Hewlett Packard Enterprise

HPE FlexFabric 5700, 5900 and 5920 Switch Series

FIPS 140-2 Non-Proprietary Security Policy

Security Level 2 Validation

Version 1.00

June 2017

Copyright Hewlett-Packard Development Company, L.P 2017, May be reproduced only in its original entirety [without revision].

FIPS 140-2 Non-Proprietary Security Policy for HPE FlexFabric 5700, 5900 and 5920 Switch Series

Revision Record

Date	Revision Version	Change Description	Author
2017-02-01	1.00	Initial version	HPE

Table of Contents

1 Introduction	8
2 Overview	9
2.1 Comware Switch Block Level Diagram	. 10
2.2 HPE FlexFabric 5700 Switch Series	. 13
2.2.1 Product overview	. 13
2.2.2 Test Modules	. 13
2.2.3 Opacity shield and tamper evidence label	. 13
2.3 HPE FlexFabric 5900 Switch Series	
2.3.1 Product overview	
2.3.2 Test Modules	
2.3.3 Opacity shield and tamper evidence label	
2.4 HPE FlexFabric 5920 Switch	
2.4.1 Product overview	
2.4.2 Test Modules	
2.4.3 Opacity shield and tamper evidence label	
3 Security Appliance Validation Level	. 26
4 Physical Characteristics and Security Appliance Interfaces	. 27
4.1 HPE FlexFabric 5700 Switch Series	
4.2 HPE FlexFabric 5900 Switch Series	. 27
4.3 HPE FlexFabric 5920 Switch Series	. 28
4.4 Physical Interfaces Mapping	. 28
5 Roles, Services, and Authentication	. 30
5.1 Roles	
5.2 Authentication Mechanisms	
6 Services, Key / CSP and Algorithm Tables	22
6.1 Services	
6.1.1 Unauthenticated Services	
6.1.2 Non-Approved Services	
6.2 Critical Security Parameters	
6.3 Approved Algorithms	
6.4 Allowed Algorithms	
6.5 Non-Approved Algorithms	. 70
7 Self-Tests	.73
7.1 Power-On Self-Tests	
7.2 Conditional Self-Tests	
9 Delivery and Operation	75
8 Delivery and Operation	
8.2 Secure Operation	
9 Physical Security Mechanism	
10 Mitigation of Other Attacks	. 79
11 Documentation References	
11.1 Obtaining documentation	. 80

FIPS 140-2 Non-Proprietary Security Policy for HPE FlexFabric 5700, 5900 and 5920 Switch Series

1.2 Technical support

TABLE OF TABLES

Table 1 Validation Level by Section	26
Table 2 Correspondence between Physical and Logical Interfaces	28
Table 3 Roles and Role description	30
Table 4 Crypto Officer Services	35
Table 5 User Services	43
Table 6 Critical Security Parameters	50
Table 7 Comware V7 Kernel – Approved Algorithms	63
Table 8 Comware V7 Firmware – Approved Algorithms	65
Table 9 Comware V7 Firmware - Allowed Algorithms	70
Table 10 Non-Approved Algorithms	70
Table 11 Power-On Self-Tests	73
Table 12 Conditional Self-Tests	74

TABLE OF FIGURES

Figure 1 Security Architecture Block Diagram
Figure 2 HPE FlexFabric 5700-32XGT-8XG-2QSFP+ Switch (JG898A) / HPE FlexFabric 5700-32XGT- 8XG-2QSFP+ TAA -Compliant Switch (JG899A)
Figure 3 HPE FlexFabric 5700-40XG-2QSFP+ Switch (JG896A) / HPE FlexFabric 5700-40XG-2QSFP+ TAA1-Compliant Switch (JG897A)
Figure 4 HPE FlexFabric 5700-48G-4XG-2QSFP+ Switch (JG894A) / HPE FlexFabric 5700-48G-4XG- 2QSFP+ TAA1-Compliant Switch (JG895A)
Figure 5 HPE FlexFabric 5700-32XGT-8XG-2QSFP+ Switch (JG898A) / HPE FlexFabric 5700-32XGT- 8XG-2QSFP+ TAA -Compliant Switch (JG899A) Tamper Evidence Labels and Opacity Shields 15
Figure 6 HPE FlexFabric 5700-40XG-2QSFP+ Switch (JG896A) / HPE FlexFabric 5700-40XG-2QSFP+ TAA1-Compliant Switch (JG897A) Tamper Evidence Labels and Opacity Shields
Figure 7 HPE FlexFabric 5700-48G-4XG-2QSFP+ Switch (JG894A) / HPE FlexFabric 5700-48G-4XG- 2QSFP+ TAA1-Compliant Switch (JG895A) Tamper Evidence Labels and Opacity Shields

Figure 8 HPE FlexFabric 5900AF-48G-4XG-2QSFP+ Switch (JG510A) / HPE FlexFabric 5900AF-48G- 4XG-2QSFP+ TAA1-Compliant Switch (JH038A)
Figure 9 HPE FlexFabric 5900AF-48XG-4QSFP+ Switch (JG772A) / HPE FlexFabric 5900AF-48XG- 4QSFP+ TAA1-Compliant Switch (JG554A)
Figure 10 HPE FlexFabric 5900AF-48XGT-4QSFP+ Switch (JG336A) / HPE FlexFabric 5900AF- 48XGT-4QSFP+ TAA1-Compliant Switch (JH037A)
Figure 11 HPE FlexFabric 5900CP-48XG-4QSFP+ Switch (JG838A) / HPE FlexFabric 5900CP-48XG- 4QSFP+ TAA-Compliant Switch (JH036A)
Figure 12 HPE FlexFabric 5900AF-48XG-4QSFP+ Switch (JG772A) / HPE FlexFabric 5900AF-48XG- 4QSFP+ TAA1-Compliant Switch (JG554A) Tamper Evidence Labels and Opacity Shields
Figure 13 HPE FlexFabric 5900AF-48G-4XG-2QSFP+ Switch (JG510A) / HPE FlexFabric 5900AF-48G- 4XG-2QSFP+ TAA1-Compliant Switch (JH038A) Tamper Evidence Labels and Opacity Shields . 21
Figure 14 HPE FlexFabric 5900AF-48XGT-4QSFP+ Switch (JG336A) / HPE FlexFabric 5900AF- 48XGT-4QSFP+ TAA1-Compliant Switch (JH037A) Tamper Evidence Labels and Opacity Shields
Figure 15 HPE FlexFabric 5900CP-48XG-4QSFP+ Switch (JG838A) / HPE FlexFabric 5900CP-48XG- 4QSFP+ TAA-Compliant Switch (JH036A) Tamper Evidence Labels and Opacity Shields
Figure 16 HPE FlexFabric 5920AF-24XG Switch (JG296A) / HPE FlexFabric 5920AF-24XG TAA- compliant Switch (JG555A)
Figure 17 HPE FlexFabric 5920AF-24XG Switch (JG296A) / HPE FlexFabric 5920AF-24XG TAA- compliant Switch (JG555A) Tamper Evidence Labels and Opacity Shields

FIPS 140-2 Non-Proprietary Security Policy for the HPE Networking Switches

Keywords: Security Policy, CSP, Roles, Service, Cryptographic Module List of abbreviations:

Abbreviation	Full spelling
AAA	Authentication, Authorization, and Accounting
AES	Advanced Encryption Standard
CF	Compact Flash
CLI	Command Line Interface
CMVP	Cryptographic Module Validation Program
CSP	Critical Security Parameter
DES	Data Encryption Standard
DOA	Dead on arrival
FCoE	Fibre Channel over Ethernet
FIPS	Federal Information Processing Standard
HMAC	Hash-based Message Authentication Code
HTTP	Hyper Text Transfer Protocol
IRF	Intelligent Resilient Framework
KAT	Known Answer Test
LED	Light Emitting Diode
LPU	Line Processing Unit
MAC	Message Authentication Code
MAN	Metropolitan Area Network
MPU	Main Processing Unit
NIST	National Institute of Standards and Technology
OAA	Open Application Architecture
OAP	Open Application Platform
PSU	Power Supply Unit
RADIUS	Remote Authentication Dial In User Service
RAM	Random Access Memory
RSA	Rivest Shamir and Adleman method for asymmetric encryption
SFP	Small Form-Factor Plugable

Abbreviation	Full spelling
SFP+	Enhanced Small Form-Factor Pluggable
SHA	Secure Hash Algorithm
SRPU	Switching and routing processor unit
SSL	Secure Sockets Layer
XFP	10 Gigabit Small Form-Factor Pluggable

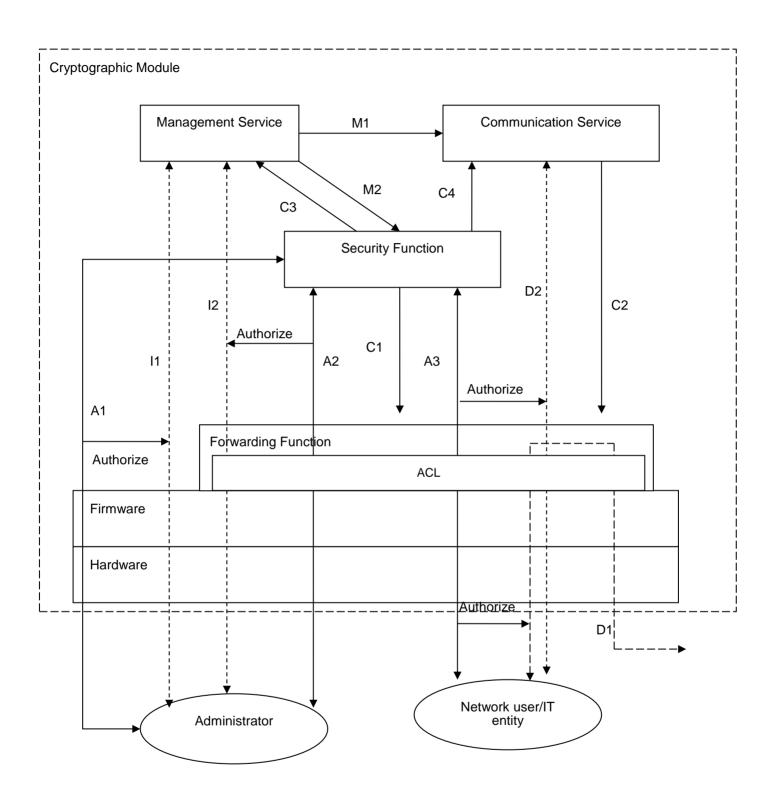
1 Introduction

This document is a non-proprietary Cryptographic Module Security Policy for HPE FlexFabric 5700, 5900 and 5920 Switch Series. The policy describes how the HPE FlexFabric 5700, 5900 and 5920 Switch Series meet the requirements of FIPS 140-2. This document also describes how to configure the HPE FlexFabric 5700, 5900 and 5920 Switch Series in FIPS 140-2 mode. This document was prepared as part of the FIPS 140-2 Security Level 2 validation.

FIPS 140-2 standard details the U.S. Government requirements for cryptographic security appliances. More information about the standard and validation program is available on the NIST website at <u>csrc.nist.gov/groups/STM/cmvp/</u>.

This document includes the following sections:

- Overview
- Security Appliance Validation Level
- Physical Characteristics and Security Appliance Interfaces
- Roles, Services and Authentication
- Services, Key / CSP and Algorithm Tables
- Self-Tests
- Delivery and Operation
- Physical Security Mechanism
- Mitigation of Other Attacks
- Obtaining Documentation and Technical Assistance


NOTE: The following names are referencing the same thing: HPE FlexFabric, HPE Networking devices and HPE Networking Switches.

2 Overview

The HPE Networking devices are suitable for a range of uses: at the edge of a network, connecting server clusters in a data center, in an enterprise LAN core, and in large-scale industrial networks and campus networks. Each device is based on the HPE Comware Software, Version 7.1.045 platform.

The HPE FlexFabric 5700, 5900 and 5920 Switch Series modules are being validated as a multi-chip standalone module at FIPS 140-2 Security Level 2.

