply: RPS9DC (P/N: 80-1003869-02) (1)
BR-CER-2024C-4X-RT-DC (P/N: 80-1007213-01)	Base: BR-CER-2024C-4X-RT-DC Interface line card: None / Not applicable License: SW-CER-2024-RTUPG (1) Power Supply: RPS9DC (P/N: 80-1003869-02) (1)
BR-CER-2024F-4X-RT-AC (P/N: 80-1006529-01)	Base: BR-CER-2024F-4X-RT-AC Interface line card: None / Not applicable License: SW-CER-2024-RTUPG (1) Power Supply: RPS9 (P/N: 80-1003868-01) (1)
BR-CER-2024C-4X-RT-AC (P/N: 80-1006530-01)	Base: BR-CER-2024C-4X-RT-AC Interface line card: None / Not applicable License: SW-CER-2024-RTUPG (1) Power Supply: RPS9 (P/N: 80-1003868-01) (1)

Table 7 Validated CER 2000 series Configuration

Images of Brocade CER 2000 series models are shown below:

Figure 2 - BR-CER-2024F-4X-RT-DC with Base: BR-CER-2024F-4X-RT-DC and License: SW-CER-2024-RTUPG

Figure 3 - BR-CER-2024F-4X-RT-DC backside with Power supply RPS9DC (DC Power Supply)

Figure 4 - BR-CER-2024C-4X-RT-DC with Base: BR-CER-2024C-4X-RT-DC and License: SW-CER-2024-RTUPG

Figure 5 - BR-CER-2024C-4X-RT-DC backside with Power supply RPS9DC (DC Power Supply)

Figure 6 - BR-CER-2024F-4X-RT-AC with Base: BR-CER-2024F-4X-RT-AC and License: SW-CER-2024-RTUPG

Figure 7 - BR-CER-2024F-4X-RT-AC backside with Power supply RPS9 (AC Power Supply)

Figure 8 - BR-CER-2024C-4X-RT-AC with Base: BR-CER-2024C-4X-RT-AC and License: SW-CER-2024-RTUPG

Figure 9 - BR-CER-2024C-4X-RT-AC backside with Power supply RPS9 (AC Power Supply)

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

4 Brocade CES 2000 series

There are two main variations to the NetIron Carrier Ethernet Switch (CES) 2000 Series:

- Brocade NetIron CES Series 2024C-4X
- Brocade NetIron CES Series 2024F-4X

Firmware	
Multi-Service IronWare R06.0.00aa	

Table 8 - CES 2000 series Firmware Version

SKU	MFG Part Number	Brief Description
BR-CES-2024C-4X-AC	P/N:80-1000077-01	• 24 RJ45 ports of 10/100/1000 Mbps Ethernet
		Uplink ports: 4 RJ45 10/100/1000 Mbps ports or 4 10GE SFP+ uplinks
		• 500W AC power supply (RPS9)
BR-CES-2024C-4X-DC	P/N:80-1007215-01	24 RJ45 ports of 10/100/1000 Mbps Ethernet
		Uplink ports: 4 RJ45 10/100/1000 Mbps ports or 4 10GE SFP+ uplinks
		• 500W DC power supply (RPS9DC)
BR-CES-2024F-4X-AC	P/N:80-1000037-01	24 SFP ports of 100/1000 Mbps Ethernet
		Uplink ports: 4 RJ45 10/100/1000 Mbps ports or 4 10GE SFP+ uplinks
		• 500W AC power supply (RPS9)
BR-CES-2024F-4X-DC	P/N:80-1007214-01	• 24 SFP ports of 100/1000 Mbps Ethernet
		Uplink ports: 4 RJ45 10/100/1000 Mbps ports or 4 10GE SFP+ uplinks
		• 500W DC power supply (RPS9DC)

Table 9 - CES 2000 series Part Numbers

SKU	MFG Part Number	Brief Description
RPS9	P/N:80-1003868-01	500W AC power supply for Netlron CER/CES series

Table 10 - CES 2000 series Power Supply Module Part Numbers

CES Model	Configuration Details
BR-CES-2024C-4X-AC	Base: BR-CES-2024C-4X-AC Interface line card: None / Not Applicable Power supply: RPS9 (P/N: 80-1003868-01)(1)
BR-CES-2024C-4X-DC	Base: BR-CES-2024C-4X-DC Interface line card: None / Not Applicable Power supply: RPS9DC (P/N: 80-1003869-02)(1)
BR-CES-2024F-4X-AC	Base: BR-CES-2024F-4X-AC Interface line card: None Power supply: RPS9 (P/N: 80-1003868-01)(1)
BR-CES-2024F-4X-DC	Base: BR-CES-2024F-4X-DC Interface line card: None Power supply: RPS9DC (P/N: 80-1003869-02)(1)

Table 11 - Validated CES 2000 series Configuration

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

Images of Brocade CES 2000 series models are shown below:

Figure 10 - Front view of BR-CES-2024C-4X-AC

Figure 11 - BR-CES-2024C-4X-AC backside with Power supply: RPS9 (AC Power supply)

Figure 12 - Front view of BR-CES-2024C-4X-DC

Figure 13 - BR-CES-2024C-4X-DC backside with Power supply: RPS9DC (DC Power supply)

Figure 14 - Front view of BR-CES-2024F-4X-AC

Figure 15 - BR-CES-2024F-4X-AC backside with Power supply: RPS9 (AC Power supply)

Figure 16 - Front view of BR-CES-2024F-4X-DC

Figure 17 - BR-CES-2024F-4X-DC backside with Power supply: RPS9DC (DC Power supply)

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

5 Ports and Interfaces

Each CER 2000 series and CES 2000 series device provides Networking ports, Console, Power plugs and status LEDs. This section describes the physical ports and the interfaces they provide for Data input, Data output, Control input, Status output and Power.

Table below shows the correspondence between the physical interfaces of NetIron devices (CER and CES) and logical interfaces defined in FIPS 140-2.

Physical Interface	Logical Interface
Console	Data input
Management Port	
Networking ports	
Console	Data output
Management Port	
Networking ports	
Console	Control input
Management Port	
Networking ports	
Console	Status output
LEDs	
Management Port	
Networking ports	
Power plugs	Power

Table 12 Physical/Logical Interface Correspondence

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

5.1 Brocade CER 2000 series/CES 2000 series

Models in the Brocade NetIron CER 2000 series provide 24 Gigabit Ethernet ports. Models in the Brocade NetIron CES 2000 series provide 24 Gigabit Ethernet ports and four fixed 10GbE ports. Each series supports both copper and fiber connecters with some models supporting combination ports. Some models support 10 Gigabit Ethernet uplink ports. All models have an out-of-band Ethernet management port (Gigabit Ethernet RJ-45 connector) and a console management port (RJ-45 serial connector).

5.1.1 CER 2024C

- Console: EIA/TIA-232 port
- Management Port: 10/100/1000 Mbps Ethernet port for out-of-band management
- Networking ports: 24 port 1GbE copper with RJ-45
- Networking ports: 4 port 10GbE uplink fiber SFP+ or copper RJ-45 combo ports
- LED indicators
- Power and status LEDs (see section 5.1.5 for details)

5.1.2 CER 2024F

- Console: EIA/TIA-232 port
- Management Port: 10/100/1000 Mbps Ethernet port for out-of-band management
- Networking ports: 24 port 1GbE fiber with SFP
- Networking ports: 4 port 10GbE uplink fiber SFP+ or copper RJ-45 combo ports
- LED indicators
- Power and status LEDs (see section 5.1.5 for details)

5.1.3 CES 2024C

- Console: EIA/TIA-232 port
- Management Port: 10/100/1000 Mbps Ethernet port for out-of-band management
- Networking ports: 24 port 1GbE copper with RJ-45
- Networking ports: 4 port 10GbE uplink fiber SFP+ or copper RJ-45 combo ports
- LED indicators
- Power and status LEDs (see section 5.1.5 for details)

5.1.4 CES 2024F

- Console: EIA/TIA-232 port
- Management Port: 10/100/1000 Mbps Ethernet port for out-of-band management
- Networking ports: 24 port 1GbE fiber with SFP
- Networking ports: 4 port 10GbE uplink fiber SFP+ or copper RJ-45 combo ports
- LED indicators
- Power and status LEDs (see section 5.1.5 for details)

5.1.5 CER 2000 series / CES 2000 series Status LED

LED	Position	State	Meaning
AC PS1 (labeled P1)	Left side of front panel	Off	Power supply 1 is not installed or is not providing power.
		Amber	Power supply 1 is installed, but not connected or a fault is detected.
		Green	Power supply 1 is installed and is functioning normally.
AC PS1 (labeled P2)	Right side of front panel	Off	Power supply 2 is not installed or is not providing power.
		Amber	Power supply 2 is installed, but not connected or a fault is detected.
		Green	Power supply 2 is installed and is functioning normally.
Fan (labeled Fn)	Right side of front panel	Green	The fan tray is powered on and is operating normal
(laseled Fil) Holle panel	none panor	Amber or Green blinking	The fan tray is not plugged in.
		Amber	The fan tray is plugged in but one or more fans are faulty.

Table 13 Power and fan status LEDs for the CER 2000 series and CES 2000 series models

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

5.2 Modes of Operation

The NetIron validated cryptographic module has two modes of operation:

- FIPS Approved mode and
- Non-Approved mode.

Both these modes enforce digital signature based firmware load test. Section 6.2 (Services (Services in Approved mode)) and section 7 (Algorithm certificates) describe services and cryptographic algorithms available in FIPS Approved mode.

Section 9.2, FIPS Approved Mode, describes how to invoke FIPS Approved mode.

5.3 Module Validation Level

The module meets an overall FIPS 140-2 compliance of security level 2 with Design Assurance level 3.

Security Requirements Section	Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)	2
Self-Tests	2
Design Assurance	3
Mitigation of Other Attacks	N/A

Table 14 NetIron Security Levels

6 Roles and Services

6.1 Roles

In FIPS Approved mode, Netlron devices support many different authenticated roles.

6.1.1 The Crypto-officer role

The Crypto-officer role on the device in FIPS Approved mode is equivalent to administrator or super-user in non-Approved mode. Hence, the Crypto-officer role has complete access to the system.

6.1.2 Port Configuration Administrator role

The Port Configuration Administrator role on the device in FIPS Approved mode is equivalent to the port-config, a port configuration user in non-Approved mode. Hence, the Port Configuration Administrator role has read-and-write access for specific ports but not for global (system-wide) parameters.

6.1.3 User role

The User role on the device in FIPS Approved mode has read-only privileges and no configuration mode access (user).

6.1.4 NTP Peer role

This role performs the NTP operation.

6.2 Services (Services in Approved mode)

This section describes services available in Approved mode of operation, to the operators based on their role.

Unauthenticated operators may view externally visible status LEDs. LED signals indicate status that allows operators to determine if the network connections are functioning properly. Unauthenticated operators can also perform self-test by power cycling a NetIron device.

For all other services, an operator must authenticate to the device, see section 8.2 (Authentication).

Service	Additional Information	
Console	No additional information is provided here.	
NTP	This service provides NTP protocol support to synchronize time over a network	
SCP	This service provides secure file transfer over SSHv2 protocol	
SNMP	This service provides SNMPv3 protocol in authPriv mode for secure MIB access	
SSHv2	This service provides secure connection to the CLI.	
Syslog	This service provides Syslog generation capability over UDP transport	
TLS client	This service provides a secure outbound TLS client connection to a remote TLS server	

Table 15 - List of services in Approved mode of operation

Note that additional algorithm related information and details are available in section 7.1 (Algorithm certificates in CER 2000 series / CES 2000 series) and section 7.2 (Non-Approved but allowed cryptographic methods).

Table below summarizes the available FIPS Approved cryptographic functions used within the services available in FIPS Approved mode of operation.