2.1 Comware Switch Block Level Diagram

Figure 1 Security Architecture Block Diagram

The cryptographic module provides the following services externally:

1. Management: supports various login methods and configuration interfaces for managing the system.

FIPS 140-2 Non-Proprietary Security Policy for HPE FlexFabric 5700, 5900 and 5920 Switch Series

2. Communication: supports interoperation between the communication protocols at different layers in the protocol stack, such as 802.3, PPP, and IP, and uses the forwarding function to receive/send packets for the local device and forward packets for other devices.

To ensure security, the security function provides appropriate access control for the cryptographic module to identify and authenticate the external entities attempting to access them, and authorize the external entities that pass the identification and authentication. The access control function also records the external entities' accesses to the services, such as the beginning time and end time of a visit. The figure above shows how administrators (crypto officer, user role) and network users access to a cryptographic module service.

M2: The administrator accesses the management service to configure the security function.

M1: The administrator accesses the management service to configure the communication service.

C1: The security function issues the forwarding control ACL or other control measures to the forwarding function for security processing like packet filtering.

D2: The communication service uses the forwarding function to receive and send packets for the local device.

C2: The communication service issues routing entries or MAC address entries to the forwarding function for forwarding packets for other devices.

A1: The administrator connects to a physical management interface (the console for example) of the cryptographic module to access the system management access control service of the security function. If the access succeeds, the I1 access to the management service is authorized. The security function uses the C3 authorization action to authorize the administrator administrative roles.

11: The administrator accesses the management service through the physical management interface.

A2: The administrator connects to a network interface (such as an Ethernet interface) of the cryptographic module to access the system management access control service of the security function. If the access succeeds, the I2 access to the management service is authorized.

I2: The administrator accesses the management service through the network interface.

A3: A network user connects to a network interface of the cryptographic module to access the communication access control service of the security function. If the access succeeds, D1/D2 are authorized. The security function uses the C4 authorization action to authorize the network user the communication service access privilege, namely, the network access privilege.

D1: Forwarding packets for the network user.

To facilitate cryptographic module management, the administrator is allowed to access the system management service by remote login through a network interface. To prevent the authentication data of the administrator (such as the username and password) from being intercepted and prevent the operation commands from being tampered, the cryptographic module provides the SSH2/HTTPS for secure remote management.

For the management service, the cryptographic module defines predefined roles and custom user roles, which service differs as result of different access permissions.

Each user can switch to a different user role without reconnecting to the device. To switch to a different user role, a user must provide the role switching authentication information. The authentication is role-based. All users can be authenticated locally, and optionally supports authentication via a RADIUS and TACACS+ server.

FIPS 140-2 Non-Proprietary Security Policy for HPE FlexFabric 5700, 5900 and 5920 Switch Series

If needed, IPSec can be configured to protect the network data.

No external programs can take control of the cryptographic module, because the cryptographic module does not provide the general-purpose computing service. This ensures the absolute control of the cryptographic module.

2.2 HPE FlexFabric 5700 Switch Series

2.2.1 Product overview

The HPE FlexFabric 5700 Switch Series is a family of high-performance, low latency, access switches aimed at expanding port connectivity while adding local switching capacity. The FlexFabric 5700 Switch Series is part of the Hewlett Packard Enterprise (HPE) FlexFabric architecture's HPE FlexFabric solution.

Ideally suited for deployment at the server access layer of large and medium sized enterprise data centers. The HPE FlexFabric 5700 Switch Series delivers lower TCO while enhancing networking performance to support demanding virtualized applications and server-to-server traffic. Resilience and ease of management come hand-in-hand with the FlexFabric 5700. While IRF reduces management complexities by up to 88 percent, it also delivers agility with <50 ms convergence time. A summary of the highlights of the HPE FlexFabric 5700 Switch Series:

- High-performance port expansion with true local switching capacity
- HPE Intelligent Resilient Fabric (IRF) for virtualization and two-tier networks
- High 1/10 GbE wire speed ports with 40 GbE uplinks
- Layer 2 and light Layer 3 features with static routing and RIP
- Convergence ready with DCB, FCoE, and TRILL

2.2.2 Test Modules

Testing included six models in the HPE FlexFabric 5700 series

- HPE FlexFabric 5700-32XGT-8XG-2QSFP+ Switch (JG898A)
- HPE FlexFabric 5700-32XGT-8XG-2QSFP+ TAA¹-Compliant Switch (JG899A)
- HPE FlexFabric 5700-40XG-2QSFP+ Switch (JG896A)
- HPE FlexFabric 5700-40XG-2QSFP+ TAA¹-Compliant Switch (JG897A)
- HPE FlexFabric 5700-48G-4XG-2QSFP+ Switch (JG894A)
- HPE FlexFabric 5700-48G-4XG-2QSFP+ TAA¹-Compliant Switch (JG895A)

2.2.3 Opacity shield and tamper evidence label

The following figures show representatives of the series, with and without opacity shield and tamper evidence label.

¹ Trade Agreements Act (TAA) products are identical in hardware and software. The TAA designation indicates the location of manufacturing.

FIPS 140-2 Non-Proprietary Security Policy for HPE FlexFabric 5700, 5900 and 5920 Switch Series

Figure 2 HPE FlexFabric 5700-32XGT-8XG-2QSFP+ Switch (JG898A) / HPE FlexFabric 5700-32XGT-8XG-2QSFP+ TAA -Compliant Switch (JG899A)

Figure 3 HPE FlexFabric 5700-40XG-2QSFP+ Switch (JG896A) / HPE FlexFabric 5700-40XG-2QSFP+ TAA1-Compliant Switch (JG897A)

Figure 4 HPE FlexFabric 5700-48G-4XG-2QSFP+ Switch (JG894A) / HPE FlexFabric 5700-48G-4XG-2QSFP+ TAA1-Compliant Switch (JG895A)

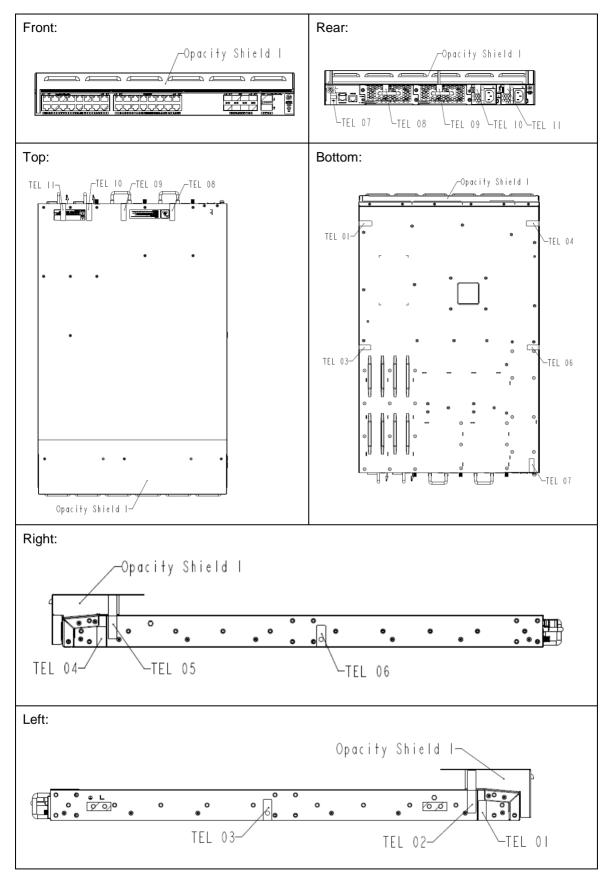


Figure 5 HPE FlexFabric 5700-32XGT-8XG-2QSFP+ Switch (JG898A) / HPE FlexFabric 5700-32XGT-8XG-2QSFP+ TAA -Compliant Switch (JG899A) Tamper Evidence Labels and Opacity Shields

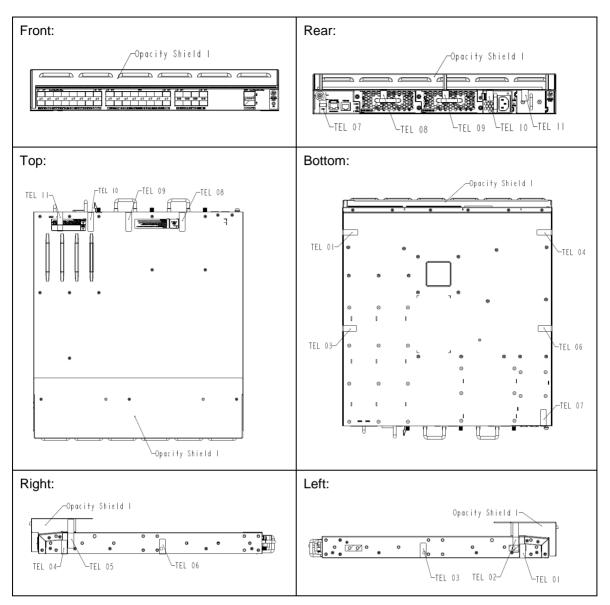


Figure 6 HPE FlexFabric 5700-40XG-2QSFP+ Switch (JG896A) / HPE FlexFabric 5700-40XG-2QSFP+ TAA1-Compliant Switch (JG897A) Tamper Evidence Labels and Opacity Shields

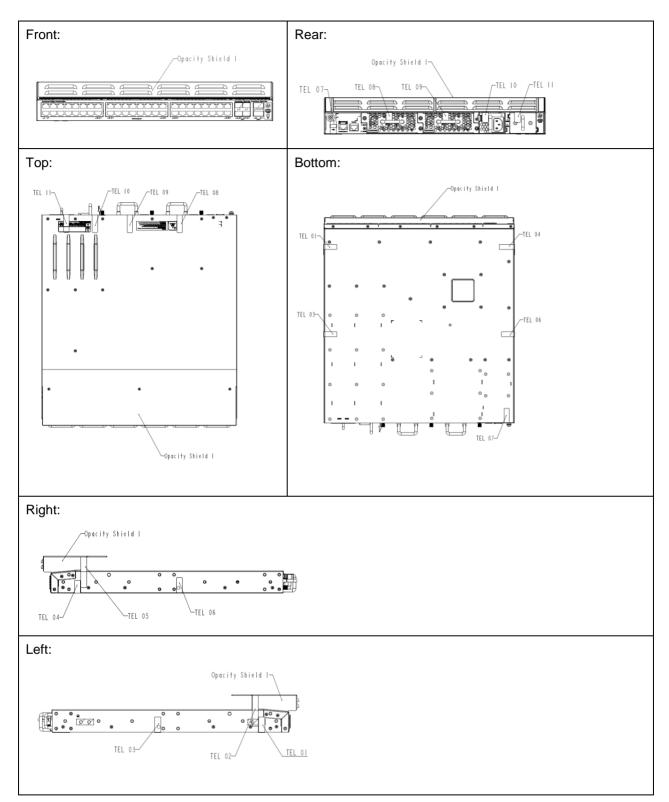


Figure 7 HPE FlexFabric 5700-48G-4XG-2QSFP+ Switch (JG894A) / HPE FlexFabric 5700-48G-4XG-2QSFP+ TAA1-Compliant Switch (JG895A) Tamper Evidence Labels and Opacity Shields

2.3 HPE FlexFabric 5900 Switch Series

2.3.1 Product overview

The HPE 5900 FlexFabric Switch Series is a family of high-density 10-GbE ultra-low latency top-of-rack (ToR) switches. The HPE 5900 series is part of the HPE FlexFabric solution module of the HPE FlexFabric architecture. The HPE 5900 switch is ideally suited for deployment at the server access layer of large enterprise data centers. It is also designed for deployment at the data center core layer of medium-sized enterprises. With the increase in virtualized applications and server-to-server traffic, customers now require ToR switch innovations that will meet their needs for higher-performance server connectivity, convergence of Ethernet and storage traffic, the capability to handle virtual environments, and ultra-low latency all in a single device.

- Cut-through design for ultra-low 10-GbE latency
- HPE IRF for virtualization/two-tier architecture
- High 10-GbE ToR port density with 40-GbE uplink
- IPv6 support in ToR with full L2/L3 features
- Convergence ready for DCB and FCoE

2.3.2 Test Modules

Testing included eight models in the HPE FlexFabric 5900 switch series

- HPE FlexFabric 5900AF-48G-4XG-2QSFP+ Switch (JG510A)
- HPE FlexFabric 5900AF-48G-4XG-2QSFP+ TAA¹-Compliant Switch (JH038A)
- HPE FlexFabric 5900AF-48XG-4QSFP+ Switch (JG772A)
- HPE FlexFabric 5900AF-48XG-4QSFP+ TAA¹-Compliant Switch (JG554A)
- HPE FlexFabric 5900AF-48XGT-4QSFP+ Switch (JG336A)
- HPE FlexFabric 5900AF-48XGT-4QSFP+ TAA¹-Compliant Switch (JH037A)
- HPE FlexFabric 5900CP-48XG-4QSFP+ Switch (JG838A)
- HPE FlexFabric 5900CP-48XG-4QSFP+ TAA¹-Compliant Switch (JH036A)

2.3.3 Opacity shield and tamper evidence label

The following figures show representatives of the series, with and without opacity shield and tamper evidence label.

Figure 8 HPE FlexFabric 5900AF-48G-4XG-2QSFP+ Switch (JG510A) / HPE FlexFabric 5900AF-48G-4XG-2QSFP+ TAA1-Compliant Switch (JH038A)

Figure 9 HPE FlexFabric 5900AF-48XG-4QSFP+ Switch (JG772A) / HPE FlexFabric 5900AF-48XG-4QSFP+ TAA1-Compliant Switch (JG554A)

Figure 10 HPE FlexFabric 5900AF-48XGT-4QSFP+ Switch (JG336A) / HPE FlexFabric 5900AF-48XGT-4QSFP+ TAA1-Compliant Switch (JH037A)

Figure 11 HPE FlexFabric 5900CP-48XG-4QSFP+ Switch (JG838A) / HPE FlexFabric 5900CP-48XG-4QSFP+ TAA-Compliant Switch (JH036A)

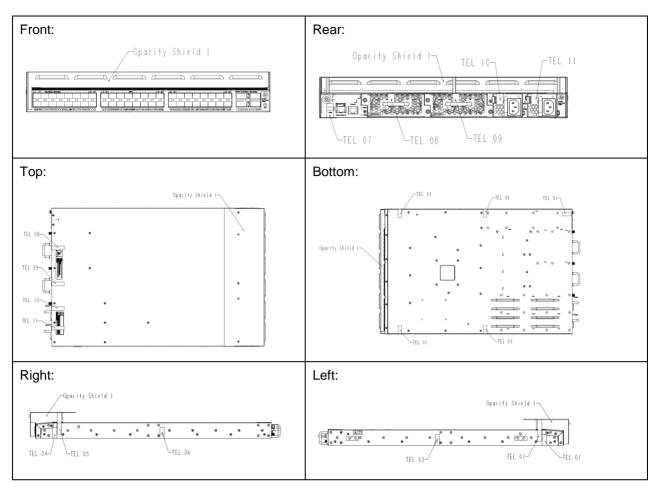


Figure 12 HPE FlexFabric 5900AF-48XG-4QSFP+ Switch (JG772A) / HPE FlexFabric 5900AF-48XG-4QSFP+ TAA1-Compliant Switch (JG554A) Tamper Evidence Labels and Opacity Shields

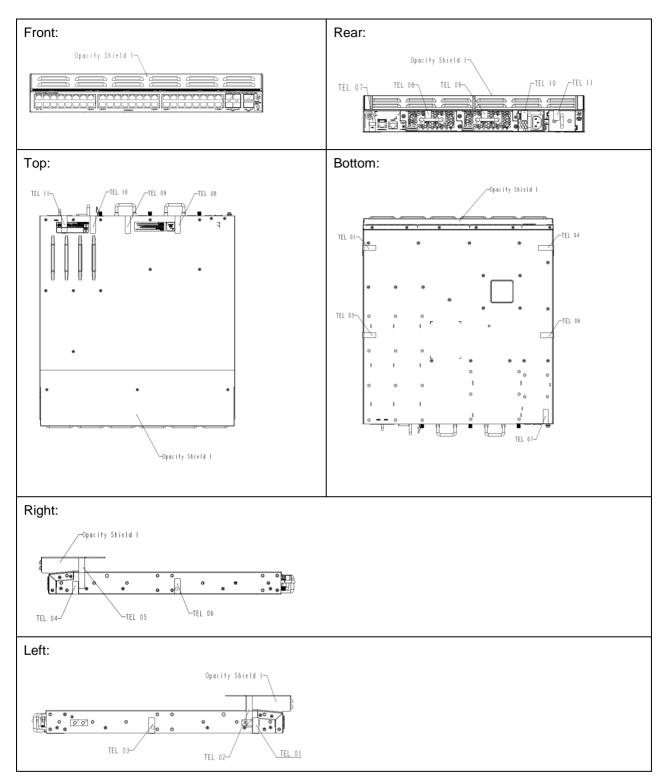
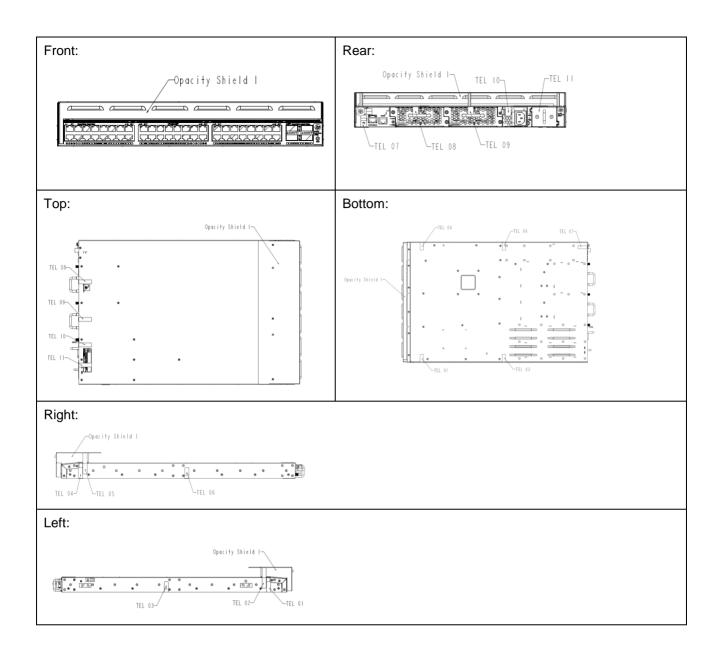



Figure 13 HPE FlexFabric 5900AF-48G-4XG-2QSFP+ Switch (JG510A) / HPE FlexFabric 5900AF-48G-4XG-2QSFP+ TAA1-Compliant Switch (JH038A) Tamper Evidence Labels and Opacity Shields

Figure 14 HPE FlexFabric 5900AF-48XGT-4QSFP+ Switch (JG336A) / HPE FlexFabric 5900AF-48XGT-4QSFP+ TAA1-Compliant Switch (JH037A) Tamper Evidence Labels and Opacity Shields

Front:	Rear:
Opacity Shield I	Opacity Shield I TEL IO TEL II TEL 07 TEL 08 TEL 09
Тор:	Bottom:

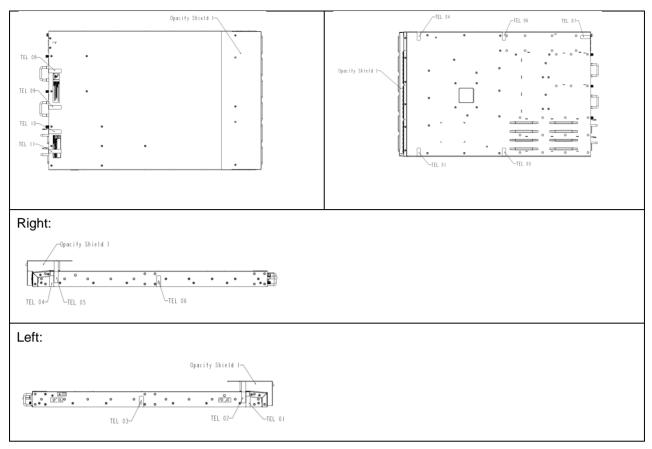


Figure 15 HPE FlexFabric 5900CP-48XG-4QSFP+ Switch (JG838A) / HPE FlexFabric 5900CP-48XG-4QSFP+ TAA-Compliant Switch (JH036A) Tamper Evidence Labels and Opacity Shields

2.4 HPE FlexFabric 5920 Switch

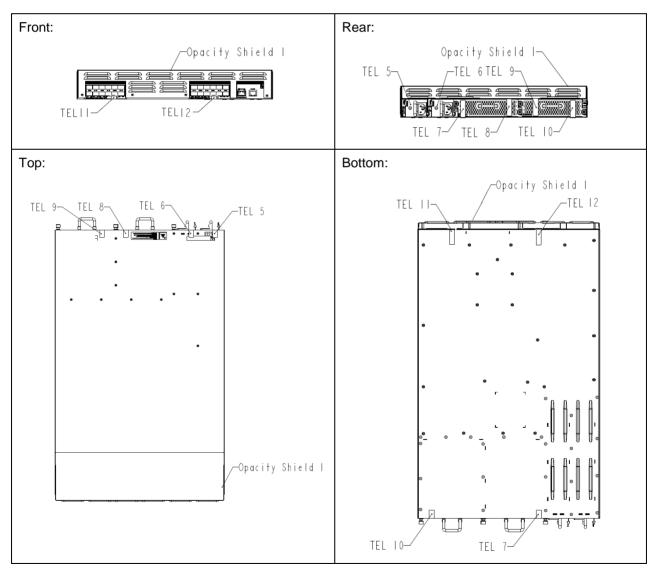
2.4.1 Product overview

The HPE FlexFabric 5920 Switch Series is made up of high-density 10-GbE, ultra-deep packet buffering, top-of-rack (ToR) switch. The series switch is part of the HPE FlexFabric solution module of the HPE FlexFabric architecture. This switch is ideally suited for deployments at the server access layer of large enterprise data centers. It is also designed for content delivery networks, especially when used to eliminate network congestion at the I/O that is associated with the heavy use of server virtualization, as well as bursty multimedia, storage applications, and other critical services. With the increase in virtualized applications and server-to-server traffic, customers now require ToR switch innovations that will meet their needs for higher-performance server connectivity, convergence of Ethernet and storage traffic, the capability to handle virtual environments, and ultra-deep packet buffering all in a single device.

- Ultra-deep packet buffering
- HPE IRF for virtualization and 2-tier architecture
- High 10-GbE ToR port density
- IPv6 support in ToR with full L2/L3 features
- TRILL and VEPA readiness for virtualized networks

2.4.2 Test Modules

Testing included two models in the HPE FlexFabric 5920 switch series:


- HPE FlexFabric 5920AF-24XG Switch (JG296A)
- HPE FlexFabric 5920AF-24XG TAA¹-compliant Switch (JG555A)

2.4.3 Opacity shield and tamper evidence label

The following figures show representatives of the series, with and without opacity shield and tamper evidence label.

Figure 16 HPE FlexFabric 5920AF-24XG Switch (JG296A) / HPE FlexFabric 5920AF-24XG TAA-compliant Switch (JG555A)

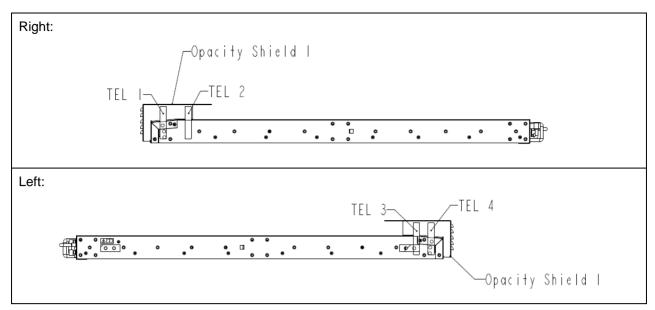


Figure 17 HPE FlexFabric 5920AF-24XG Switch (JG296A) / HPE FlexFabric 5920AF-24XG TAA-compliant Switch (JG555A) Tamper Evidence Labels and Opacity Shields

3 Security Appliance Validation Level

The following table lists the level of validation for each area in the FIPS PUB 140-2.