Cryptographic Function	
AES: Advanced Encryption Standard	
CVL: SSHv2 and TLS v1.0/1.1 and TLS v1.2 Key Derivation Function, SNMPv3 KDF	
DRBG: Deterministic Random Bit Generator	
HMAC: Keyed-Hash Message Authentication Code	
RSA: Rivest Shamir Adleman	
SHS: Secure Hash Standard	

Table 16 FIPS Approved Cryptographic Functions

The table below lists cryptographic functions that while not FIPS Approved are allowed in FIPS Approved mode of operation.

Algorithm	Caveat	Use
Diffie-Hellman	Provides 112 bits of encryption strength	Key establishment within SSHv2 protocol and TLS v1.0/1.1 and TLSv1.2 protocols
HMAC-MD5	Used in RADIUS for operator authentication only (HMAC-MD5 is not exposed to the operator)	RADIUS Operator Authentication
MD5	Used in the TLS v1.0 and v1.1 KDF in FIPS mode as per SP800-135 (MD5 is not exposed to the operator)	TLS 1.0/1.1 KDF
MD5	Used in TACACS+ for operator authentication only (MD5 is not exposed to the operator).	TACACS+ Operator Authentication
NDRNG		Seeding for the DRBG
RSA Key Wrapping	Provides 112 bits of encryption strength	Key establishment within TLS v1.0/1.1 and TLS v1.2

Table 17 Non-Approved Cryptographic Functions Allowed in FIPS Approved Mode

6.2.1 Services accessible by Crypto-officer role

This section only lists supported services accessible by the Crypto-officer role. The Crypto-officer role management privilege level allows complete read-and-write access to the system. This is generally for system administrators and is the only management privilege level that allows one to configure passwords. The Crypto-officer role is able to perform firmware loading for the device as it has complete access to the system.

6.2.1.1 Console

Console commands provide an authenticated Crypto-officer role complete access to all the commands within the Netlron device. This operator can enable, disable and perform status checks. This operator can also enable any service by configuring the corresponding command. For example, to turn on SSHv2 service, the operator creates a pair of RSA host keys, to configure the authentication scheme for SSHv2 access.

6.2.1.2 NTP

The Crypto-officer role is used to configure the NTP service. The NTP [same as NTPv4] Network Time Protocol configuration and time statistics details can be viewed.

The NTP [same as NTPv4] Network Time Protocol can be configured to provide cryptographic authentication of messages with the clients/peers, and with its upstream time server. Symmetric key scheme is supported for authentication.

NTPv4 specification (RFC-5905), allows any one of possibly 65,534 message digest keys (excluding zero), each distinguished by a 32-bit key ID, to authenticate an association. The servers and clients involved must agree on the key ID, key type and key to authenticate NTP packets.

NTP service with MD5 key authentication is disabled in FIPS Approved mode of operation.

NTPv4 service with SHA1 key authentication is available upon configuration in FIPS mode.

6.2.1.3 SCP

This is a secure copy service that works over SSHv2 protocol. The service supports both outbound and inbound copies of configuration, binary images, or files. Binary files can be copied and installed similar to TFTP operation (that is, upload from device to host and download from host to device). SCP automatically uses the authentication methods, encryption algorithm, and data compression level configured for SSHv2. For example, if password authentication is enabled for SSHv2, the user is prompted for a user name and password before SCP allows a file to be transferred. One use of SCP on NetIron devices is to copy user digital certificates and host public-private key pairs to the cryptographic module in support of HTTPS. Another use could be to copy configuration to/from the cryptographic module.

6.2.1.4 SNMP

The SNMP service within Crypto-officer role allows read/write access to the SNMP MIB within the NetIron device as per the capability of the SNMP agent, using SNMPv3 version in authPriv security mode.

SNMPv1 and SNMPv2c are blocked in FIPS mode. Only SNMPv3 in authPriv mode is allowed while other modes are blocked. The device does not provide SNMP access to CSPs when operating in FIPS Approved mode. These CSP MIB objects are a small subset of MIB that represent the security parameters like passwords, secrets and keys. Other MIB objects are made available for access similar to non-Approved mode of operation.

6.2.1.5 SSHv2

The Crypto-officer role can perform configuration changes to the module. This role has full read and write access to the Netlron device.

The module supports SSHv2 in both client and server modes. This service provides a secure session between a NetIron device and an SSHv2 client/server. The NetIron device authenticates an SSHv2 client/server and provides an encrypted communication channel. An operator may use an SSHv2 session for managing the device via the command line interface. The following cipher sequence is supported for SSHv2:

- aes-256-ctr
- aes-192-ctr
- aes-128-ctr
- aes-256-cbc
- aes-192-cbc, and
- aes-128-cbc

The following key-exchange (KEX) is supported for SSHv2:

diffie-hellman-group-exchange-sha-256

The following Message Authentication Code (MAC) is supported for SSHv2:

• hmac-sha-1

NetIron devices support three kinds of SSHv2 client authentication:

- password authentication
- keyboard interactive authentication
- public- key authentication

For <u>password authentication</u>, an operator attempting to establish an SSHv2 session provides a password through the SSHv2 client. The NetIron device authenticates operator with passwords stored on the device, on a TACACS+ server, or on a RADIUS server. Section 8.2 Authentication provides authentication details.

The <u>keyboard interactive (KI) authentication</u> goes one step beyond. It allows multiple challenges to be issued by the NetIron device, using the backend RADIUS or TACACS+ server, to the SSHv2 client. Only after the SSHv2 client responds correctly to the challenges, will the SSHv2 client get authenticated and proper access will be given to the NetIron device.

For <u>public key authentication</u>, possession of a private key serves as an authentication method. In PKI (Public Key Infrastructure), each private key has its corresponding public key and they are referred to a key pair. Every key pair is unique. The cryptographic module uses a database of client public keys and its associated user names and roles to support public key authentication. The SSHv2 client which possesses the private key sends a signature (over some data from the request including the user name) created using the private key. The cryptographic module uses the public key corresponding to the user and verifies the signature to authenticate the user.

6.2.1.6 Syslog

The Crypto-office can configure the syslog settings.

This service can be used to view the syslog configuration settings.

This service can be used to view the syslog audit records saved on the cryptographic module.

6.2.1.7 TLS client

This service can be used to configure and view statistics for following protocol operations:

- OpenFlow.
 - A peer Openflow controller device which establishes an OpenFlow connection with the cryptographic module. OpenFlow protocol allows external entity to control the behavior of the NetIron device by installing flows that affects the packet forwarding action of the device. This is the OpenFlow active mode of operation.
- File Copy
 - File copy command uses HTTP protocol over TLS transport to transfer files between the device and a HTTP server.

NOTE: No device firmware image can be transferred to the device using this service.

The device uses TLS v1.0/1.1 and v1.2 with the following cipher suites:

- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

6.2.2 Services accessible by Port Configuration Administrator role

This section only lists supported services accessible by Port Configuration Administrator. The Port Configuration Administrator role management privilege level allows read-and-write access for port configuration, but not for global (system-wide) parameters.

6.2.2.1 Console

Console access as the Port Configuration Administrator role provides an operator with the same capabilities as User role Console commands plus configuration commands associated with a network port on the device.

This service is described in Section 6.2.1.1 above.

6.2.2.2 NTP

The Port Configuration Administrator role can read the configuration for this service.

This service is described in Section 6.2.1.2 above.

6.2.2.3 SNMP

The Port Configuration Administrator role can read the configuration for this service.

This service is described in Section 6.2.1.4 above.

6.2.2.4 SSHv2

The Port Configuration Administrator role provides access to all the port configuration commands. That is, all sub-commands within "interface" command. This operator cannot transfer and store software images and configuration files between the network and the system. However, this operator can review the configuration.

This service is described in Section 6.2.1.5 above.

6.2.2.5 Syslog

This service can be used to view the syslog configuration settings.

This service can be used to view the syslog audit records saved on the cryptographic module.

This service is described in Section 6.2.1.6 above.

6.2.2.6 TLS client

This service can be used to view the configuration and statistics for following protocol operations:

- OpenFlow.
- File Copy

See, section 6.2.1.7 for more details on supported TLS cipher list.

6.2.3 Services accessible by User role

This section only lists supported services accessible by User role. The User role management privilege level allows access to the User EXEC, and Privileged EXEC commands, but only with read access.

6.2.3.1 Console

Console connections occur via a directly connected RS-232 serial cable. Once authenticated in the User role, the module provides console commands to display information about a NetIron device and perform basic tasks (such as pings). The User role has read-only privileges and no configuration mode access. The list of commands available are the same as the list mentioned in the SSHv2 service.

This service is described in Section 6.2.1.1 above.

6.2.3.2 NTP

The User role can read the configuration for this service.

This service is described in Section 6.2.1.2 above.

6.2.3.3 SNMP

SNMP service within the User role allows read-only access to the SNMP MIB within the NetIron device.

This service is described in Section 6.2.1.4 above.

6.2.3.4 SSHv2

The User role can only perform read operation.

This service is described in Section 6.2.1.5 above.

6.2.3.5 Syslog

This service can be used to view the syslog configuration settings.

This service can be used to view the syslog audit records saved on the cryptographic module.

This service is described in Section 6.2.1.6 above.

6.2.3.6 TLS client

This service can be used to view the configuration and statistics for following protocol operations:

- OpenFlow.
- File Copy

See, section 6.2.1.7 for more details on supported TLS cipher list.

6.2.4 Services accessible by NTP Peer role

This section only lists supported services accessible by NTP Peer role.

6.2.4.1 NTP

This service is described in Section 6.2.1.2 above.

This role utilizes the NTP service which implements the NTP protocol for time synchronization.

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

6.3 Non-Approved Mode Services

Certain services are available within the non-Approved mode of operation, which are otherwise not available in the FIPS Approved mode of operation. They are:

Function/Service	Role(s)	Additional Details
BGP	Crypto-officer role	Border Gateway Protocol (BGP) is a standardized exterior gateway protocol.
		This is an implicit service, configured by Crypto-officer role.
		Modes: Not Applicable Key sizes: Not Applicable (plaintext; no cryptography)
Diagnostics	Crypto-officer role	This service provides diagnostic and status information for various operations within the module.
		Modes – Not Applicable Key sizes – Not Applicable (plaintext; no cryptography)
MPLS	Crypto-officer role	Multiprotocol Label Switching (MPLS) can be used to direct packets through a network over a predetermined path of routers. Forwarding decisions in MPLS are based on the contents of a label applied to the packet.
		This is an implicit service, configured by Crypto-officer role.
		Modes: MD5 for authentication Key sizes: Up to 80 characters
NTP	Crypto-officer	Network Time Protocol
(Authentication	role	This is an implicit service, configured by Crypto-officer role.
using MD5)	Modes: MD5 for authentication Key sizes: 20 bytes	
OpenFlow over TCP	Crypto-officer role	OpenFlow protocol allows external entity to control the behavior of the NetIron device by installing flows that affects the packet forwarding action of the device.
		This service over TLS is a service in the Approved mode. See section 6.2.1.7 for more information.
		This is an implicit service, configured by Crypto-officer role.
		Modes: Not Applicable
		Key sizes: Not Applicable (plaintext; no cryptography)
OSPFv2	Crypto-officer role	Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing algorithm and falls into the group of interior routing protocols, operating within a single autonomous system (AS).
		This is an implicit service, configured by Crypto-officer role.
		Modes: MD5 for authentication Key sizes: Not Applicable (plaintext; no cryptography)

Function/Service	Role(s)	Additional Details
OSPFv3	Crypto-officer role	Open Shortest Path First (OSPF) is a link-state routing protocol. IPv6 supports OSPF Version 3 (OSPFv3), which functions similarly to OSPFv2 with some enhancements.
		Modes: HMAC-SHA-1-96 (non-compliant) for authentication Key sizes: 160 bits
SNMP	Crypto-officer role,	SNMPv1, SNMPv2c and SNMPv3 KDF (non-compliant) in noAuthNoPriv, authNoPriv modes.
	User role	Modes: DES in authPriv mode for SNMPv3 KDF (non-compliant) Key sizes: DES 56 bits
SSHv2	Crypto-officer role,	Secure Shell (SSHv2) is a cryptographic (encrypted) network protocol for initiating text-based shell sessions on remote machines in a secure way.
	Port Configuration Administrator role,	SCP (Secure Copy) uses security built into SSH server to transfer files between hosts on a network. It uses SSHv2 as a transport.
		Modes: RSA (non-compliant) Key sizes: 1024 bit
		Modes: Triple-DES (non-compliant) Key sizes: Three-Key Triple-DES
	User role	Modes: DH Key Exchange Groups: DH Group1 (768-bit), DH Group14 (2048-bit)
		Modes: SP800-135 SSHv2 KDF (non-compliant) Hash function: SHA-1