No.	Area	Level
1	Cryptographic Module Specification	2
2	Cryptographic Module Ports and Interfaces	2
3	Roles, Services, and Authentication	3
4	Finite State Model	2
5	Physical Security	2
6	Operational Environment	N/A
7	Cryptographic Key management	2
8	Electromagnetic Interface/Electromagnetic Compatibility	2
9	Self-Tests	2
10	Design Assurance	2
11	Mitigation of Other Attacks	N/A
12	Overall Level	2

Table 1 Validation Level by Section

4 Physical Characteristics and Security Appliance

Interfaces

4.1 HPE FlexFabric 5700 Switch Series

The HPE FlexFabric 5700 switch series is a multi-chip standalone security appliance, and the cryptographic boundary is defined as encompassing the "top," "front," "left," "right," and "bottom" surfaces of the case. The general components of the HPE FlexFabric 5700 switch series include firmware and hardware, which are placed in the three-dimensional space within the case.

The HPE FlexFabric 5700 switch provides:

- RJ-45 autosensing 10/100/1000 ports (IEEE 802.3 Type 10BASE-T, IEEE 802.3u Type 100BASE-TX, IEEE 802.3ab Type 1000BASE-T);
- Duplex: 10BASE-T/100BASE-TX: half or full;
- 1000BASE-T: full only
- fixed 1000/10000 SFP+ ports
- 2 QSFP+
- LEDs for system, power, and module status.
- Reset switch

ThedocumentsonHPEwebsite(http://h20566.www2.hpe.com/portal/site/hpsc/public/psi/home/?sp4ts.oid=7268889&ac.admitted=1470941035973.125225703.1938120508#manuals)describe the ports in detail along withthe interpretation of the LEDs.

4.2 HPE FlexFabric 5900 Switch Series

The HPE FlexFabric 5900 switch series is a multi-chip standalone security appliance, and the cryptographic boundary is defined as encompassing the "top," "front," "left," "right," and "bottom" surfaces of the case. The general components of the HPE FlexFabric 5900 switch series include firmware and hardware, which are placed in the three-dimensional space within the case.

The HPE FlexFabric 5900 switch provides:

- 12-port 40GbE QSFP+ module
- 24-port 1/10GbE SFP+ module
- 2-port 100GbE CXP/6-port 40GbE QSFP+ module
- A serial console port
- A management Gigabit Ethernet port.
- LEDs for system, power, and module status.

- USB 2.0 port.
- Reset switch

ThedocumentsonHPEwebsite(http://h20565.www2.hpe.com/portal/site/hpsc/public/psi/home/?sp4ts.oid=5221896#manuals)describe the ports in detail along with the interpretation of the LEDs.

4.3 HPE FlexFabric 5920 Switch Series

The HPE FlexFabric 5920 switch series is a multi-chip standalone security appliance, and the cryptographic boundary is defined as encompassing the "top," "front," "left," "right," and "bottom" surfaces of the case. The general components of the HPE FlexFabric 5920 switch series include firmware and hardware, which are placed in the three-dimensional space within the case.

The HPE FlexFabric 5920 switch series provides:

- 24 fixed 1000/10000 SFP+ ports
- 1 RJ-45 serial console port
- 1 RJ-45 out-of-band management port
- LEDs for system, power, and module status.
- USB 2.0 port.
- Reset switch

ThedocumentsonHPEwebsite(http://h20565.www2.hpe.com/portal/site/hpsc/public/psi/home/?sp4ts.oid=5230358#manuals)describe the ports in detail along with the interpretation of the LEDs.

4.4 Physical Interfaces Mapping

The physical interfaces provided by the HPE Networking products map to four FIPS 140-2 defined logical interface: data input, data output, control input and status output. Table 2 presents the mapping.

Table 2 Correspondence between Physical and Logical Interfaces

Physical Interface	FIPS 140-2 Logical Interface
Networking ports	Data Input Interface
Console port	
Management Ethernet port	
CF card slot	
USB ports	
Networking ports	Data Output Interface
Console port	
Management Ethernet port	
CF card slot	
USB ports	
Networking ports	Control Input Interface

FIPS 140-2 Non-Proprietary Security Policy for HPE FlexFabric 5700, 5900 and 5920 Switch Series

Physical Interface	FIPS 140-2 Logical Interface
Console port	
Management Ethernet port	
Reset Switch	
Port status LED mode switching button	
Networking ports	Status Output Interface
Console port	
Management Ethernet port	
LEDs	
Backplane	Power Interface

5 Roles, Services, and Authentication

5.1 **Roles**

The HPE FlexFabric 5700, 5900 and 5920 Switch Series provides 18 predefined roles and 64 custom user roles. There are 16 roles (0) in the device that operators may assume:

- network-admin, level-15, level-9 and security-audit which are the FIPS Crypto-Officer Role,
- network-operator, level 0 ~ level 8, level 10 ~ level 14 and 64 custom user roles which are defined as the FIPS User Role.

Table 3 presents the roles and roles description. The devices allow multiple management users to operate the appliance simultaneously.

The HPE Networking switches do not employ a maintenance interface and do not have a maintenance role.

FIPS Role	Comware Role Name	Role Description		
Crypto-Officer	network-admin	 Accesses all features and resources in the system, except for the display security-logfile summary, info-center security-logfile directory, and security-logfile save commands. 		
	level-15	Has the same rights as network-admin		
	Level-9	Has access to all features and resources except those in the following list.		
		 RBAC non-debugging commands. Local users. File management. Device management. The display history-command all command. 		
	security-audit	Security log manager. The user role has the following access to security log files:		
		 Access to the commands for displaying and maintaining security log files (for example, the dir, display security-logfile summary, and more commands). Access to the commands for managing security log files and security log file system (for example, the info-center security-logfile directory, mkdir, and security-logfile save commands). 		
		Only the security-audit user role has access to security log files.		
User	network-operator	 Accesses the display commands for all features and resources in the system, except for commands such as display history-command all and display security-logfile summary. Enables local authentication login users to change their own password. 		
	level-0	Has access to diagnostic commands, including ping, tracert, and ssh2.		
	level-1	Has access to the display commands of all features and resources in the system except display history-command all.		

 Table 3 Roles and Role description

	The level-1 user role also has all access rights of the user role level-0.
custom user role;	Have no access rights by default. Access rights are configurable.
level-2 to level-8; level-10 to level- 14	

5.2 Authentication Mechanisms

HPE networking devices support identity-based authentication, and role-based access control.

• Identity-based authentication

Each user is authenticated upon initial access to the device. The authentication is identitybased. All users can be authenticated locally, and optionally supports authentication via a RADIUS and TACACS+ server.

To logon to the appliances, an operator must connect to it through one of the management interfaces (console port, SSH) and provide a password.

A user must be authenticated using usernames and passwords. The minimum password length is 15 characters, and the maximum is 63. The passwords must contain at least one lower case letter (26), one upper case letter (26), one special character (32) and one numeric character (10). The remaining eleven characters can be a lower case letter (26), an upper case letter (26), a special character (32) and/or a numeric character (10) equaling 94 possibilities per character. Therefore, for a 15 characters password, the probability of randomly guessing the correct sequence is 1 in 3.16228xE^29² (this calculation is based on the use of the typical standard American QWERTY computer keyboard).

In order to guess the password in 1 minute with close to probability 1 requires 3.16228xE^29 trials, which is stronger than the one in a million chance required by FIPS 140-2. By default, the maximum number of consecutive failed login attempts is three and a user failing to log in after the specified number of attempts must wait for one minute before trying again. Using Anderson's formula to calculate the probability of guessing a password in 1 minute:

- P probability of guessing a password in specified period of time
- G number of guesses tested in 1 time unit
- T number of time units
- *N* number of possible passwords

Then $P \ge T \ge G / N (9.48682E-30 = 1 \ge 3 / 3.16228 \le 29)$

The probability of guessing a password in 1 minute is 9.48682E-30.

94^15 - 68^15 - 68^15 - 62^15 + 42^15 + 60^15 + 36^15 + 60^15 + 36^15 + 52^15 - 24^15 - 24^15 - 10^15 - 32^15 ≈ 3.16228xE^29

² Calculation is: 94^15 (total combinations of alpha, numeric, and special characters) - 68^15 (combinations with no uppercase letters) - 68^15 (combinations with no lowercase letters) - 84^15 (combinations with no numbers) - 62^15 (combinations with no special characters) + 42^15 (combinations with no uppercase letters and no lowercase letters) + 60^15 (combinations with no uppercase letters and no numbers) + 36^15 (combinations with no uppercase letters and no special characters) + 60^15 (combinations with no lowercase letters and no numbers) + 36^15 (combinations with no uppercase letters and no special characters) + 60^15 (combinations with no lowercase letters and no numbers) + 36^15 (combinations with no lowercase letters and no numbers) + 36^15 (combinations with no lowercase letters and no special characters) + 52^15 (combinations with no numbers and no special characters) - 24^15 (combinations with only uppercase letters) - 24^15 (combinations with only lowercase letters) - 10^15 (combinations with only numbers) - 32^15 (combinations with only special characters) ≈ 3.16228xE^29

Calculation without text:

FIPS 140-2 Non-Proprietary Security Policy for HPE FlexFabric 5700, 5900 and 5920 Switch Series

To provide additional password security, Comware 7.1 provides additional limits to the number of consecutive failed login attempts. If an FTP or VTY user fails authentication, the system adds the user to a password control blacklist. If a user fails to provide the correct password after the specified number of consecutive attempts, the system can take one of the following actions, based on the administrator's choice:

Blocks the user's login attempts until the user is manually removed from the password control blacklist.

Blocks the user's login attempts within a configurable period of time, and allows the user to log in again after the period of time elapses or the user is removed from the password control blacklist.

HPE Networking devices can also use certificate credentials using 2048 bit RSA keys and SHA-256; in such a case the security strength is 112 bits, so an attacker would have a 1 in 2^112 chance of a successful authentication which is much stronger than the one in a million chance required by FIPS 140-2. Certificate credentials using ECDSA keys with curves (P224, P-256, P-384, or P-521) and SHA algorithms (SHA-224, SHA-256, SHA-384, or SHA-512) are also available and provide a minimum of 112 bits security.

The users who try to log in or switch to a different user privilege level can be authenticated by RADIUS and TACACS+ Server. The minimum password length is 15 characters, and the maximum is 63. Therefore, for a 15 characters password, the probability of randomly guessing the correct sequence is one in 3.16228xE^29. The device (RADIUS client) and the RADIUS server use a shared key to authenticate RADIUS packets and encrypt user passwords exchanged between them. For more details, see RFC 2865: 3 Packet Format Authenticator field and 5.2 User-password.

Role-based access control

In HPE Comware 7.1.045, the command and resource access permissions are assigned to roles.

Users are given permission to access a set of commands and resources based on the users' user roles. Each user can have one or more roles. The user may alternate between authorized roles after first authenticating to the module.

6 Services, Key / CSP and Algorithm Tables

Assumptions, Assertions and Caveats

- 1. The preferred approach is to link Services to Keys/CSPs, Keys/CSPs to Algorithms and Algorithms to Services. When linkage is completed, there is a continuous loop among the three tables.
- 2. For linking the tables together, the goals are:
 - Confirm every Algorithm is listed at least once by a service.
 - Provide a direct mapping of the algorithm to each service that uses it.
 - Confirm every CSP is listed at least once by a service
 - Provide a direct mapping of the service to each CSP that it uses.
 - Provide a quick and easy way for the reviewer to navigate among the tables.

6.1 Services

Assumptions, Assertions and Caveats

- 1. The services table is the main focus of the validation. Preferably, it should be listed before the CSP and Algorithm tables.
- 2. Each service should map to the Key(s) / CSP(s) used by the service. It is not required that each service map to a Key / CSP.
- 3. Each service should be uniquely identifiable so the entries in the Algorithm Table can easily map to a service.

Services Table Column Definitions

1. Description

Objective of this column is to provide a brief description of the service.

- This column shall include a description of the service.
- Where applicable the service description should describe the action being taken.

2. Input

Objective of this column is to list the input to the service.

• List the type of input such as command, configuration data or output of another service.

3. <u>Output</u>

Objective of this column is to list the output of the service.

• List the type of output generated by the service.

4. <u>CSP Access</u>

Objective of this column is to provide additional information about the CSP utilized by the service.

- Where applicable this column shall include the unique CSP identifier.
- The CSP identifier should contain a hyperlink to the entry in the CSP table.
- 5. Available to role

Objective of this column is to identify the role that can utilize the service.

• This column shall include the name of the role that can utilize the service.

Table 4 Crypto Officer Services

[Description	Input	Output	CSP Access	Available to Role			
View Device Status								
1.	View currently running image version	Commands	Status of devices	None	Network-admin, level-15, level-9			
2.	View installed hardware components status and version	Commands	Status of devices	None	Network-admin, level-15, level-9			
View Running Status								
3.	View memory status, packet statistics, interface status, current running image version, current configuration, routing table, active sessions, temperature and SNMP MIB statistics.	Commands	Status of device functions	None	Network-admin, level-15, level-9			

Perfo	Perform Network Functions						
4.	Network diagnostic service such as "ping"	Commands	Status of commands	None	Network-admin, level-15, level-9		
5.	Network connection service such as "SSHv2" client	Commands and configuration data	Status of commands and configuration data	CSP1-1 RSA Public key (read) CSP1-2 DSA Public key (read) CSP1-3 ECDSA Public key (read) CSP2-1 IPsec authentication keys (read/write/delete) CSP2-2 IPsec encryption keys (read) CSP2-3 IPsec authentication keys (read) CSP2-4 IPsec encryption keys (read) CSP3-1 IKE pre-shared keys (read) CSP3-2 IKE RSA Authentication private Key (read) CSP3-3 IKE DSA Authentication private Key (read) CSP3-4 IKE Authentication key (read/write/delete) CSP3-5 IKE Encryption Key (read/write/delete) CSP3-6 IKE Diffie-Hellman Public Key (read/write/delete) CSP3-7 IKE Diffie-Hellman Private Key (read/write/delete) CSP4-1 IKEv2 pre-shared keys (read) CSP4-2 IKEv2 RSA Authentication private Key (read) CSP4-3 IKEv2 DSA Authentication private Key (read) CSP4-1 IKEv2 ECDSA Authentication private Key (read) CSP4-5 IKEv2 Authentication key (read) CSP4-5 IKEv2 Authentication key (read) CSP4-5 IKEv2 ECDSA Authentication private Key (read/write/delete) CSP4-6 IKEv2 ECDH Public Key (read/write/delete) CSP4-9 IKEv2 ECDH Public Key (read/write/delete) CSP4-10 IKEv2 ECDH Private Key (read/write/delete)	Network-admin, level-15, level-9		

			CSP5-1 SSH RSA Private key (read) CSP5-2 SSH ECDSA Private key (read) CSP5-3 SSH Diffie-Hellman Public Key (read/write/delete) CSP5-4 SSH Diffie-Hellman Private Key (read/write/delete) CSP5-5 SSH ECDH Public Key (read/write/delete) CSP5-6 SSH ECDH Public Key (read/write/delete) CSP5-7 SSH Session encryption Key (read/write/delete) CSP5-8 SSH Session authentication Key (read/write/delete) CSP5-8 SSH Session authentication Key (read/write/delete) CSP5-1 SNMPv3 Authentication Key (read) CSP9-2 SNMPv3 Encryption Key (read) CSP7-1 DRBG entropy input (read/write/delete) CSP8-1 DRBG seed (read/write/delete) CSP8-2 DRBG V (read/write/delete) CSP8-3 DRBG Key (read/write/delete)	
6. Provide SSHv2 service.	Commands and configuration data	Status of commands and configuration data	CSP1-1 RSA Public key (read)CSP1-3 ECDSA Public key (read)CSP5-1 SSH RSA Private key (read)CSP5-2 SSH ECDSA Private key (read)CSP5-3 SSH Diffie-Hellman Public Key(read/write/delete)CSP5-4 SSH Diffie-Hellman Private Key(read/write/delete)CSP5-5 SSH ECDH Public Key(read/write/delete)CSP5-6 SSH ECDH Private Key(read/write/delete)CSP5-7 SSH Session encryption Key(read/write/delete)CSP5-8 SSH Session authentication Key(read/write/delete)CSP5-8 SSH Session authentication Key(read/write/delete)CSP6-1 User Passwords (read/write/delete)CSP6-3 RADIUS shared secret keys (read)CSP6-4 TACACS+ shared secret keys (read)CSP7-1 DRBG entropy input (read/write/delete)CSP8-1 DRBG seed (read/write/delete)	Network-admin, level-15, level-9

			CSP8-2 DRBG V (read/write/delete) CSP8-3 DRBG Key (read/write/delete) CSP1-1 RSA Public key (read) CSP1-2 DSA Public key (read) CSP1-3 ECDSA Public key (read) CSP2-1 IPsec authentication keys (read/write/delete) CSP2-2 IPsec encryption keys (read/write/delete) CSP2-3 IPsec authentication keys (read) CSP2-4 IPsec encryption keys (read) CSP3-1 IKE pre-shared keys (read) CSP3-2 IKE RSA Authentication private Key (read)	
 Provide IKEv1/IKEv2/IPsec service to protect the session between the router and external server(e.g. Radius Server/Log Server) 	Commands and configuration data	Status of commands and configuration data	CSP3-3 IKE DSA Authentication private Key (read) CSP3-4 IKE Authentication key (read/write/delete) CSP3-5 IKE Encryption Key (read/write/delete) CSP3-6 IKE Diffie-Hellman Public Key (read/write/delete) CSP3-7 IKE Diffie-Hellman Private Key (read/write/delete) CSP4-1 IKEv2 pre-shared keys (read) CSP4-2 IKEv2 RSA Authentication private Key (read) CSP4-3 IKEv2 DSA Authentication private Key (read) CSP4-3 IKEv2 ECDSA Authentication private Key (read) CSP4-5 IKEv2 Authentication key (read/write/delete) CSP4-6 IKEv2 Encryption Key (read/write/delete) CSP4-6 IKEv2 Diffie-Hellman Public Key (read/write/delete) CSP4-8 IKEv2 Diffie-Hellman Private Key (read/write/delete) CSP4-9 IKEv2 ECDH Public Key (read/write/delete) CSP4-10 IKEv2 ECDH Private Key (read/write/delete) CSP4-10 IKEv2 ECDH Private Key (read/write/delete) CSP4-10 IKEv2 ECDH Private Key (read/write/delete) CSP4-10 IKEv2 ECDH Private Key (read/write/delete)	Network-admin, level-15, level-9

				<u>CSP8-1 DRBG seed (read/write/delete)</u> <u>CSP8-2 DRBG V (read/write/delete)</u> <u>CSP8-3 DRBG Key (read/write/delete)</u>	
8.	Provide SNMPv3 service.	Commands and configuration data	Status of commands and configuration data	CSP9-1 SNMPv3 Authentication Key (read) CSP9-2 SNMPv3 Encryption Key (read) CSP7-1 DRBG entropy input (delete) CSP8-1 DRBG seed (delete) CSP8-2 DRBG V (delete) CSP8-3 DRBG Key (delete)	Network-admin, level-15, level-9
9.	Initial Configuration setup (IP, hostname, DNS server)	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
10.	Change the role	Commands and configuration data	Status of commands and configuration data	<u>CSP6-1 User Passwords (read)</u> <u>CSP6-2 Super_password (read)</u> <u>CSP6-3 RADIUS shared secret keys (read)</u> <u>CSP6-4 TACACS+ shared secret keys (read)</u>	Network-admin, level-15, level-9
11.	Reset and change the password of same/lower privilege user	Commands and configuration data	Status of commands and configuration data	CSP6-1 User Passwords (write/delete)	Network-admin, level-15, level-9
12.	Maintenance of the super password	Commands and configuration data	Status of commands and configuration data	CSP6-2 Super password (write/delete)	Network-admin, level-15, level-9
13.	Maintenance (create, destroy, import, export) of public key/private key/shared key	Commands and configuration data	Status of commands and configuration data	CSP1-1 RSA Public key (read/write/delete)CSP1-2 DSA Public key (read/write/delete)CSP1-3 ECDSA Public key (read/write/delete)CSP2-3 IPsec authentication keys(read/write/delete)CSP2-4 IPsec encryption keys (read/write/delete)CSP3-1 IKE pre-shared keys (read/write/delete)CSP3-2 IKE RSA Authentication private Key(read/write/delete)CSP3-3 IKE DSA Authentication private Key(read/write/delete)CSP4-1 IKEv2 pre-shared keys(read/write/delete)CSP4-1 IKEv2 pre-shared keys(read/write/delete)CSP4-2 IKEv2 RSA Authentication private Key	Network-admin, level-15, level-9

				(read/write/delete) CSP4-3 IKEv2 DSA Authentication private Key (read/write/delete) CSP4-4 IKEv2 ECDSA Authentication private Key (read/write/delete) CSP5-1 SSH RSA Private key (read/write/delete) CSP5-2 SSH ECDSA Private key (read/write/delete) CSP9-1 SNMPv3 Authentication Key (read/write/delete) CSP9-2 SNMPv3 Encryption Key (read/write/delete) CSP7-1 DRBG entropy input (read/write/delete) CSP8-1 DRBG seed (read/write/delete) CSP8-2 DRBG V (read/write/delete) CSP8-3 DRBG Key (read/write/delete)	
14.	Management (create, delete, modify) of the user roles	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
15.	Management of the access control rules for each role	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
16.	Management (create, delete, modify) of the user account	Commands and configuration data	Status of commands and configuration data	CSP6-1 User Passwords (read/write/delete)	Network-admin, level-15, level-9
17.	Management of the time	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
18.	Maintenance (delete, modify) system start-up parameters	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
19.	File operation (e.g. dir, copy, del)	Commands and configuration data	Status of commands and configuration data	CSP11-1 Firmware Signature (write/delete)	Network-admin, level-15, level-9
20.	Shut down or Reboot the security appliance	Commands and configuration data	Status of commands and configuration data	CSP2-1 IPsec authentication keys (delete) CSP2-2 IPsec encryption keys (delete) CSP3-4 IKE Authentication key (delete) CSP3-5 IKE Encryption Key (delete) CSP4-5 IKEv2 Authentication key (delete) CSP4-6 IKEv2 Encryption Key (delete) CSP4-7 IKEv2 Diffie-Hellman Public Key (delete) CSP4-8 IKEv2 Diffie-Hellman Private Key (delete)	Network-admin, level-15, level-9

			CSP4-9 IKEv2 ECDH Public Key (delete) CSP4-10 IKEv2 ECDH Private Key (delete) CSP5-3 SSH Diffie-Hellman Public Key (delete) CSP5-4 SSH Diffie-Hellman Private Key (delete) CSP5-5 SSH ECDH Public Key (delete) CSP5-6 SSH ECDH Private Key (delete) CSP5-7 SSH Session encryption Key (delete) CSP5-8 SSH Session authentication Key (delete) CSP7-1 DRBG entropy input (delete) CSP8-1 DRBG seed (delete) CSP8-2 DRBG V (delete) CSP8-3 DRBG Key (delete) CSP1-1 Firmware Signature (read)	
21. Maintenance of IKEv1/IKEv2/IPsec.	Commands and configuration data	Status of commands and configuration data	CSP1-1 RSA Public key (read/write/delete) CSP1-2 DSA Public key (read/write/delete) CSP1-3 ECDSA Public key (read/write/delete) CSP2-3 IPsec authentication keys (read/write/delete) CSP2-4 IPsec encryption keys (read/write/delete) CSP3-1 IKE pre-shared keys (read/write/delete) CSP3-2 IKE RSA Authentication private Key (read/write/delete) CSP3-3 IKE DSA Authentication private Key (read/write/delete) CSP4-1 IKEv2 pre-shared keys (read/write/delete) CSP4-2 IKEv2 RSA Authentication private Key (read/write/delete) CSP4-3 IKEv2 DSA Authentication private Key (read/write/delete) CSP4-3 IKEv2 DSA Authentication private Key (read/write/delete)	Network-admin, level-15, level-9
22. Maintenance of SNMPv3	Commands and configuration data	Status of commands and configuration data	<u>CSP9-1 SNMPv3 Authentication Key</u> (<u>read/write/delete)</u> <u>CSP9-2 SNMPv3 Encryption Key</u> (<u>read/write/delete)</u>	Network-admin, level-15, level-9
23. Maintenance of SSHv2	Commands and configuration data	Status of commands and configuration data	<u>CSP1-1 RSA Public key (read/write/delete)</u> <u>CSP1-3 ECDSA Public key (read/write/delete)</u> <u>CSP5-1 SSH RSA Private key (read/write/delete)</u>	Network-admin, level-15, level-9