Function/Service	Role(s)	Additional Details
Syslog over TLS	Crypto-officer role	Syslog is a standard for message logging. It permits separation of the software that generates messages, the system that stores them, and the software that reports and analyzes them. SYSLOG over TLS is only supported in the non-approved mode.
		This is an implicit service, configured by Crypto-officer role.
		Modes: RSA (non-compliant)
		Key sizes: 2048-bit
		Modes: Diffie-Hellman Group 14
		Key sizes: 2048-bit MODP
		Modes: SP800-135 TLS v1.0 KDF (non-compliant)
		Key sizes: Not applicable
		Modes: SP800-135 TLS v1.2 KDF (non-compliant)
		Key sizes: Not applicable
		Modes: HMAC-MD5
		Key sizes: 160-bit
		Modes: HMAC-SHA-1 (non-compliant), HMAC-SHA-256 (non-compliant)
		Key sizes: 160-bit, 256-bit
		Modes: AES-CBC (non-compliant)
		Key sizes: 128-bit, 256-bit
TACACS	Crypto-officer role	TACACS (Terminal Access Controller Access Control System) is an authentication protocol running over UDP which allows a remote access server to forward a user's logon password to an authentication server to determine whether access can be allowed to a given system.
		This is an implicit service, configured by Crypto-officer role.
		Modes: Not Applicable
		Key sizes: Not Applicable (plaintext; no cryptography)

Function/Service	Role(s)	Additional Details
Telnet	Crypto-officer role, Port Configuration Administrator role, User role	Telnet is a network protocol used on the Internet or local area networks to provide a bidirectional interactive text-oriented communication facility using a virtual terminal connection. User data is interspersed in-band with Telnet control information in an 8-bit byte oriented data connection over the Transmission Control Protocol (TCP). Modes – Not Applicable Key sizes – Not Applicable (plaintext; no cryptography)
TFTP	Crypto-officer role	Trivial File Transfer Protocol (TFTP) is a file transfer protocol notable for its simplicity. It is generally used for automated transfer of configuration or boot files between machines in a local environment. Compared to FTP, TFTP is extremely limited, providing no authentication, and is rarely used interactively by a user. Modes – Not Applicable Key sizes – Not Applicable (plaintext; no cryptography)
"Two way encryption"	Crypto-officer role, Port Configuration Administrator role, User role	Base64 is a number of similar encoding schemes that encode binary data by treating it numerically and translating it into a base 64 representation. Modes – Not Applicable Key sizes – Not Applicable (plaintext; no cryptography)
VRRP/VRRP-E Layer 3	Crypto-officer role	Virtual Router Redundancy Protocol (VRRP) and Virtual Router Redundancy Protocol Enhanced (VRRP-E). Execution of this service in Layer 3 mode (plaintext) is only supported in the non-approved mode. This is an implicit service, configured by Crypto-officer role. Modes: Layer 3 mode Key sizes: Not Applicable (plaintext; no cryptography)
VSRP	Crypto-officer role	Virtual Switch Redundancy Protocol This is an implicit service, configured by Crypto-officer role. Modes: Layer 2 mode Key sizes: Not Applicable (plaintext; no cryptography)

Table 18 Functions/Services, Roles in Non-Approved Mode Services

6.3.1 Non-Approved Algorithms

The module supports the following algorithms in the non-Approved mode of operation. The use of any such service in **Table 18** (Functions/Services, Roles in Non-Approved Mode Services) is an explicit violation of this Security Policy and is explicitly disallowed by this Security Policy. Please see **Table 18** for further details on the algorithms listed below:

Algorithm	Use
AES (non-compliant)	Encryption/Decryption
DES	Encryption/Decryption
Diffie-Hellman Group 1	Key Establishment – Non-compliant less than 112 bits of encryption strength
Diffie-Hellman Group 14	Key Establishment
HMAC-MD5	Keyed Hash
HMAC-SHA-1 (non-compliant)	Keyed Hash
HMAC-SHA-256 (non-compliant)	Keyed Hash
HMAC-SHA-1-96 (non-compliant)	Keyed Hash
MD5	Message Digest
RSA	Key Wrapping – non-compliant less than 112 bits of encryption strength
SHA-1 (non-compliant)	Hashing
SNMPv3 KDF (non-compliant)	Key Derivation
SP800-135 SSHv2 KDF (non-compliant)	Key Derivation
SP800-135 TLS v1.0 KDF (non-compliant)	Key Derivation
SP800-135 TLS v1.2 KDF (non-compliant)	Key Derivation
Triple-DES (non-compliant)	Encryption/Decryption

Table 19 Non-Approved Algorithms

Brocade® NetIron® CER 2000 Series Ethernet Routers and Brocade NetIron® CES 2000 Series Ethernet Switches

7 Algorithm certificates

This section provides information on all related cryptographic algorithms and their associated certificates.

7.1 Algorithm certificates in CER 2000 series / CES 2000 series

CAVP Certificate	Algorithm	Standard	Mode / Method	Key Lengths, Curves or Moduli	Use
#2715	AES	FIPS 197, SP 800-38A	ECB, CBC, CTR	128, 192, 256	Data Encryption/Decryption NOTE: AES-ECB is an underlying algorithm; AES-ECB alone is not supported by the cryptographic module in the FIPS Approved Mode.
#3143	AES	FIPS 197, SP 800-38A	CFB128	128	Data Encryption/Decryption
#403	CVL SNMPv3	SP 800-135 Revision 1			Key Derivation
#173	CVL TLS 1.0/1.1, SSH	SP 800-135 Revision 1			Key Derivation
#394	CVL TLS 1.2	SP 800-135 Revision 1			Key Derivation
#452	DRBG	SP 800-90A Revision1	CTR_DRBG (AES-256)		Deterministic Random Bit Generation NOTE: Hash_based DRBG is not supported by the cryptographic module in the FIPS Approved Mode.
#1694	HMAC	FIPS 198-1	HMAC-SHA-1, HMAC-SHA-256	160, 256	Message Authentication
#1411	RSA	FIPS 186-4	SHA-1, SHA-256 PKCS v1.5	1024, 2048	Digital Signature Generation and Verification NOTE: 1024-bit key size is not supported by the cryptographic module in the FIPS Approved Mode.
#2280	SHS	FIPS 180-4	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512		Message Digest NOTE: SHA-224 and SHA-512 are not supported by the cryptographic module in the FIPS Approved Mode.

Table 20 Algorithm Certificates for CER 2000 series / CES 2000 series

Operators should reference the transition tables that will be available at the CMVP Web site http://csrc.nist.gov/groups/STM/cmvp/. The data in the tables will inform users of the risks associated with using a particular algorithm and a given key length.

NOTE: The module does not allow the use of 1024-bit RSA in the FIPS Approved mode of operation due to the SP800-131A transition effective January 1, 2014.

7.2 Non-Approved but allowed cryptographic methods

See Table 17 for additional information on Non-Approved Cryptographic Functions Allowed in FIPS Approved Mode.

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

8 Policies

8.1 Security Rules

The cryptographic module's design corresponds to the cryptographic module's security rules. This section documents the security rules enforced by the cryptographic module to implement the FIPS 140-2 Level 2 security requirements. After configuring a Netlron device to operate in FIPS Approved mode the Crypto-officer role must execute the "fips self-tests" command to validate the integrity of the firmware installed on the device. If an error is detected during the self-test, the error must be corrected prior to rebooting the device.

Security rules are as follows:

- 1) The cryptographic module provides role-based authentication.
- 2) Until the module is placed in a valid role, the operator does not have access to any Critical Security Parameters (CSPs).
- 3) The cryptographic module performs the following tests:
 - a) Power-up Self-Tests (see table, below)
 - i) Cryptographic Known Answer Tests (KAT) are list in the table below

KAT tests	CER 2000 series / CES 2000 series product
Three-Key Triple-DES KAT (encrypt) (non-compliant)	✓
Three-Key Triple-DES KAT (decrypt) (non-compliant)	✓
AES-128 (ECB, CBC and CFB128) KAT (encrypt)	✓
AES-128 (ECB, CBC and CFB128) KAT (decrypt)	✓
SHA-1, 256, 384, 512 KAT (hashing)	✓
HMAC-SHA-1, 256, 384, 512 KAT (keyed hashing)	✓
RSA 2048 bit key size KAT (encrypt)	✓
RSA 2048 bit key size KAT (decrypt)	✓
RSA 2048 bit key size, SHA-256, 384, 512 Hash KAT (signature generation)	✓
RSA 2048 bit key size, SHA-256, 384, 512 Hash KAT (signature verification)	✓
SP800-90A DRBG KAT	✓
SP800-135 TLS v1.0/1.1 KDF KAT	✓
SP800-135 SSHv2 KDF KAT	✓
SP800-135 TLS v1.2 KDF KAT	✓
SP800-135 SNMPv3 KDF KAT	✓

Table 21 Power-Up Self-Tests - Cryptographic Known Answer Tests (KAT)

ii) Firmware Integrity Test: (CRC 16 and Digital Signature using RSA 2048 SHA-256)

iii) Critical functions test: RSA 2048 encrypt/decrypt

If the module does not detect an error during the Power on Self-Test (POST), at the conclusion of the test, the console displays the message shown below.

Crypto module initialization and Known Answer Test (KAT) Passed.

If the Management Processors (MP) detects an error during the POST, at the conclusion of the test, the console displays the message shown below.

Also, the message logging will display the message shown below.

FIPS Fatal Cryptographic Module Failure <Reason String>

After displaying the failure messages, the module reboots.

b) Conditional Self-Tests (see table, below)

Conditional Self-Tests	CER 2000 series / CES 2000 series product
Continuous Test: Non-Deterministic Random Number Generator (NDRNG) Test performed on non-Approved NDRNG	✓
Continuous Test: Random Number Generator Test performed on Approved DRBG.	✓
RSA 2048 SHA-256 Pairwise Consistency Test (sign)	✓
RSA 2048 SHA-256 Pairwise Consistency Test (verify)	✓
RSA 2048 SHA-256 Pairwise Consistency Test (encrypt)	✓
RSA 2048 SHA-256 Pairwise Consistency Test (decrypt)	✓
Firmware Load Test: RSA 2048 SHA-256 Signature Verification	✓
Bypass Test	Not Applicable
Manual Key Entry Test	Not Applicable

Table 22 Conditional Self-Tests

i) Message reporting for failure of Conditional Self-Tests

If the Management Processors (MP) detects an error during the Conditional Self-Test, it displays and logs the message shown below.

FIPS Fatal Cryptographic Module Failure <Reason String>

After displaying the failure message, the module reboots.

- 4) At any time the cryptographic module is in an idle state, the operator can command the module to perform the power-up self-test by executing the "fips self-tests" command.
- 5) Data output to services defined in section 6.2 is inhibited during key generation, self-tests, zeroization, and error states.
- 6) Status information does not contain CSPs or sensitive data that if used could compromise the module.
- 7) The following protocols have not been reviewed or tested by the CAVP nor CMVP:
 - a) TLS v1.0/1.1
 - b) SSHv2
 - c) TLS v1.2
 - d) SNMPv3

8.1.1 Cryptographic Module Operational Rules

In order to operate an CER 2000 series and CES 2000 series device securely, an operator should be aware of the following rules for FIPS Approved mode of operation.

Do not make external communication channels/ports available before initialization of an CER 2000 series and CES 2000 series device.