			<u>CSP5-2 SSH ECDSA Private key</u> (read/write/delete) <u>CSP5-7 SSH Session encryption Key</u> (read/write/delete) <u>CSP5-8 SSH Session authentication Key</u> (read/write/delete)	
24. Perform self-test	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
25. Displaying and maintaining security log files	Commands and configuration data	Status of commands and configuration data	None	security-audit
Perform Configuration Functions				
26. Save configuration	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
27. Management of information center	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
28. Define network interfaces and settings	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
29. Set the protocols the routers will support(e.g. SFTP server, SSHv2 server)	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
30. Enable interfaces and network services	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
31. Management of access control scheme	Commands and configuration data	Status of commands and configuration data	None	Network-admin, level-15, level-9
32. Config managing security log files and security log file system	Commands and configuration data	Status of commands and configuration data	None	security-audit
33. Enable/Disable FIPS mode of operation	Commands and configuration data	Status of commands and configuration data	All private and session keys are zeroized when switching between FIPS and non-FIPS modes	Network-admin, level-15

34. Load firmware ³	Commands and configuration data	Status of commands and configuration data	CSP11-1 Firmware Signature (read)	Network-admin, level-15
--------------------------------	---------------------------------------	---	-----------------------------------	----------------------------

Table 5 User Services

Description		Input	Output	CSP Access	Available to Role				
View	View Device Status								
2. Vi	/iew currently running image version; /iew installed hardware components status nd version	Commands	Status of devices	None	network-operator level-1				
View	Running Status								
in Ve ac	View memory status, packet statistics, nterface status, current running image ersion, current configuration, routing table, active sessions, temperature and SNMP MIB tatistics.	Commands	Status of device functions	None	network-operator level-1				
Perfo	orm Network Functions								
4. N	letwork diagnostic service such as "ping";	Commands and configuration data	Status of commands and configuration data	None	Level-0, Level-1				
•••••	letwork connection service such as SSHv2" client.	Commands and configuration data	Status of commands and configuration data	CSP1-1 RSA Public key (read) CSP1-2 DSA Public key (read) CSP1-3 ECDSA Public key (read) CSP2-1 IPsec authentication keys (read/write/delete) CSP2-2 IPsec encryption keys (read/write/delete) CSP2-3 IPsec authentication keys (read)	Level-0, Level-1				

³ New firmware versions within the scope of this validation must be validated through the FIPS 140-2 CMVP. Any other firmware loaded into this module is out of the scope of this validation and requires a separate FIPS 140-2 validation.

Description	Input	Output	CSP Access	Available to Role
			CSP2-4 IPsec encryption keys (read) CSP3-1 IKE pre-shared keys (read)	
			CSP3-2 IKE RSA Authentication private Key	
			(read)	
			CSP3-3 IKE DSA Authentication private Key	
			(read) CSP3-4 IKE Authentication key (read/write/delete)	
			CSP3-5 IKE Encryption Key (read/write/delete)	
			CSP3-6 IKE Diffie-Hellman Public Key	
			(read/write/delete) CSP3-7 IKE Diffie-Hellman Private Key	
			(read/write/delete)	
			CSP4-1 IKEv2 pre-shared keys (read)	
			CSP4-2 IKEv2 RSA Authentication private Key	
			(read) CSP4-3 IKEv2 DSA Authentication private Key	
			(read)	
			CSP4-4 IKEv2 ECDSA Authentication private Key	
			(read) CSP4-5 IKEv2 Authentication key	
			(read/write/delete)	
			CSP4-6 IKEv2 Encryption Key (read/write/delete)	
			CSP4-7 IKEv2 Diffie-Hellman Public Key	
			(read/write/delete) CSP4-8 IKEv2 Diffie-Hellman Private Key	
			(read/write/delete)	
			CSP4-9 IKEv2 ECDH Public Key	
			(read/write/delete)	
			CSP4-10 IKEv2 ECDH Private Key (read/write/delete)	
			CSP5-1 SSH RSA Private key (read)	
			CSP5-2 SSH ECDSA Private key (read)	
			CSP5-3 SSH Diffie-Hellman Public Key	
			(read/write/delete) CSP5-4 SSH Diffie-Hellman Private Key	
			(read/write/delete)	
			CSP5-5 SSH ECDH Public Key (read/write/delete)	
			CSP5-6 SSH ECDH Private Key (read/write/delete)	
			CSP5-7 SSH Session encryption Key	
			(read/write/delete)	

Description	Input	Output	CSP Access	Available to Role
			<u>CSP5-8 SSH Session authentication Key</u> (read/write/delete) <u>CSP9-1 SNMPv3 Authentication Key (read)</u> <u>CSP9-2 SNMPv3 Encryption Key (read)</u> <u>CSP7-1 DRBG entropy input (delete)</u> <u>CSP8-1 DRBG seed (delete)</u> <u>CSP8-2 DRBG V (delete)</u> <u>CSP8-3 DRBG Key (delete)</u>	
6. Provide SSHv2 service.	Commands and configuration data	Status of commands and configuration data	CSP1-1 RSA Public key (read) CSP1-3 ECDSA Public key (read) CSP5-1 SSH RSA Private key (read) CSP5-2 SSH ECDSA Private key (read) CSP5-3 SSH Diffie-Hellman Public Key (read/write/delete) CSP5-4 SSH Diffie-Hellman Private Key (read/write/delete) CSP5-5 SSH ECDH Public Key (read/write/delete) CSP5-6 SSH ECDH Private Key (read/write/delete) CSP5-7 SSH Session encryption Key (read/write/delete) CSP5-8 SSH Session authentication Key (read/write/delete) CSP6-1 User Passwords (read/write/delete) CSP6-3 RADIUS shared secret keys (read) CSP6-4 TACACS+ shared secret keys (read) CSP7-1 DRBG entropy input (delete) CSP8-1 DRBG seed (delete) CSP8-2 DRBG V (delete)	Level-0, Level-1
 Provide IKEv1/IKEv2/IPsec service to protect the session between the router and external server(e.g. Radius Server/Log Server) 	Commands and configuration data	Status of commands and configuration data	CSP1-1 RSA Public key (read) CSP1-2 DSA Public key (read) CSP1-3 ECDSA Public key (read) CSP2-1 IPsec authentication keys (read/write/delete) CSP2-2 IPsec encryption keys (read/write/delete) CSP2-3 IPsec authentication keys (read) CSP2-4 IPsec encryption keys (read) CSP3-1 IKE pre-shared keys (read)	Level-0, Level-1

Description	Input	Output	CSP Access	Available to Role
			CSP3-2 IKE RSA Authentication private Key (read)CSP3-3 IKE DSA Authentication private Key (read)CSP3-3 IKE DSA Authentication private Key (read)CSP3-5 IKE Encryption Key (read/write/delete)CSP3-6 IKE Diffie-Hellman Public Key (read/write/delete)CSP3-7 IKE Diffie-Hellman Private Key (read/write/delete)CSP4-1 IKEv2 pre-shared keys (read)CSP4-2 IKEv2 RSA Authentication private Key (read)CSP4-3 IKEv2 DSA Authentication private Key (read)CSP4-4 IKEv2 ECDSA Authentication private Key (read)CSP4-5 IKEv2 Authentication key (read/write/delete)CSP4-6 IKEv2 Encryption Key (read/write/delete) CSP4-7 IKEv2 Diffie-Hellman Public Key (read/write/delete)CSP4-8 IKEv2 DDH Public Key (read/write/delete)CSP4-9 IKEv2 ECDH Public Key (read/write/delete)CSP4-10 IKEv2 ECDH Private Key (read/write/delete)CSP4-10 IKEv2 ECDH Private Key (read/write/delete)CSP4-1 DRBG entropy input (read/write/delete) CSP8-1 DRBG seed (read/write/delete)CSP8-2 DRBG V (read/write/delete) CSP8-3 DRBG Key (read/write/delete)	
8. Provide SNMPv3 service.	Commands and configuration data	Status of commands and configuration data	<u>CSP9-1 SNMPv3 Authentication Key (read)</u> <u>CSP9-2 SNMPv3 Encryption Key (read)</u> <u>CSP7-1 DRBG entropy input (read/write/delete)</u> <u>CSP8-1 DRBG seed (read/write/delete)</u> <u>CSP8-2 DRBG V (read/write/delete)</u> <u>CSP8-3 DRBG Key (read/write/delete)</u>	Level-0, Level-1

6.1.1 Unauthenticated Services

- Cycle the power on the switch
- View currently running image version;
- View installed hardware components status and version
- View memory status, packet statistics, interface status, current running image version, current configuration, routing table, active sessions, temperature and SNMP MIB statistics

6.1.2 Non-Approved Services

The HPE network routers support the following non-approved services:

- Internet Key Exchange (IKE) or Internet Protocol Security (IPsec) with AES-XCBC-MAC, Camellia, DES, Triple-DES, MD5, HMAC-MD5, Diffie-Hellman (<2048-bits), RSA (< 2048-bits), DSA (< 2048-bits).
- Perform Network Time Protocol (NTP) service.
- Perform Secure Socket Layer (SSL) 3.0 or Transport Layer Security (TLS) 1.0, 1.1, 1.2.
- Perform Secure Shell version 1.x.
- Perform Secure Shell version 2.0 with DES, Triple-DES, MD5, HMAC-MD5, Diffie-Hellman (<2048-bits), RSA (< 2048-bits), DSA (<2048-bits)
- Perform Telnet

6.2 Critical Security Parameters

⁴*Critical security parameter (CSP):* security-related information (e.g., secret and private cryptographic keys, and authentication data such as passwords and PINs) whose disclosure or modification can compromise the security of a cryptographic module.⁵

Assumptions, Assertions and Caveats

- 1. Preferably, the Key / CSP Table should be listed after the Services Table.
- 2. Each Key(s) / CSP(s) must be mapped to by a service. A Key / CSP cannot exist unless associated with a service.
- 3. Each Key / CSP should be uniquely identifiable so the entries in the Services Table can easily map to a Key / CSP.
- 4. The DH key pairs should be 2 entries in the table. One for the public key and one for the private key since the key lengths are different
 - Each public key should be in its own row.
 - Each private key should be in its own row.
- 5. For all RSA keys, state whether it is used for key transport or signature generation/verification.
 - Key transport should be in its own row.
 - Signature generation/verification should be in its own row.
- 6. Where possible, group Key / CSP together e.g. Keys associated with a protocol should be grouped together.

KEY / CSP Table Column Definitions

1. <u>Key / CSP #</u>

Unique identifier of CSP

2. Key or CSP Name

Objective of this column is the list the type of key or CSP used by the cryptographic module.

⁴ FIPS Pub 140-2

⁵ In Comware, CSPs generated in FIPS mode cannot be used in non-FIPS mode, and vice versa.

- To avoid confusion wherever possible it is recommended that the name of the key/CSP be consistent with a recognized industry standard such as ISO, IETF or NIST Special Publication.
- 3. Key/CSP Type & Algorithm Link

Objective of this column is to provide additional information about the CSP.

- Where applicable this column shall include the type of key/CSP, algorithm(s) (including reference to FIPS or NIST SP).
- The Algorithm link points to the Algorithm in the Algorithm table the Key/CSP uses.
- 4. <u>Key size</u>

Size of the key used by the CSP.

5. <u>Use</u>

The objective of this column is to provide information on how the key is used during cryptographic module operation.

- This column should contain a short description of the Key/CSP.
- It is important that each CSP is mapped directly **from** an Approved service that the cryptographic module performs.
- For all RSA keys, this column shall specify whether it is used for key transport or signature generation/verification

6. <u>Generation/Input</u>

The objective of this column is to specify how and when the CSP is generated, derived or enters the module.

- If the CSP is generated or derived, this column shall specify the function or technique responsible.
- If the CSP is entered, the column shall specify if the CSP is entered electronically or manually.
- The column shall specify if it is stored encrypted or in plaintext form.
- If the CSP is ephemeral this column shall specify conditions upon which it is generated (A cryptographic key is called ephemeral if it is generated for each execution of a key establishment process.).

7. <u>Storage</u>

The objective of this column is to specify where the CSP is stored during cryptographic module operation.

- The column shall also state the location and type of storage.
- The column shall state if the CSP is persistent, ephemeral or hardcoded.
- The column shall specify if it is stored encrypted or in plaintext form.
- The column shall specify if only a pointer or reference to the CSP is stored or the actual CSP.

8. <u>Output</u>

The objective of this column is to specify if the CSP can be output from the cryptographic module.

- If the CSP can be output, the column shall specify how it can be output.
- If the CSP can be output, the column shall specify if it is encrypted or plaintext form.

9. Zeroization

The objective of this column is to provide details on how the CSP shall be zeroized.

• All possible zeroization techniques for the CSP shall be listed.

Table 6 Critical Security Parameters

Kov/	Key / CSP Type			Generation ⁶ /	Storage	Output	Zeroization			
#	# CSP Name Algorithm Link	Key Size	Use	Input						
Public key ma	Public key management									
		RSA			Electronically generated					
CSP1-1	CSP1-1 RSA public key <u>RSA-1</u> 2048	2048 bits	Identity certificates for the security appliance itself.	OR	FLASH (cipher text / AES256)	Plaintext	Using CLI command to zeroize.			
		RSA-2			Externally					

⁶ For all keys marked as "Electronically generated", the resulting symmetric key or the generated seed to be used in the asymmetric key generation is an unmodified output from the DRBG.

	Key/	Key / CSP Type			Generation ⁶ /			
#	CSP Name	Algorithm Link	Key Size	Use	Input	Storage	Output	Zeroization
		<u>RSA-3</u> <u>RSA-4</u>			Generated; input in ciphertext			
CSP1-2	DSA public key	DSA DSA-1 DSA-2 DSA-3 DSA-4	2048 bits	Identity certificates for the security appliance itself.	Electronically generated OR Externally Generated; input in ciphertext	FLASH (cipher text / AES256)	Plaintext	Using CLI command to zeroize
CSP1-3	ECDSA public key	ECDSA ECDSA-1 ECDSA-2 ECDSA-3	NIST P256, P384, P521	Identity certificates for the security appliance itself and also used in IPsec, SSH and SSL.	Electronically generated OR Externally Generated; input in ciphertext	FLASH (cipher text / AES256)	Plaintext	Using CLI command to zeroize
IPsec								
CSP2-1	IPsec authentication keys	HMAC-SHA1-96 HMAC-SHA-256- 128 HMAC-SHA-384- 192 HMAC-SHA-512- 256 GMAC-128 GMAC-192	HMAC: 160 bits 256 bits 384 bits 512 bits AES GMAC: 128 bits	Used to authenticate the IPsec traffic	Electronically generated	RAM (plain text)	No	Automatically when session expires or is terminated.

	Key /	Key / CSP Type			Generation ⁶ /			
#	CSP Name	Algorithm Link	Key Size	Use	Input	Storage	Output	Zeroization
		GMAC-256	192 bits					
		HMAC-1	256 bits					
		HMAC-2						
		AES-1						
		AES-2						
		AES	128 bits, 192					Automatically when
CSP2-2	IPsec encryption keys	AES-1	bits,	Used to encrypt the IPsec traffic	Electronically generated	RAM (plain text)	No	session expires or is
		<u>AES-2</u>	256 bits		<u> </u>			terminated.
		HMAC-SHA1-96						
		HMAC-SHA-256-						
		128 HMAC-SHA-384-	HMAC: 160 bits					
		192	256 bits					
		HMAC-SHA-512-	384 bits					Keys will be zeroized
0000 0	IPsec	256	512 bits	Used to authenticate the IPsec traffic with	Manually entered	FLASH (cipher text / AES-CTR	–	using CLI commands
CSP2-3	authentication keys	GMAC-128		manually configured	by the Crypto- Officer	256) and RAM	Encrypted	"undo sa hex-key authentication" and
		GMAC-192 GMAC-256	AES GMAC:	secure associations		(plain text)		" save",
		HMAC-1	128 bits					
		HMAC-2	192 bits					
		AES-1	256 bits					
		AES-2						
CSP2-4	IPsec encryption	AES	128 bits, 192	Used to encrypt the IPsec	Manually entered	FLASH (cipher	Encrypted	Keys will be zeroized

	Key /	Key / CSP Type			Generation ⁶ /			
#	CSP Name	Algorithm Link	Key Size	Use	Input	Storage	Output	Zeroization
	keys	<u>AES-1</u> <u>AES-2</u>	bits, 256 bits	traffic with manually configured secure associations	by the Crypto- Officer	text / AES-CTR 256) and RAM (plain text)		using CLI commands "undo sa hex-key encryption" and " save",
IKEv1								
CSP3-1	IKE pre-shared keys	Shared Secret N/A	15 ~ 128 characters	Used for authentication during IKE	Manually entered by the Crypto- Officer	FLASH(cipher text/ AES-CTR- 256) and RAM (cipher text/ AES-CTR-256)	Encrypted	Using CLI command to zeroize
CSP3-2	IKE RSA Authentication private Key	RSA <u>RSA-1</u> <u>RSA-3</u> RSA-4	2048 bits	private key used for IKE protocol during the handshake	Electronically generated OR Externally generated; input in ciphertext	RAM (plain text)	No	Automatically when handshake finishing
CSP3-3	IKE DSA Authentication private Key	DSA DSA-3 DSA-4	256 bits	private key used for IKE protocol during the handshake	Electronically generated OR Externally generated; input in ciphertext	RAM (plain text)	No	Automatically when handshake finishing
CSP3-4	IKE Authentication key	HMAC-SHA1, HMAC-SHA256 HMAC-HA384, HMAC-SHA512 <u>HMAC-2</u>	160 bits 256 bits 384 bits, 512 bits	Used to authenticate IKE negotiations	Electronically generated	RAM (plain text)	No	Automatically when session expires.

	Key/	Key / CSP Type			Generation ⁶ /		• • •	
#	CSP Name	Algorithm Link	Key Size	Use	Input	Storage	Output	Zeroization
		AES	128 bits, 192	Used to encrypt IKE	Electronically			Automatically when
CSP3-5	IKE Encryption Key	<u>AES-2</u>	bits, 256 bits	negotiations	generated	RAM (plain text)	No	session expires.
	IKE Diffie-Hellman	DH			Electronically			Automatically when
CSP3-6	Public Key	<u>CVL-1</u>	2048 bits	Key agreement for IKE	generated	RAM (plain text)	No	handshake finishing
		DH	DH Group 14:					
CSP3-7	IKE Diffie-Hellman Private Key	<u>CVL-1</u>	2048 bits DH Group 24: 256 bits	Key agreement for IKE	Electronically generated	RAM (plain text)	No	Automatically when handshake finishing
IKEv2								
CSP4-1	IKEv2 pre-shared	Shared Secret	-15 ~ 128 bytes	Used for authentication	Manually entered by the Crypto- Officer	FLASH(cipher text/ AES-CTR- 256) and RAM	Encrypted	Using CLI command to
0364-1	keys	AES-2	15 ~ 126 bytes	during IKEv2	Officer	(cipher text/ AES-CTR-256)	Encrypted	zeroize
	IKEv2 RSA	RSA		private key used for	Electronically generated			
CSP4-2	Authentication	RSA-1	2048 bits	IKEv2 protocol during the	OR	RAM (plain text)	No	Automatically when handshake finishing Automatically when handshake finishing Using CLI command to
	private Key	<u>RSA-3</u> RSA-4		handshake	Externally generated; input in ciphertext			
CSP4-3	IKEv2 DSA Authentication	DSA	256 bits	private key used for IKEv2 protocol during the	Electronically generated	RAM (plain text)	No	-

	Key/	Key / CSP Type			Generation ⁶ /			
#	CSP Name	Algorithm Link	Key Size	Use	Input	Storage	Output	Zeroization
	private Key			handshake	OR			
		DSA-3 DSA-4			Externally generated; input in ciphertext			
		ECDSA			Electronically generated			
CSP4-4	IKEv2 ECDSA Authentication		ECDSA:P-256,	private key used for IKEv2 protocol during the	OR	RAM (plain text)	No	Automatically when
	Private Key	ECDSA-2 ECDSA-3	P-384, P-521	handshake	Externally generated; input in ciphertext			handshake finishing
CSP4-5	IKEv2 Authentication key	HMAC-SHA1, HMAC-SHA256 HMAC-SHA384, HMAC-SHA512 <u>HMAC-2</u>	160 bits 256 bits 384 bits, 512 bits	Used to authenticate IKEv2 negotiations	Electronically generated	RAM (plain text)	No	Automatically when session expires.
0054.0	IKEv2 Encryption	AES	128 bits, 192 bits,	Used to encrypt IKEv2	Electronically		NI-	Automatically when
CSP4-6	Key	AES-2	256 bits	negotiations	generated	RAM (plain text)	No	session expires.
CSD4 7	IKEv2 Diffie-	DH	2048 bito	Key agreement for IKEv2	Electronically	DAM (plain tout)	No	Automatically when
CSP4-7	Hellman Public Key	<u>CVL-1</u>	2048 bits	Key agreement for IKEv2	generated	RAM (plain text)	No	handshake finishing
CSP4-8	IKEv2 Diffie- Hellman Private	DH	DH Group 14: 2048 bits	Key agreement for IKEv2	Electronically generated	RAM (plain text)	No	Automatically when handshake finishing

	Key/	Key / CSP Type			Generation ⁶ /			
#	CSP Name	Algorithm Link	Key Size	Use	Input	Storage	Output	Zeroization
	Кеу	<u>CVL-1</u>	DH Group 24: 256 bits					
	IKEv2 ECDH	ECDH			Electronically			Automatically when
CSP4-9	Public Key	<u>CVL-2</u>	P-256, P-384	Key agreement for IKEv2	generated	RAM (plain text)	No	handshake finishing
	IKEv2 ECDH	ECDH	P-256: 256 bits		Electronically		No	Automatically when
CSP4-10	Private Key	<u>CVL-2</u>	P-384: 384 bits	Key agreement for IKEv2	generated	RAM (plain text)		handshake finishing
SSH								
		RSA			Electronically generated			
CSP5-1	SSH RSA Private key	<u>RSA-1</u> <u>RSA-3</u> <u>RSA-4</u>	2048 bits	private key used for SSH protocol	OR Externally generated; input in ciphertext	RAM(plain text)	No	Automatically when handshake finishing
		ECDSA			Electronically generated			
CSP5-2	SSH ECDSA Private key	ECDSA-2 ECDSA-3	P-256, P-384	private key used for SSH protocol	OR Externally generated; input in ciphertext	RAM(plain text)	No	Automatically when handshake finishing
CSP5-3	SSH Diffie-Hellman	DH	2048 bits	Public key agreement for	Electronically	RAM (plain text)	No	Automatically when
0010-0	Public Key	<u>CVL-1</u>	2040 0115	SSH sessions.	generated		INU	handshake finishing

	Key/	Key / CSP Type			Generation ⁶ /			
#	CSP Name	Algorithm Link	Key Size	Use	Input	Storage	Output	Zeroization
	SSH Diffie-Hellman	DH		Private key agreement for	Electronically			Automatically when
CSP5-4	Private Key	<u>CVL-1</u>	2048 bits	SSH sessions.	generated	RAM (plain text)	No	handshake finishing
0005 5	SSH ECDH Public	ECDH		Public key agreement for	Electronically			Automatically when
CSP5-5	Key	<u>CVL-2</u>	P-256, P-384	SSH sessions.	generated	RAM (plain text)	No	handshake finishing
	SSH ECDH Private	ECDH		Private key agreement for	Electronically		No	Automatically when
CSP5-6	SP5-6 SSH ECDH Private Key	CVL-2	P-256, P-384	SSH sessions.	generated	RAM (plain text)		handshake finishing
	SSH Session	AES	128 bits,	SSH session symmetric	Electronically		No	Automatically when SSH
CSP5-7	encryption Key	AES-2	256 bits	key	generated	RAM (plain text)		session terminated
		HMAC			F lastracias III.			
CSP5-8	SSH Session authentication Key	HMAC-2	160 bits	SSH session authentication key	Electronically generated	RAM (plain text)	No	Automatically when SSH session terminated
Authenticatio	ו							
		Secret			Manually entered			
CSP6-1	User Passwords	AES-2	15 ~ 63 bytes	Used to authenticate the administrator login.	by the Crypto- Officer	FLASH (cipher text / AES256)	Encrypted	Using CLI command to zeroize
0000 0				Used to authenticate the	Manually entered	FLASH (cipher	Franciscal	Using CLI command to
CSP6-2	Super password	<u>AES-2</u>	15 ~ 63 bytes	user role.	by the Crypto- Officer	text / AES256)	Encrypted	zeroize