CER 2000 series and CES 2000 series devices implement FIPS Approved SP800-90A Deterministic Random Bit Generator (DRBG) in Counter (CTR) Mode.

CER 2000 series and CES 2000 series devices use FIPS Approved key generation methods:

RSA public and private keys

CER 2000 series and CES 2000 series devices restrict key entry and key generation to authenticated roles.

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

8.2 Authentication

NetIron devices support role-based authentication. A device can perform authentication and authorization (that is, role selection) using TACACS+, RADIUS and local configuration database. Moreover, NetIron supports multiple authentication methods for each service.

To implement one or more authentication methods for securing access to the device, an operator in the Cryptoofficer role configures authentication-method lists that set the order in which a device consults authentication methods. In an authentication-method list, an operator specifies an access method (SSHv2, Web, SNMP, and so on) and the order in which the device tries one or more of the following authentication methods:

- 1. Line password authentication,
- 2. Enable password authentication,
- 3. Local user authentication,
- 4. RADIUS authentication with exec authorization and command authorization, and
- 5. TACACS+ authentication with exec authorization and command authorization

When a list is configured, the device attempts the first method listed to provide authentication. If that method is not available, (for example, the device cannot reach a TACACS+ server) the device tries the next method until a method in the list is available or all methods have been tried.

NetIron devices allow multiple concurrent operators through SSHv2 and the console. One operator's configuration changes can overwrite the changes of another operator.

Roles	Authentication
The Crypto-officer role	Line Authentication Method, Enable Authentication Method, Local Authentication Method, RADIUS Authentication Method, TACACS+ Authentication Method
Port Configuration Administrator role	Line Authentication Method, Enable Authentication Method, Local Authentication Method, RADIUS Authentication Method, TACACS+ Authentication Method
User role	Line Authentication Method, Enable Authentication Method, Local Authentication Method, RADIUS Authentication Method, TACACS+ Authentication Method
NTP Peer role	Pre-shared key

Table 23 - Summary of authentication methods available for each role

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

8.2.1 Line Authentication Method

The line method uses the Telnet password to authenticate an operator.

To use line authentication, a Crypto-officer role must set the Telnet password. Please note that when operating in FIPS Approved mode. Telnet is disabled and Line Authentication is not available.

8.2.2 Enable Authentication Method

The enable method uses a password corresponding to each role to authenticate an operator. An operator must enter the read-only password to select the User role. An operator enters the port-config password to the Port Configuration Administrator role. An operator enters the super-user password to select the Crypto-officer role.

To use enable authentication, a Crypto-officer role must set the password for each privilege level.

8.2.3 Local Authentication Method

The local method uses a password associated with a user name to authenticate an operator. An operator enters a user name and corresponding password. The Netlron device assigns the role associated with the user name to the operator when authentication is successful.

To use local authentication, a Crypto-officer role must define user accounts. The definition includes a user name, password, and privilege level (which determines role).

8.2.4 RADIUS Authentication Method

The RADIUS method uses one or more RADIUS servers to verify user names and passwords. The NetIron device prompts an operator for user name and password. The device sends the user name and password to the RADIUS server. Upon successful authentication, the RADIUS server returns the operator's privilege level, which determines the operator's role. If a RADIUS server does not respond, the NetIron device will send the user name and password information to the next configured RADIUS server.

NetIron series devices support additional command authorization with RADIUS authentication. The following events occur when RADIUS command authorization takes place.

- 1. A user previously authenticated by a RADIUS server enters a command on the NetIron device.
- 2. The NetIron device looks at its configuration to see if the command is at a privilege level that requires RADIUS command authorization.
- 3. If the command belongs to a privilege level that requires authorization, the Netlron device looks at the list of commands returned to it when RADIUS server authenticated the user.

NOTE: After RADIUS authentication takes place, the command list resides on the Netlron device. The device does not consult the RADIUS server again once the operator has been authenticated. This means that any changes made to the operator's command list on the RADIUS server are not reflected until the next time the RADIUS server authenticates the operator, and the server sends a new command list to the Netlron device.

To use RADIUS authentication, a Crypto-officer role must configure RADIUS server settings along with authentication and authorization settings.

8.2.5 TACACS+Authentication Method

The TACACS+ methods use one or more TACACS+ servers to verify user names and passwords. For TACACS+, the NetIron device prompts an operator for user name and password. The device sends the user name and password to the TACACS+ server. Upon successful authentication, the NetIron device selects the operator's role implicitly based on the action requested (for example, User role for a login request or Crypto-officer role for a configure terminal command). For TACACS+ authentication, the NetIron device prompts an operator for a user name, which the device uses to get a password prompt from the TACACS+ server. The operator enters a password, which the device relays to the server for validation. Upon successful authentication, the TACACS+ server supports both exec and command authorization similar to RADIUS authorization described above.

To use TACACS+ authentication, a Crypto-officer role must configure TACACS+ server settings along with authentication and authorization settings.

8.2.6 Strength of Authentication

This section describes the strength of each authentication method

NetIron devices minimize the likelihood that a random authentication attempt will succeed. The module supports minimum 8 character passwords selected from the following character set: digits (Qty. 10), lowercase (Qty. 26) and uppercase (Qty. 26) letters, and punctuation marks (Qty. 18), for a total of 80 characters. Therefore, the probability of a successful random attempt is 1/80^8, which is less than 1/1,000,000.

The module enforces a one second delay for each attempted password verification, therefore the maximum number of random attempts per minute is 60. Thus, the probability of a successful random attempt within a one minute period is 60/80^8, which is less than 1/100,000.

RADIUS and TACACS+ support minimum 8 character passwords selected from the following character set: digits (Qty. 10), lowercase (Qty. 26) and uppercase (Qty. 26) letters, and punctuation marks (Qty. 18), for a total of 80 characters. Therefore, the probability of a successful random attempt is 1/80^8, which is less than 1/1,000,000.

A user gets three attempts before lockdown. When lockdown occurs, the user is locked out until the device is rebooted. Rebooting takes longer than one minute. Therefore, the maximum number of attempts per minute is 3. Thus, the probability of a successful random attempt within a one minute period is 3/80^8, which is less than 1/100,000.

For the NTP secret, the module supports minimum 8 character and maximum 16 character passwords selected from the following character set: digits (Qty. 10), lowercase (Qty. 26) and uppercase (Qty. 26) letters, and punctuation marks (Qty. 18) in passwords. Therefore the probability of a random attempt is 1/80^8 which is less than 1/1,000,000.

The module can process 1 authentication packet per 10 msec. Therefore, the probability of multiple consecutive attempts within a one minute period is 6000/80^8 which is less than 1/100,000.

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

8.3 Access Control and Critical Security Parameters (CSPs)

This section details how the CSPs are used by each service for a given role.

This section summarize the access operators have to the CSPs in each service for a given role. Blank table cells indicate that there is no security relevance between the role and the CSP. The table entries have the following meanings:

- x Operator can use the value of the item (for example encrypt with an encryption key),
- r Operator can read the value of the item (for example view the configuration),
- w Operator can write a new value for the item, and
- d Operator can delete the value of the item (zeroize) by executing a fips zeroize all command. This command can be executed via the console and SSHv2 service.
- n/a Indicates that a CSP is not used by the service.

For further details on a given CSP, please reference section 13 (Appendix B: Critical Security Parameters) and search for the CSP number listed in column "CSP #".

8.3.1 Access Control and Critical Security Parameters (CSPs) for the Crypto-officer role

Access control and CSPs for Crypto-officer role is shown in table below:

CSP#	Service	Console	NTP	SCP	SNMP	SSHv2	Syslog	TLS client
15	SSHv2 Host RSA Private Key (2048 bit)	wd	n/a	Х	n/a	xwd	n/a	n/a
13	SSHv2 Client RSA Private Key	wd	n/a	Х	n/a	xwd	n/a	n/a
14	SSHv2 DH Group-14 Private Key 2048 bit MODP	d	n/a	xwd	n/a	xwd	n/a	n/a
32	SSHv2 DH Shared Secret Key (2048 bit)	d	n/a	xwd	n/a	xwd	n/a	n/a
27	SSHv2/SCP Session Keys (128, 192 and 256 bit AES CBC and AES CTR)	d	n/a	xwd	n/a	xwd	n/a	n/a
4	SSHv2/SCP Authentication Key (HMAC-SHA-1, 160 bits)	d	n/a	xwd	n/a	xwd	n/a	n/a
6	SSHv2 KDF Internal State	d	n/a	xwd	n/a	xwd	n/a	n/a
16	TLS Host RSA Private Key (RSA 2048 bit)	rwd	n/a	rw	n/a	rwd	n/a	х
17	TLS Host DH Group-14 Private Key 2048 bit MODP	d	n/a	n/a	n/a	d	n/a	xwd
35	TLS Pre-Master Secret	d	n/a	n/a	n/a	d	n/a	xwd
34	TLS Master Secret	d	n/a	n/a	n/a	d	n/a	xwd
7	TLS KDF Internal State	d	n/a	n/a	n/a	d	n/a	xwd
28	TLS Session Key	d	n/a	n/a	n/a	d	n/a	xwd
5	TLS Authentication Key	d	n/a	n/a	n/a	d	n/a	xwd
12	MP DRBG Key	xd	n/a	Х	n/a	xd	n/a	Х
9	MP DRBG Internal State	xd	n/a	Х	n/a	xd	n/a	Х
10	MP DRBG Seed	xd	n/a	Х	n/a	xd	n/a	Х
11	MP DRBG Value V	xd	n/a	Х	n/a	xd	n/a	Х
31	NTP secret	rwd	Х	rwd	n/a	rwd	n/a	n/a

CSP#	Service	Console	NTP	SCP	SNMP	SSHv2	Syslog	TLS client
3	Local - User Password	rwd	n/a	rw	n/a	rwd	n/a	n/a
2	Local - Port Administrator Password	rwd	n/a	rw	n/a	rwd	n/a	n/a
1	Local - Crypto-officer Password	xrwd	n/a	xrw	Х	xrwd	n/a	n/a
29	RADIUS Secret	xrwd	n/a	xrw	n/a	xrwd	n/a	n/a
33	TACACS+ Secret	xrwd	n/a	xrw	n/a	xrwd	n/a	n/a
30	SNMPv3 secret	rwd	n/a	rw	Х	rwd	n/a	n/a
8	SNMPv3 KDF State	n/a	n/a	n/a	xwd	n/a	n/a	n/a
26	Firmware Load RSA Public Key	Х	n/a	Х	n/a	Х	n/a	n/a
21	SSHv2 Host RSA Public Key (2048 bit)	rwd	n/a	xrw	n/a	xrwd	n/a	n/a
18	SSHv2 Client RSA Public Key	rwd	n/a	xrw	n/a	xrwd	n/a	n/a
20	SSHv2 DH Group-14 Public Key 2048 bit MODP	d	n/a	xwd	n/a	xwd	n/a	n/a
19	SSHv2 DH Group-14 Peer Public Key 2048 bit MODP	d	n/a	xwd	n/a	xwd	n/a	n/a
22	TLS Host RSA Public Key (RSA 2048 bit)	rwd	n/a	rw	n/a	rwd	n/a	Х
23	TLS Peer Public Key (RSA 2048 bit)	d	n/a	n/a	n/a	d	n/a	xd
24	TLS Host DH Group-14 Public Key 2048 bit MODP	d	n/a	n/a	n/a	n/a	n/a	xwd
25	TLS Peer DH Group-14 Public Key 2048 bit MODP	d	n/a	n/a	n/a	n/a	n/a	xd

Table 24 - Access Control and CSPs for the Crypto-officer role

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

8.3.2 Access Control and Critical Security Parameters (CSPs) for Port Configuration Administrator role

Access control and CSPs for Port Configuration Administrator role is shown in table below:

	Service	ole	0	d)	72	90 20	ient
CSP#	000	Console	MTP	SNMP	SSHv2	Syslog	TLS client
	CSP						-
15	SSHv2 Host RSA Private Key (2048 bit)	n/a	n/a	n/a	Х	n/a	n/a
13	SSHv2 Client RSA Private Key	n/a	n/a	n/a	Х	n/a	n/a
14	SSHv2 DH Group-14 Private Key 2048 bit MODP	n/a	n/a	n/a	xwd	n/a	n/a
32	SSHv2 DH Shared Secret Key (2048 bit)	n/a	n/a	n/a	xwd	n/a	n/a
27	SSHv2/SCP Session Keys (128, 192 and 256 bit AES CBC and AES CTR)	n/a	n/a	n/a	xwd	n/a	n/a
4	SSHv2/SCP Authentication Key (HMAC-SHA-1, 160 bits)	n/a	n/a	n/a	xwd	n/a	n/a
6	SSHv2 KDF Internal State	n/a	n/a	n/a	xwd	n/a	n/a
16	TLS Host RSA Private Key (RSA 2048 bit)	n/a	n/a	n/a	n/a	n/a	Х
17	TLS Host DH Group-14 Private Key 2048 bit MODP	n/a	n/a	n/a	n/a	n/a	xwd
35	TLS Pre-Master Secret	n/a	n/a	n/a	n/a	n/a	xwd
34	TLS Master Secret~	n/a	n/a	n/a	n/a	n/a	xwd
7	TLS KDF Internal State	n/a	n/a	n/a	n/a	n/a	xwd
28	TLS Session Key	n/a	n/a	n/a	n/a	n/a	xwd
5	TLS Authentication Key	n/a	n/a	n/a	n/a	n/a	xwd
12	MP DRBG Key	n/a	n/a	n/a	Х	n/a	n/a
9	MP DRBG Internal State	n/a	n/a	n/a	Х	n/a	n/a
10	MP DRBG Seed	n/a	n/a	n/a	Х	n/a	n/a
11	MP DRBG Value V	n/a	n/a	n/a	Х	n/a	n/a
31	NTP secret	n/a	n/a	n/a	n/a	n/a	n/a
3	Local - User Password	n/a	n/a	n/a	n/a	n/a	n/a
2	Local - Port Administrator Password	Х	n/a	n/a	Х	n/a	n/a
1	Local - Crypto-officer Password	n/a	n/a	n/a	n/a	n/a	n/a
29	RADIUS Secret	n/a	n/a	n/a	n/a	n/a	n/a
33	TACACS+ Secret	n/a	n/a	n/a	n/a	n/a	n/a
30	SNMPv3 secret	n/a	n/a	n/a	n/a	n/a	n/a
8	SNMPv3 KDF State	n/a	n/a	n/a	n/a	n/a	n/a
26	Firmware Load RSA Public Key	n/a	n/a	n/a	n/a	n/a	n/a
21	SSHv2 Host RSA Public Key (2048 bit)	r	n/a	n/a	xr	n/a	n/a
18	SSHv2 Client RSA Public Key	r	n/a	n/a	xr	n/a	n/a
20	SSHv2 DH Group-14 Public Key 2048 bit MODP	n/a	n/a	n/a	xwd	n/a	n/a
19	SSHv2 DH Group-14 Peer Public Key 2048 bit MODP	n/a	n/a	n/a	xd	n/a	n/a
22	TLS Host RSA Public Key (RSA 2048 bit)	n/a	n/a	n/a	n/a	n/a	Х
23	TLS Peer Public Key (RSA 2048 bit)	n/a	n/a	n/a	n/a	n/a	Х
24	TLS Host DH Group-14 Public Key 2048 bit MODP	n/a	n/a	n/a	n/a	n/a	xwd

CSP#	Service	Console	NTP	SNMP	SSHv2	Syslog	TLS client
25	TLS Peer DH Group-14 Public Key 2048 bit MODP	n/a	n/a	n/a	n/a	n/a	xd

Table 25 - Access Control and CSPs for the Port Configuration role

8.3.3 Access Control and Critical Security Parameters (CSPs) for User role

Access control and CSPs for User role is shown in table below:

CSP#	Service	Console	NTP	SNMP	SSHv2	Syslog	TLS client
15	SSHv2 Host RSA Private Key (2048 bit)	n/a	n/a	n/a	Х	n/a	n/a
13	SSHv2 Client RSA Private Key	n/a	n/a	n/a	Х	n/a	n/a
14	SSHv2 DH Group-14 Private Key 2048 bit MODP	n/a	n/a	n/a	xwd	n/a	n/a
32	SSHv2 DH Shared Secret Key (2048 bit)	n/a	n/a	n/a	xwd	n/a	n/a
27	SSHv2/SCP Session Keys (128, 192 and 256 bit AES CBC and AES CTR)	n/a	n/a	n/a	xwd	n/a	n/a
4	SSHv2/SCP Authentication Key (HMAC-SHA-1, 160 bits)	n/a	n/a	n/a	xwd	n/a	n/a
6	SSHv2 KDF Internal State	n/a	n/a	n/a	xwd	n/a	n/a
16	TLS Host RSA Private Key (RSA 2048 bit)	n/a	n/a	n/a	n/a	n/a	Х
17	TLS Host DH Group-14 Private Key 2048 bit MODP	n/a	n/a	n/a	n/a	n/a	xwd
35	TLS Pre-Master Secret	n/a	n/a	n/a	n/a	n/a	xwd
34	TLS Master Secret	n/a	n/a	n/a	n/a	n/a	xwd
7	TLS KDF Internal State	n/a	n/a	n/a	n/a	n/a	xwd
28	TLS Session Key	n/a	n/a	n/a	n/a	n/a	xwd
5	TLS Authentication Key	n/a	n/a	n/a	n/a	n/a	xwd
12	MP DRBG Key	n/a	n/a	n/a	Х	n/a	n/a
9	MP DRBG Internal State	n/a	n/a	n/a	Х	n/a	n/a
10	MP DRBG Seed	n/a	n/a	n/a	Х	n/a	n/a
11	MP DRBG Value V	n/a	n/a	n/a	Х	n/a	n/a
31	NTP secret	n/a	n/a	n/a	n/a	n/a	n/a
3	Local - User Password	Х	n/a	Х	Х	n/a	n/a
2	Local - Port Administrator Password	n/a	n/a	n/a	n/a	n/a	n/a
1	Local - Crypto-officer Password	n/a	n/a	n/a	n/a	n/a	n/a
29	RADIUS Secret	n/a	n/a	n/a	n/a	n/a	n/a
33	TACACS+ Secret	n/a	n/a	n/a	n/a	n/a	n/a
30	SNMPv3 secret	n/a	n/a	n/a	n/a	n/a	n/a
8	SNMPv3 KDF State	n/a	n/a	n/a	n/a	n/a	n/a
26	Firmware Load RSA Public Key	n/a	n/a	n/a	n/a	n/a	n/a

CSP#	Service	Console	NTP	SNMP	SSHv2	Syslog	TLS client
21	SSHv2 Host RSA Public Key (2048 bit)	r	n/a	n/a	xr	n/a	n/a
18	SSHv2 Client RSA Public Key	r	n/a	n/a	xr	n/a	n/a
20	SSHv2 DH Group-14 Public Key 2048 bit MODP	n/a	n/a	n/a	xwd	n/a	n/a
19	SSHv2 DH Group-14 Peer Public Key 2048 bit MODP	n/a	n/a	n/a	xd	n/a	n/a
22	TLS Host RSA Public Key (RSA 2048 bit)	n/a	n/a	n/a	n/a	n/a	Х
23	TLS Peer Public Key (RSA 2048 bit)		n/a	n/a	n/a	n/a	Х
24	TLS Host DH Group-14 Public Key 2048 bit MODP		n/a	n/a	n/a	n/a	xwd
25	TLS Peer DH Group-14 Public Key 2048 bit MODP	n/a	n/a	n/a	n/a	n/a	xd

Table 26 - Access Control and CSPs for the User role

8.3.4 Access Control and Critical Security Parameters (CSPs) for NTP Peer role

Access control and CSPs for NTP Peer role is shown in table below:

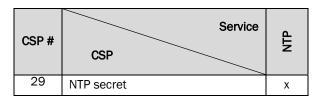


Table 27 - Access Control and CSPs for the NTP Peer role

8.3.5 CSP Zeroization

The SSHv2 session key is transient. It is zeroized at the end of a session and recreated at the beginning of a new session.

The TLS pre-master secret is generated during the TLS handshake. It is destroyed after it is used.

The TLS session key is generated for every TLS client session. The TLS session key is deleted after the session is closed.

The DRBG seed and CTR_DRBG Entropy is recomputed periodically on 100 millisecond intervals. Each time this occurs, four bytes of the seed are written into an 8K buffer. When the buffer is full the DRBG V and Key values are regenerated and the buffer is zeroized.

The DH private exponent is generated at the beginning of DH KEX. A new random number overwrites the memory location used to store the value each time a new session is initiated.

For SSHv2, the RSA private key is stored in a locally generated file on flash during the key generation process. The file is removed during zeroization. The crypto key zeroize command removes the keys.

Execute the "no fips enable" command to complete zeroize process on all host key pairs. Execution of "no fips enable" command is required for all (CER 2000 series and CES 2000 series) NetIron devices.

All other CSPs can be zeroized by executing the "fips zeroize all" command. This command can be executed via the Console and SSHv2 service.

8.4 Physical Security

NetIron devices require the Crypto-officer role to install tamper evident labels in order to meet FIPS 140-2 Level 2 Physical Security requirements. The tamper evident labels are available from Brocade under part number XBR-000195. The Crypto-officer role shall follow the Brocade FIPS Security Seal application procedures prior to operating the module in FIPS Approved mode. The FIPS seal application procedure is available in section, 12 - Appendix A: Tamper Evident Seal Application Procedure.

Physical Security Mechanisms	Recommended Frequency of Inspection	Inspection Guidance Details
Tamper Evident Labels 12 months		The security officer shall periodically monitor the state of all applied seals for evidence of tampering.
		A seal serial number mismatch, a seal placement change, a checkerboard destruct pattern that appears in peeled film and adhesive residue on the substrate are evidence of tampering.
		The security officer shall periodically view each applied seal under a UV light to verify the presence of a UV wallpaper pattern.
		The lack of a wallpaper pattern is evidence of tampering.

Table 28 Inspection of Physical Security Mechanisms

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

9 Crypto-officer Guidance

For each module to operate in a FIPS Approved mode of operation, the tamper evident seals supplied in Brocade XBR-000195 must be installed, as defined in section, 12 - Appendix A: Tamper Evident Seal Application Procedure.

The security officer is responsible for storing and controlling the inventory of any unused seals. The unused seals shall be stored in plastic bags in a cool, dry environment between 60° and 70° F (15° to 20° C) and less than 50% relative humidity. Rolls should be stored flat on a slit edge or suspended by the core.

The security officer shall maintain a serial number inventory of all used and unused tamper evident seals. The security officer is responsible for returning a module to a FIPS Approved state after any intentional or unintentional reconfiguration of the physical security measures.

9.1 FIPS Approved Mode Status

NetIron devices provide the "fips show" command to display status information about the device's configuration. This information includes the status of administrative commands for security policy, the status of security policy enforcement, and security policy settings. The "fips enable" command changes the status of administrative commands; see also Section 9.2 FIPS Approved Mode.

The following example shows the output of the "fips show" command before an operator enters a "fips enable" command. Administrative commands for security policy are unavailable (administrative status is off) and the device is not enforcing a security policy (operational status is off).

```
FIPS Version: BRCD-IP-CRYPTO-VER-3.0a
FIPS mode : Administrative status OFF: Operational status OFF
FIPS CC mode: Administrative status OFF: Operational status OFF
```

Table 29 Sample output - CES/CER in non-Approved mode

The following example shows the output of the "fips show" command after an operator enters the "fips enable" command. Administrative commands for security policy are available (administrative status is on) but the device is not enforcing a security policy yet (operational status is off). The command displays the security policy settings.

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

The status 'Clear' refers to the fact that when FIPS Approved mode is disabled at a later point in time, the corresponding CSPs will be affected based on the FIPS policy settings for that CSP.

The following example shows the output of the fips show command after the device reloads successfully in the default strict FIPS Approved mode. Administrative commands for security policy are available (administrative status is on) and the device is enforcing a security policy (operational status is on): The command displays the policy settings.

```
FIPS Validated Cryptographic Module
FIPS Version: BRCD-IP-CRYPTO-VER-3.0a
FIPS mode : Administrative status ON: Operational status ON
FIPS CC mode: Administrative status OFF: Operational status OFF
System Specific:
OS monitor access status is: Disabled
Management Protocol Specific:
                             : Disabled
Telnet server
Telnet client
                             : Disabled
TFTP client
SNMP v1, v2, v2c
                             : Disabled
                             : Disabled
SNMP Access to security objects: Disabled
Password Display
                             : Disabled
Critical security Parameter updates across FIPS boundary:
(i.e. during "fips zeroize" ..., or "no fips enable")
Protocol Shared secret and host passwords: Clear
SSH RSA Host keys
                                       : Clear
```

Table 30 Sample output - CES/CER in FIPS Approved mode

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

9.2 FIPS Approved Mode

This section describes the FIPS Approved mode of operation and the sequence of actions that put a NetIron device in FIPS Approved mode.

FIPS Approved mode disables the following:

- Enter command no web-management hp-top-tools in order to turn off access by HP ProCurve Manager via port 280.
- 2. Telnet access including the "telnet server command"
- 3. AAA authentication for the console using "enable aaa console" command is temporarily disabled to allow console access to configure SSH parameters. This command can be enabled after SSH is confirmed operational
- 4. Command "ip ssh scp disable"
- 5. TFTP access
- 6. SNMP access to CSP MIB objects
- 7. Access to all commands that allows debugging memory content within the monitor mode
- 8. Access to the following commands get disabled:
 - HTTPS SSL 3.0 access

Entering FIPS Approved mode also clears:

- 1. Protocol shared secret and host passwords
- 2. HTTPS RSA host keys and certificate

FIPS Approved mode enables:

- 1. SCP
- 2. HTTPS TLS v1.0/1.1 and TLS v1.2

9.2.1 Invoking FIPS Approved Mode

9.2.1.1 Invoking FIPS Approved Mode for Brocade CER 2000 series and CES 2000 series Devices

To invoke the FIPS Approved mode of operation, perform the following steps from the console terminal.

- 1) Assume Crypto-officer role
 - a) The authentication methods available for assuming the Crypto-officer role through the console terminal port are defined in Section 8.2.
- 2) Copy signature files of all the affected images to the flash memory.
- 3) Enter command: fips enable
 - a) The device enables FIPS administrative commands. The device is not in FIPS Approved Mode of operation yet. Do not change the default strict FIPS security policy, which is required for FIPS Approved mode.
- 4) Enter command: fips zeroize all
 - a) The device zeroizes the shared secrets used by various networking protocols including host access passwords, and SSHv2 Host keys with the digital signature.
- 5) Once the module completes zeroization, configure all users of the module and authentication methods as per Section 8.2.
- 6) Enter command: "enable strict-password-enforcement"

- 7) Enter command: write memory
 - a) The device saves the running configuration as the startup configuration
- 8) Enter command: reload
 - a) The device reboots, does a Power-On Self-Test and if successful, begins operation in FIPS Approved mode.
- 9) Enter command: fips show
 - The device displays the FIPS-related status, which should confirm the security policy is the default security policy.
- 10) Inspect the physical security of the module, including placement of tamper evident labels according to section, 12 Appendix A: Tamper Evident Seal Application Procedure.

9.2.2 Negating FIPS Approved Mode

9.2.2.1 Negating FIPS Approved Mode for Brocade CER 2000 Series and CES 2000 Series Devices

To exit the FIPS Approved mode of operation, perform the following steps from the console terminal.

- 1) Enter command: no fips enable
 - a) This will return the device back to normal, non-Approved mode by enabling the networking protocols that were disallowed in FIPS Approved mode of operation. For example, Telnet, TFTP will be enabled again. In addition, the restrictions against the non-Approved cryptographic algorithms will also be lifted. For example, MD5, DES algorithms would be allowed.
 - b) The device zeroizes the shared secrets used by various networking protocols including host access passwords, SSHv2 client and server keys, and TLS client keys with the digital signature.
- Once the module completes zeroization, configure all users of the module and authentication methods as per Section 8.2.
- 3) Enter command: write memory
 - a) The device saves the running configuration as the startup configuration
- 4) Enter command: reload
 - a) Reload the device to begin non-Approved mode of operation.

10 Mitigation of other attacks

These modules have not been designed to mitigate any specific attacks beyond the scope of FIPS 140-2 requirements.

Other Attacks	Mitigation mechanism	Specific Limitations
N/A	N/A	N/A

Table 31 Mitigation of other attacks

11 Glossary

Term/Acronym	Description
AES	Advanced Encryption Standard
CBC	Cipher-BlockChaining
CLI	Command Line Interface
CFP	C Form-factor Pluggable
CSP	Critical Security Parameter
DH	Diffie-Hellman
DRBG	Deterministic Random Bit Generator
ECB	Electronic Codebook mode
ECDSA	Elliptic Curve Digital Signature Algorithm
GbE	Gigabit Ethernet
HMAC	Keyed-Hash Message Authentication Code
KDF	Key Derivation Function
LED	Light-Emitting Diode
Mbps	Megabits per second
MP	Management Processor
NDRNG	Non-Deterministic Random Number Generator
NI	NetIron platform
OC	Optical Carrier
RADIUS	Remote Authentication Dial in User Service
RSA	Rivest Shamir Adleman
SCP	Secure Copy
SFM	Switch Fabric Module
SFP	Small Form-factor Pluggable
SFPP	Small Form-factor Plus Pluggable
SHA	Secure Hash Algorithm
SNMP	Simple Network Management Protocol
SONET	Synchronous Optical Networking
SSHv2	Secure Shell
TACACS	Terminal Access Control Access-Control System
TDEA	Triple-DES Encryption Algorithm
TFTP	Trivial File Transfer Protocol
TLS	Transport Layer Security
XFP	10 Gigabit Small Form Factor Pluggable

Table 32 Glossary

12 Appendix A: Tamper Evident Seal Application Procedure

The FIPS Kit (SKU XBR-000195) contains the following items:

- Tamper Evident Security Seals
 - o Count 120
 - Checkerboard destruct pattern with ultraviolet visible "Secure" image

Use 99% isopropyl alcohols to clean the surface area at each tamper evident seal placement location. Isopropyl alcohol is not provided in the kit. However, 99% isopropyl alcohol is readily available for purchase from a chemical supply company. Prior to applying a new seal to an area, that shows seal residue, use consumer strength adhesive remover to remove the seal residue. Then use additional alcohol to clean off any residual adhesive remover before applying a new seal.

12.1 Brocade CER 2000 series

12.1.1 CER 2024C-4X-RT devices

Use the figures in this section as a guide for security seal placement on a Brocade NetIron CER 2024C-4X-RT. Brocade NetIron CER 2024C-4X-RT device require the placement of eighteen (18) seals:

- Top front: Affix one (1) seal over each flat head that connects the top cover to the base of the chassis. Five (5) seals are needed to complete this step of the procedure (Seals 1 through 5). One (1) seal is placed vertically over the console port (Seal 18). See Figure 18 for correct seal orientation and positioning.
- Right and left sides: Affix three (3) seals on the left and right sides of the device. The seals must be vertically oriented, cover the flathead screws that attach the top cover to the base of the chassis and wrap around to the bottom of the chassis. Six (6) seals are needed to complete this step of the procedure (Seals 6 through 11). The orientation and placement of seals on the left and right sides mirrors each other. See Figure 19 and Figure 20 for correct seal orientation.
- Rear: Affix six (6) seals across the back of the chassis to inhibit the removal of a power supply, power supply filler panel or fan module. Seal 13 wraps from the top cover to the filler panel. Seals 15 and 16 wrap from the top cover to the fan module. See Figure 21 for correct seal placement. Seal 12 touches both the power supply module and filler panel before wrapping onto the bottom of the chassis. Seals 14 and 17 wrap from the fan module to the bottom of the chassis.
 See Figure 21 and Figure 22 for correct seal placement.

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

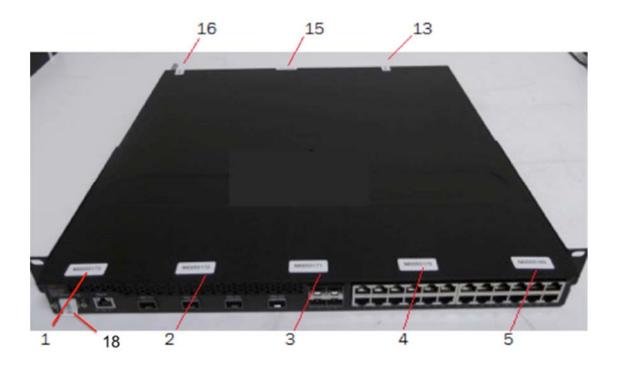


Figure 18 - Top front view of Brocade CER 2024C-4X-RT device with security seals

Figure 19 - Right view of Brocade CER 2024C-4X-RT device with security seals

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

Figure 20 - Left side view of Brocade CER 2024C-4X-RT device with security seals

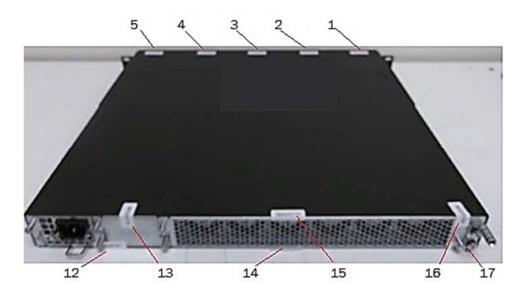


Figure 21 - Rear view of Brocade CER 2024C-4X-RT device with security seals

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

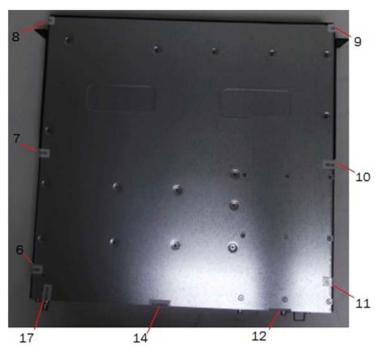


Figure 22 - Bottom view of Brocade CER 2024C-4X-RT device with security seals

12.1.2 CER 2024F-4X-RT devices

Use the figures in this section as a guide for security seal placement on a Brocade NetIron CER 2024F-4X-RT. Brocade NetIron CER 2024F-4X-RT devices require the placement of twenty (20) seals:

- Top front: Affix one (1) seal over each flat head that connects the top cover to the base of the chassis. Five (5) seals are needed to complete this step of the procedure (Seals 1 through 5). 1 seal is placed vertically over the console port (Seal 20). See Figure 23 for correct seal orientation and positioning.
- Right and left sides: Affix three (3) seals on the left and right sides of the device. The seals must be
 vertically oriented, cover the flathead screws that attach the top cover to the base of the chassis and
 wrap around to the bottom of the chassis. Six (6) seals are needed to complete this step of the
 procedure (Seals 6 through 11). The orientation and placement of seals on the left and right sides
 mirrors each other. See Figure 24 and Figure 25 for correct seal orientation.
- Rear: Affix eight (8) seals across the back of the chassis to inhibit the removal of a power supply, power supply filler panel or fan module. Seal 12 wraps from the top cover to the filler panel. Seal 13 wraps from the filler panel to the bottom of the chassis. Seal 14 wraps from power supply module to the top of the chassis. Seal 15 wraps from the bottom cover to the power supply module. Seals 16 and 19 wrap from the top cover to the fan module. Seal 17 and 18 wrap from the fan module to the bottom side of the chassis. See Figure 26 and Figure 27 for correct seal orientation and positioning.

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

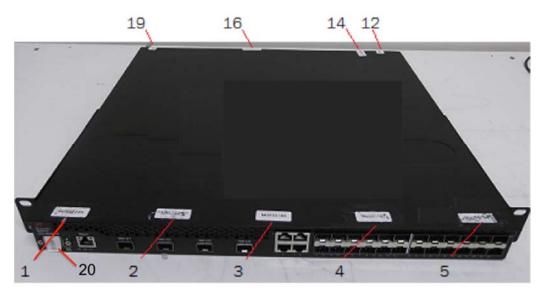


Figure 23 - Top front view of Brocade CER 2024F-4X-RT device with security seals

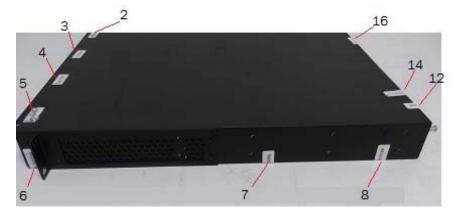


Figure 24 - Right side view of Brocade CER 2024F-4X-RT device with security seals

Figure 25 - Left side view of Brocade CER 2024F-4X-RT device with security seals

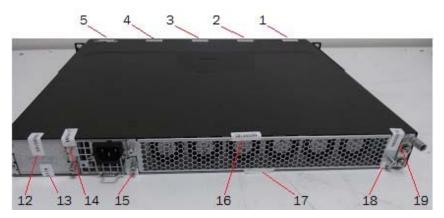


Figure 26 - Rear view of Brocade CER 2024F-4X-RT device with security seals

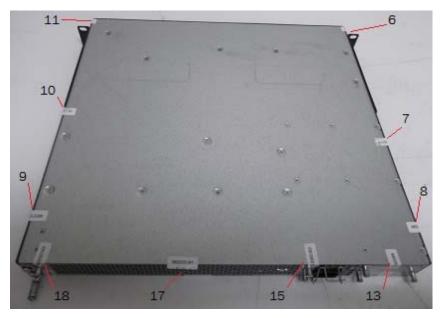


Figure 27 - Bottom view of Brocade CER 2024F-4X-RT device with security seals

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

12.2 Brocade CES 2000 series devices

12.2.1 CES 2024C-4X devices

Use the figures in this section as a guide for security seal placement on Brocade NetIron CES 2024C-4X device. Brocade NetIron CES 2024C-4X device require the placement of twenty (20) seals:

- Top front: Affix one (1) seal over each flat head that connects the top cover to the base of the chassis. Five (5) seals are needed to complete this step of the procedure (Seals 1 through 5). One (1) seal is placed vertically over the console port (Seal 20). See Figure 28 for the correct seal orientation and positioning.
- Right and left sides: Affix three (3) seals on the left and right sides of the device. The seals must be
 vertically oriented, cover the flathead screws that attach the top cover to the base of the chassis and
 wrap around to the bottom of the chassis. Six (6) seals are needed to complete this step of the
 procedure (Seals 6 through 11). See Figure 29 and Figure 30 for correct seal orientation. The
 orientation and placement of seals on the left and right sides mirrors each other.
- Rear: Affix eight (8) seals across the back of the chassis to inhibit the removal of a power supply, power supply filler panel or fan module. Seal 12 wraps from the top cover to the filler panel. Seal 13 wraps from the bottom cover of the chassis to the filler panel. Seal 14 wraps from the top cover to the power supply module. Seals 16 and 18 wrap from the top cover to the fan module. Seal 15 wraps from the power supply module to the bottom of the chassis. Seals 17 and 19 wrap from the fan module to the bottom of the chassis. See Figure 31 and Figure 32 for correct seal orientation and positioning.

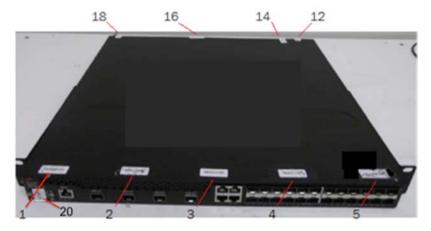


Figure 28 - Top front view of Brocade CES 2024C-4X device with security seals



Figure 29 - Right side view of Brocade CES 2024C-4X device with security seals

Figure 30 - Left side view of Brocade CES 2024C-4X device with security seals

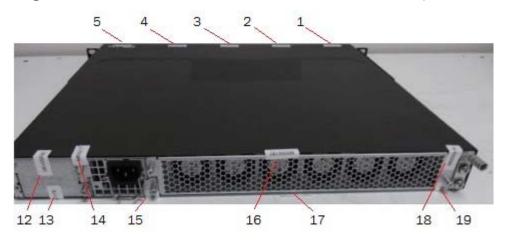


Figure 31 - Rear view of Brocade CES 2024C-4X device with security seals

Figure 32 - Bottom view of Brocade CES 2024C-4X device with security seals

12.2.2 CES 2024F-4X devices

Use the figures in this section as a guide for security seal placement on Brocade NetIron CES 2024F-4X device. Brocade NetIron CES 2024F-4X device require the placement of twenty (20) seals:

- Top front: Affix one (1) seal over each flat head that connects the top cover to the base of the chassis. Five (5) seals are needed to complete this step of the procedure (Seals 1 through 5). One (1) seal is placed vertically over the console port (Seal 20). See Figure 33 for the correct seal orientation and positioning.
- Right and left sides: Affix three (3) seals on the left and right sides of the device. The seals must be
 vertically oriented, cover the flathead screws that attach the top cover to the base of the chassis and
 wrap around to the bottom of the chassis. 6 seals are needed to complete this step of the procedure
 (Seals 6 through 11). See Figure 34 and Figure 35 for correct seal orientation. The orientation and
 placement of seals on the left and right sides mirrors each other.
- Rear: Affix eight (8) seals across the back of the chassis to inhibit the removal of a power supply, power supply filler panel or fan module. Seal 12 wraps from the top cover to the filler panel. Seal 13 wraps from the bottom of the chassis to the filler panel. Seal 14 wraps from the top cover to the power supply module. Seals 16 and 18 wrap from the top cover to the fan module. Seal 15 touches the power supply module before wrapping onto the bottom of the chassis. Seals 17 and 19 wrap from the fan module to the bottom of the chassis. See Figure 36 and Figure 37 for correct seal orientation and positioning.

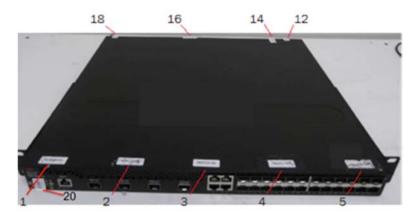


Figure 33 - Top front view of Brocade CES 2024F-4X device with security seals

Figure 34 - Right side view of Brocade CES 2024F-4X device with security seals

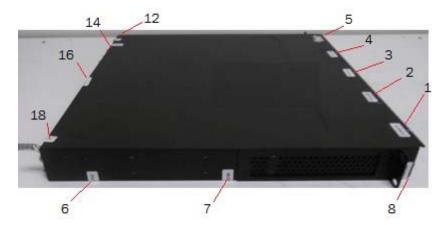


Figure 35 - Left side view of Brocade CES 2024F-4X device with security seals

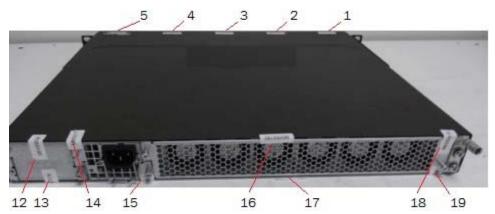


Figure 36 - Rear side view of Brocade CES 2024F-4X device with security seals



Figure 37 - Bottom view of Brocade CES 2024F-4X device with security seals

13 Appendix B: Critical Security Parameters

The module supports the following CSPs and public keys:

13.1 Authentication Key

- 1) Local Crypto-officer Password
- Description: Locally configured password used to authenticate operators (8 to 48 characters)
- Type: Authentication data
- Generation: N/A
- Establishment: N/A
- Entry: Entered AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session
- Output: Output AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session
- Storage: Plaintext in Compact Flash
- Key-to-Entity: user
- Zeroization: "fips zeroize all" command
- 2) Local Port Administrator Password
- Description: Locally configured password used to authenticate operators (8 to 48 characters)
- Type: Authentication data
- Generation: N/A
- Establishment: N/A
- Entry: Entered AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session
- Output: Output AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session
- Storage: Plaintext in Compact Flash
- Key-to-Entity: user
- Zeroization: "fips zeroize all" command
- 3) Local User Password
- Description: Locally configured password used to authenticate operators (8 to 48 characters)
- Type: Authentication data
- Generation: N/A
- Establishment: N/A
- Entry: Entered AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session
- Output: Output AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session
- Storage: Plaintext in Compact Flash
- Key-to-Entity: user
- Zeroization: "fips zeroize all" command

- 4) SSHv2/SCP Authentication Key (HMAC-SHA-1, 160 bits)
- Description: Session authentication key used to authenticate and provide integrity of SSHv2 session
- Type: HMAC-SHA-1
- Generation: N/A
- Establishment: SSHv2 DH Key Agreement and SSHv2 KDF (SP800-135 Section 5.2); allowed method as per FIPS 140-2 IG D.8 Scenario 4
- Entry: N/A- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: User
- Zeroization: Session termination and "fips zeroize all" command
- 5) TLS Authentication Key
- Description: HMAC-SHA-1 key (20 bytes) used to provide data authentication for TLS v1.0/1.1 sessions; HMAC-SHA-256 key (32 bytes) used to provide data authentication for TLS v1.2 sessions
- Type: TLS v1.0/1.1 (HMAC-SHA-1); TLS v1.2 (HMAC-SHA-256)
- Generation: N/A
- Establishment: TLS v1.0/1.1 and TLS v1.2 KDF as per SP800-135 Section 4.2.1 & 4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4
- Entry: N/A- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: user
- Zeroization: Session termination and "fips zeroize all" command

13.2 KDF

- 6) SSHv2 KDF Internal State
- Description: Used to generate Host encryption and authentication key on MP
- Type: SHA-256
- Generation: N/A
- Establishment: SSHv2 DH Key Agreement and SSHv2 KDF (SP800-135 Section 5.2); allowed method as per FIPS 140-2 IG D.8 Scenario 4
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: user
- Zeroization: Session termination and "fips zeroize all" command

7) TLS KDF Internal State

- Description: Values of the KDF internal state on MP
- Type: TLS v1.0/1.1 (HMAC-SHA-1/HMAC-MD5); TLS v1.2 (HMAC-SHA-256)
- Generation: N/A
- Establishment: TLS v1.0/1.1 and TLS v1.2 KDF as per SP800-135 Section 4.2.1 & 4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4
- Entry: N/A- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: user
- Zeroization: Session termination and "fips zeroize all" command

8) SNMPv3 KDF State

- Description: SHA-1 Key Localization Function
- Generation: N/A
- Establishment: SNMPv3 KDF (SP800-135 Section 5.4); allowed method as per FIPS 140-2 IG D.8 Scenario 4
- Entry: N/A- Output: N/A
- Storage: Plaintext in RAM
- Key-To-Entity: User
- Zeroization: Session termination and "fips zeroize all" command

13.3 Management card (MP) DRBG

9) MP DRBG Internal State

- Description: Internal State of SP800-90A CTR_DRBG
- Type: SP800-90A DRBG
- Generation: SP800-90A DRBG
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: Process
- Zeroization: "fips zeroize all" command

10) MP DRBG Seed

- Description: Seeding material for the SP800-90A CTR_DRBG

- Type: DRBG Seed material

- Generation: Internally generated using the NDRNG

- Establishment: N/A

- Entry: N/A- Output: N/A

Storage: Plaintext in RAMKey-to-Entity: Process

- Zeroization: "fips zeroize all" command

11) MP DRBG Value V

- Description: Internal State of SP800-90A CTR_DRBG: 128 bits

- Type: SP800-90A DRBG

- Generation: SP800-90A DRBG

- Establishment: N/A

- Entry: N/A- Output: N/A

- Storage: Plaintext in RAM

- Key-to-Entity: Process

- Zeroization: "fips zeroize all" command

12) MP DRBG Key

- Description: Internal State of SP800-90A CTR_DRBG: 256 bits

- Type: SP800-90A DRBG

- Generation: SP800-90A DRBG

- Establishment: N/A

- Entry: N/A- Output: N/A

- Storage: Plaintext in RAM

- Key-to-Entity: Process

- Zeroization: "fips zeroize all" command

13.4 Private Keys

*** SSHv2 ***

13) SSHv2 Client RSA Private Key

- Description: (2048 bit); Used to establish shared secrets (SSHv2)
- Type: RSA Private Key
- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method
- Establishment: N/A
- Entry: N/A- Output: N/A
- Storage: Plaintext in RAM, Plaintext in Compact Flash
- Key-to-Entity: Process
- Zeroization: "fips zeroize all" command

14) SSHv2 DH Group-14 Private Key 2048 bit MODP

- Description: Used in SCP and SSHv2 to establish a shared secret
- Type: DH Private Key
- Generation: As per SP800-133 Section 6.2, the random value (K) needed to generate key pairs for the finite field is the output of the SP800-90A DRBG; this is Approved as per SP800-56A
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: Process
- Zeroization: Session termination and "fips zeroize all" command

15) SSHv2 Host RSA Private Key (2048 bit)

- Description: Used to authenticate SSHv2 server to client
- Type: RSA Private Key
- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM and BER encoded (plaintext) in Compact Flash
- Key-to-Entity: Process
- Zeroization: "fips zeroize all" command

*** TLS ***

16) TLS Host RSA Private Key (RSA 2048 bit)

- Description: RSA key used to establish TLS v1.0/1.1 and TLS v1.2 sessions

- Type: RSA Private Key

- Generation: N/A

- Establishment: Key transport: AES Encrypted & HMAC-SHA-1 authenticated over SSHv2 session; Approved as per FIPS 140-2 IG D.9

- Entry: AES Encrypted and HMAC-SHA-1 authenticated over SSHv2 session

- Output: N/A

- Storage: Plaintext in RAM and DER encoded (plaintext) in Compact Flash

- Key-to-Entity: Process

- Zeroization: "fips zeroize all" command

17) TLS Host DH Group-14 Private Key 2048 bit MODP

- Description: Used in TLS to establish a Pre-Master secret

- Type: DH Private Key

- Generation: As per SP800-133 Section 6.2, the random value (K) needed to generate key pairs for the finite field is the output of the SP800-90A DRBG; this is Approved as per SP800-56A

- Establishment: N/A

- Entry: N/A- Output: N/A

- Storage: Plaintext in RAM

- Key-to-Entity: Process

- Zeroization: Session termination and "fips zeroize all" command

13.5 Public Keys

*** SSHv2 ***

18) SSHv2 Client RSA Public Key

- Description: (2048 bit); Used to establish shared secrets (SSHv2)

- Type: RSA Public Key

- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method

- Establishment: N/A

- Entry: N/A

- Output: Plaintext

- Storage: Plaintext in RAM, Plaintext in Compact Flash

- Key-to-Entity: Process

19) SSHv2 DH Group-14 Peer Public Key 2048 bit MODP

- Description: Used in SCP and SSHv2 to establish a shared secret

- Type: DH Peer Public Key

Generation: N/AEstablishment: N/AEntry: Plaintext

- Output: N/A

- Storage: Plaintext in RAM

- Key-to-Entity: Process

20) SSHv2 DH Group-14 Public Key 2048 bit MODP

- Description: Used in SCP and SSHv2 to establish a shared secret

- Type: DH Public Key

- Generation: As per SP800-133 Section 6.2, the random value (K) needed to generate key pairs for the finite field is the output of the SP800-90A DRBG; this is Approved as per SP800-56A

- Establishment: N/A

- Entry: N/A

- Output: Plaintext

- Storage: Plaintext in RAM, Plaintext in Compact Flash

- Key-to-Entity: Process

21) SSHv2 Host RSA Public Key (2048 bit)

- Description: Used to establish shared secrets (SSHv2)

- Type: RSA Public Key

- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method

- Establishment: N/A

- Latabilarinierit. I

- Entry: N/A

- Output: Plaintext

- Storage: Plaintext in RAM and BER encoded (plaintext) in Compact Flash

- Key-to-Entity: Process

*** TLS ***

22) TLS Host RSA Public Key (RSA 2048 bit)

- Description: Presented to peer during TLS Handshake.
- Type: TLS host Public key
- Generation: N/A
- Establishment: Key transport: AES Encrypted & HMAC-SHA-1 authenticated over SSHv2 session; Approved as per FIPS 140-2 IG D.9
- Entry: AES Encrypted and HMAC-SHA-1 authenticated over SSHv2 session
- Output: Plaintext
- Storage: Plaintext in RAM, Plaintext in Compact Flash
- Key-to-Entity: Process

23) TLS Peer Public Key (RSA 2048 bit)

- Description: Used to authenticate the peer
- Type: TLS Peer Public Key
- Generation: N/A
- Establishment: N/A
- Entry: Plaintext during TLS v1.0/1.1 and TLS v1.2 handshake protocol
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: Process

24) TLS Host DH Group-14 Public Key 2048 bit MODP

- Description: Used by peer for establishment of the TLS pre-master secret.
- Type: DH Public Key
- Generation: As per SP800-133 Section 6.2, the random value (K) needed to generate key pairs for the finite field is the output of the SP800-90A DRBG; this is Approved as per SP800-56A
- Establishment: N/A
- Entry: N/A
- Output: Plaintext during TLS v1.0/1.1 and TLS v1.2 handshake protocol
- Storage: Plaintext in RAM
- Key-to-Entity: Process

25) TLS Peer DH Group-14 Public Key 2048 bit MODP

- Description: Used in TLS to establish a TLS Pre-Master Secret

- Type: DH Public Key- Generation: N/A- Establishment: N/A

- Entry: Plaintext during TLS v1.0/1.1 and TLS v1.2 handshake protocol

- Output: N/A

Storage: Plaintext in RAMKey-to-Entity: Process

*** Firmware ***

26) Firmware Load RSA Public Key

- Description: RSA 2048-bit public key used to verify signature of firmware of the module

- Type: RSA Public Key

- Generation: N/A, Generated outside the module

- Establishment: N/A

- Entry: Through firmware update

- Output: N/A

- Storage: Plaintext in RAM, Plaintext in Compact Flash

- Key-to-Entity: Process

13.6 Session Keys

*** SSHv2 ***

27) SSHv2/SCP Session Keys (128, 192 and 256 bit AES CBC and AES CTR)

- Description: AES encryption key used to secure SSHv2/SCP on MP

- Type: AES CBC Key

- Generation: N/A

- Establishment: SSHv2 DH Key Agreement and SSHv2 KDF (SP800-135 Section 5.2); allowed method as per FIPS 140-2 IG D.8 Scenario 4

- Entry: N/A- Output: N/A

- Storage: Plaintext in RAM

-Key-to-Entity: user

- Zeroization: Session termination and "fips zeroize all" command

*** TLS ***

28) TLS Session Key

- Description: 128 or 256 bit AES CBC key used to secure TLS v1.0/1.1 and TLS v1.2 sessions on MP

Type: AES CBCGeneration: N/A

- Establishment: TLS v1.0/1.1 KDF and TLS v1.2 KDF as per SP800-135 Section 4.2.1 & 4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4

- Entry: N/A- Output: N/A

- Storage: Plaintext in RAM

- Key-to-Entity: user

- Zeroization: Session termination and "fips zeroize all" command

13.7 Shared Secret

*** RADIUS ***

29) RADIUS Secret

- Description: Used to authenticate the RADIUS server (8 to 64 characters) on MP

- Type: Authentication data

- Generation: N/A- Establishment: N/A

- Entry: Entered AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session

- Output: Output AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session

- Storage: Plaintext in RAM and Compact Flash

- Key-to-Entity: Process

- Zeroization: "fips zeroize all" command

*** SNMPv3 ***

30) SNMPv3 secret

- Description: Used for authentication (SHA1, Password is 8 to 20 characters long) and for privacy (AES, Password 12 to 16 characters)
- Type: Authentication data and privacy
- Generation: N/A generated outside of the module
- Establishment: N/A
- Entry: Configured by the operator, entered encrypted/authenticated over SSHv2 session
- Output: SHA1 hashed in configuration, output encrypted / authenticated over SSHv2 session
- Storage: SHA1 digest and AES are stored in Compact Flash
- Key-to-Entity: Process: user
- Zeroization: Session termination and "fips zeroize all" command

31) NTP secret

- Description: Authentication (SHA1, Password is 8 to 16 characters long)
- Type: Authentication data
- Generation: N/A generated outside of the module
- Establishment: N/A
- Entry: Entered AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session
- Output: Entered AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session
- Storage: Plaintext in RAM and Compact Flash
- Key-to-Entity: Process: user
- Zeroization: Session termination and "fips zeroize all" command
- *** SSHv2 ***

32) SSHv2 DH Shared Secret Key (2048 bit)

- Description: Output from the DH Key agreement primitive (K) and (H). This key is used by SSHv2 KDF to derive (client and server) session keys on MP.
- Type: DH Shared Secret Key
- Generation: N/A
- Establishment: SSHv2 DH Key Agreement; allowed method as per FIPS 140-2 IG D.8 Scenario 4.
- Entry: N/A
- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: user
- Zeroization: Session termination and "fips zeroize all" command
- *** TACACS+ ***

33) TACACS+ Secret

- Description: Used to authenticate the TACACS+ packets from the server on MP. Shared secret size is between 8 to 64 characters long
- Type: Authentication data
- Generation: N/A
- Establishment: N/A
- Entry: Entered AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session
- Output: Output AES encrypted & HMAC-SHA-1 authenticated over SSHv2 session
- Storage: Plaintext in RAM and Compact Flash
- Key-to-Entity: Process
- Zeroization: "fips zeroize all" command

*** TLS ***

34) TLS Master Secret

- Description: 48 bytes secret value used to establish the TLS Session Key and TLS Authentication Key on MP
- Type: TLS v1.0/1.1 and TLS v1.2 CSP
- Generation: N/A
- Establishment: TLS v1.0/1.1 and TLS v1.2 KDF as per SP800-135 Section 4.2.1 & 4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4
- Entry: N/A- Output: N/A
- Storage: Plaintext in RAM
- Key-to-Entity: user
- Zeroization: Session termination and "fips zeroize all" command

35) TLS Pre-Master Secret

- Description: Secret value used to establish the Session and Authentication key on MP
- Type: 48 bytes TLS v1.0/1.1 and TLS v1.2 CSP
- Generation: Generated when the module behaves as a TLS Client when using RSA key transport
- Establishment: Key agreement: TLS DH Key Agreement: allowed method as per FIPS 140-2 IG D.8 Scenario 4
- Entry: N/A
- Output: RSA key wrapped over TLS v1.0/1.1 and TLS v1.2 session when using RSA key transport
- Storage: Plaintext in RAM
- Key-to-Entity: user
- Zeroization: Session termination and "fips zeroize all" command

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

14 Appendix C: CKG as per SP800-133

In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) as per SP800-133 (vendor affirmed). The resulting generated seed, for asymmetric key generation, is the unmodified output from SP800-90A DRBG. Please see Appendix B above for further details.

15 Appendix D: Components Excluded from FIPS 140-2 Requirements

The following SKUs do not have any security relevance and have been excluded from FIPS 140-2 requirements:

SKU	MFG Part Number	Brief Description
RPS9DC	P/N:80-1003869-02	500W DC power supply for NetIron CER/CES series

Table 33 – SKU Excluded from FIPS 140-2 requirement – CES 2000 series and CER 200 series DC Power Supply Module

REST OF THIS PAGE WAS INTENTIONALLY LEFT BLANK

Brocade® NetIron® CER 2000 Series Ethernet Routers and Brocade NetIron® CES 2000 Series Ethernet Switc	hes