	Key/	Key / CSP Type			Generation ⁶ /			
#	CSP Name	Algorithm Link	Key Size	Use	Input	Storage	Output	Zeroization
		Shared Secret		Used for authenticating				
CSP6-3	RADIUS shared secret keys	<u>AES-2</u>	15 ~ 64 bytes	the RADIUS server to the security appliance and vice versa.	Manually entered by the Crypto- Officer	FLASH (cipher text / AES256)	Encrypted	Using CLI command to zeroize
		Shared Secret		Used for authenticating				
CSP6-4	TACACS+ shared secret keys	AES-2	15~255 bytes	the TACACS+ server to the security appliance and vice versa.	Manually entered by the Crypto- Officer	FLASH (cipher text / AES256)	Encrypted	Using CLI command to zeroize
Entropy								
		SP 800-90A						
CSP7-1	DRBG entropy input	CTR_DRBG	256 bits	Entropy source used to construct seed	Electronically generated	RAM (plaintext)	No	Resetting or rebooting the security appliance
		DRBG-1			<u>j</u>		No	
Random Bits	Generation							
		SP 800-90A		Input to the DRBG that	Flootropically	RAM	Never exits the	Departing or reheating
CSP8-1	DRBG seed	CTR_DRBG	384 bits	determines the internal state of the DRBG	Electronically generated	(plaintext)	module	Resetting or rebooting the security appliance
		DRBG-1						
CSP8-2		SP 800-90A CTR_DRBG		Generated by entropy source via the	Electronically	RAM	Never exits the	Resetting or rebooting
	DRBG V	DRBG-1	128 bits	CTR_DRBG derivation function. It is stored in DRAM with plaintext form	Electronically generated	(plaintext)	module	the security appliance

	Key/	Key / CSP Type			Generation ⁶ /			
#	CSP Name	Algorithm Link	Key Size	Use	Input	Storage	Output	Zeroization
CSP8-3	DRBG Key	SP 800-90A CTR_DRBG	256 bits	AES key used for SP	Electronically	RAM (plaintext)	Never exits the	Resetting or rebooting
	DRBG-1		800-90A CTR_DRBG	generated		module	the security appliance	
SNMPv3								
		HMAC-SHA1			Manually entered by the Crypto-	FLASH (cipher		
CSP9-1	SNMPv3 Authentication Key	HMAC-2	160 bits	Used to verify SNMPv3 packet.	Officer or electronically derived from SP800-135 KDF	text / AES256) RAM (plain text)	Encrypted	Using CLI command to zeroize
		AES						
CSP9-2	SNMPv3 Encryption Key	AES-2	128 bits	Used to encrypt SNMPv3 packet.	Manually entered by the Crypto- Officer	FLASH (cipher text / AES256)	Encrypted	Using CLI command to zeroize
		ALO-Z			Onicer	RAM (plain text)		
System KEK	•							
		AES		Used to encrypt all private key, user				
CSP10-1	Key encrypting key	<u>AES-1</u> <u>AES-2</u>	256 bits	password, and pre- shared key stored on internal storage. The KEK is generated using random bytes	Electronically generated	RAM (plain text)	No	Zeroized when Resetting or rebooting the security appliance

#	Key/	Key / CSP Type	Koy Sizo	Use	Generation ⁶ / Input	Storago	Quitput	Zeroization		
#	CSP Name	Algorithm Link	Key Size			Storage	Output Binary image	Zeroization		
System Firmw	System Firmware									
	Firmware	RSA		Factory signature used to	Generated by	FLASH (binary		Upon deletion of binary		
CSP11-1	Signature	<u>RSA-1</u> <u>RSA-4</u>	2048 bits	verify Comware 7 firmware.	HPE Comware 7 Build Team	images)	Binary image	image.		

6.3 Approved Algorithms

Assumptions, Assertions and Caveats

- 1. Each instantiation of the algorithm should be in a separate table
 - e.g. kernel, firmware, accelerators
 - e.g. chassis / controller
- 2. Each instantiation of the algorithm should be uniquely identifiable so the Key / CSP can easily map to an algorithm.
- 3. Include a reference to the FIPS 140-2 approved standard for each algorithm. One example is to use a footnote.
- 4. The ECB mode is required for all other AES modes. The ECB mode should be listed as not used by the module if ECB is only used to support the other modes. If the ECB mode is used by one or more services, it should be listed as available. Although ECB is the basis for all other AES modes, it is latent functionality if there is no service that uses it.
- 5. Each instantiation of the algorithm must map to the service that uses it.
- 6. To expedite the review process, each instantiation of the algorithm should have a hyperlink to the CAVP page that contains the certification listing.
- 7. It is important to identify which algorithms are used by the module and which are not. All functionality listed on the CAVP certificate should be detailed somewhere in the tables, footnotes, or text of the Security Policy. If all of the functionality is used by the module, then all algorithm functionality belongs in the tables. If some functionality is not used by the module, then all algorithm functionality belongs in the tables. If some functionality is not used by the module, then the author should determine the best to convey that to the reader. (The Tables use footnotes. But there are other ways to convey this information.)

Algorithm Table Column Definitions

1. <u>Algorithm #</u>

Unique identifier of the algorithm. Each instantiation should be uniquely identified.

2. <u>CAVP Certificate</u>

Objective of this column is identify the CAVP certificate.

- The certificate number should be listed.
- A hyperlink should be create to the CAVP website to the certificate number.
- 3. <u>Algorithm</u>

Objective of this column is identify the Algorithm in use.

- The algorithm name should be consistent with the names list on the Cryptographic Algorithm Validation Program (CAVP) website.
- The acronym may be used instead of the full name.
- Include a reference to the FIPS 140-2 approved standard for each algorithm.

4. Mode / Method

Objective of this column is identify the Mode / Method used by the algorithm.

5. Key Lengths, Curves or Moduli

Objective of this column is identify the Key Lengths, Curves or Moduli used by the algorithm.

6. <u>Use</u>

Objective of this column is identify the use of the algorithm.

7. <u>Service that uses Algorithm</u>

Objective of this column is identify the services that use the algorithm.

- A cross reference should be made to the unique identifier in a services table
- The cross reference should contain a hyperlink to the entry in a services table.
- The relationship of algorithm to service maybe one-to-one, one-to-many, or many-to-many.

#	CAVP Certificates	Algorithm	Mode/ Method	Key Lengths, Curves or Moduli	Use	Service that uses Algorithm
AES-1	<u>4098</u>	AES ⁷	ECB ⁸ , CTR, CBC ⁹ , GCM ¹⁰ , GMAC	128, 192, 256	Kernel – Data Encryption/ Decryption	<u>Crypto Officer Services</u> (<u>7</u> , <u>21</u> , <u>24</u>) <u>User Services</u> (<u>7</u>)
HMAC-1	<u>2678</u>	HMAC ¹¹	HMAC SHA-1 ¹² , HMAC SHA- 1-96	160	Kernel - Message Authentication	Crypto Officer Services (7, 21, 24) User Services (7)
SHS-1	<u>3374</u>	SHS ¹³	SHA-1 ¹⁴		Kernel – Message Digest	<u>Crypto Officer Services</u> (<u>7</u> , <u>21</u> , <u>24</u>) <u>User Services</u> (<u>7</u>)
TDES-1 ¹⁵	<u>2241</u>	Triple-DES ¹⁶	TECB ¹⁷ , TCBC	192	Self-Test	Crypto Officer Services

Table 7 Comware V7 Kernel – Approved Algorithms

⁷ FIPS 197

⁸ Not used by the module

¹⁰ The module's AES-GCM implementation conforms to IG A.5 scenario #1 following RFC 6071 for IPsec and RFC 5288 for TLS. The module uses a 96-bit IV, which is comprised of a 4 byte salt unique to the crypto session and 8 byte monotonically increasing counter. The module generates new AES-GCM keys if the module loses power

¹¹ FIPS 198-1

¹² Comware Kernel supports various options for HMAC, however, only those listed in the table are utilized.

¹³ FIPS 180-4

¹⁴ Comware Kernel supports various options for SHA, however, only those listed in the table are utilized.

¹⁵ Although the certification contains Triple-DES, Triple-DES is used only for self-tests in the approved mode.

⁹ SP 800-38A

#	CAVP Certificates	Algorithm	Mode/ Method	Key Lengths, Curves or Moduli	Use	Service that uses Algorithm
						(<u>24</u>)
						User Services
						none

¹⁶ SP 800-67rev1

¹⁷ Not used by the module

#	CAVP Certificate	Algorithm	Mode/ Method	Key Lengths or Curves	Use	Service that uses Algorithm
AES-2	<u>4093</u>	AES ¹⁸	ECB ¹⁹ , CBC, CTR, GCM ²⁰ , GMAC, KW ²¹	128, 192, 256	Data Encryption/ Decryption	<u>Crypto Officer Services</u> (5, 6, 7, 8, 11, 12, 13, 21, 22, 23, 24) <u>User Services</u> (5, 6, 7, 8)
CVL-1 ²²	<u>912</u>	CVL ²³ IKEv1, IKEv2 TLS 1.0/1.1 ²⁴ SSH, SNMPv3 KDFs			Key Derivation	<u>Crypto Officer Services</u> (<u>5</u> , <u>6</u> , <u>7</u> , <u>8</u> , <u>24</u>) <u>User Services</u> (<u>5</u> , <u>6</u> , <u>7</u> , <u>8</u>)
DRBG-1	<u>1231</u>	DRBG ²⁵	CTR (AES-256)		Deterministic Random Bit Generation	<u>Crypto Officer Services</u> (<u>5</u> , <u>6</u> , <u>7</u> , <u>13</u> , <u>24</u>) <u>User Services</u> (<u>5</u> , <u>6</u> , <u>7</u> , <u>8</u>)

Table 8 Comware V7 Firmware – Approved Algorithms

¹⁸ FIPS 197, SP 800-38A, SP 800-38D

¹⁹ Not used by the module

²⁰ The module's AES-GCM implementation conforms to IG A.5 scenario #1 following RFC 6071 for IPsec and RFC 5288 for TLS. The module uses a 96-bit IV, which is comprised of a 4 byte salt unique to the crypto session and 8 byte monotonically increasing counter. The module generates new AES-GCM keys if the module loses power. ²¹ Not used by the module

²² Component Validation: the protocols covered under this certificate have not been reviewed or tested by the CAVP or CMVP

²³ SP 800-135rev1

²⁴ Although the certification contains TLS, it is not used in this version of Comware in the approved mode.

²⁵ SP 800-90A

#	CAVP Certificate	Algorithm	Mode/ Method	Key Lengths or Curves	Use	Service that uses Algorithm
DSA-1			SHA-256, SHA-384, SHA-512	(2048,256)	Domain Parameter Generation	Crypto Officer Services (<u>13</u> , <u>24</u>) <u>User Services</u> (<u>none)</u>
DSA-2	1114	26		(2048,256)	Key Pair Generation	Crypto Officer Services (<u>13, 24</u>) <u>User Services</u> (<u>none)</u>
DSA-3	-	DSA ²⁶	SHA-224, SHA-256 SHA-384, SHA-512	(2048,256)	Digital Signature Generation	<u>Crypto Officer Services</u> (<u>5, 6, 7, 24</u>) <u>User Services</u> (<u>5, 6, 7</u>)
DSA-4				SHA-1, SHA-224, SHA-256 SHA-384, SHA-512	(1024,160) (2048,256)	Digital Signature Verification
CVL-2	<u>911</u>	CVL – EC Diffie- Hellman Primitive ²⁷		P-224, P-256, P-384, P-521	Shared Secret for Key Agreement Scheme	<u>Crypto Officer Services</u> (<u>5</u> , <u>6</u> , <u>7</u>) <u>User Services</u> (<u>5, 6, 7</u>)

²⁶ FIPS 186-4

²⁷ SP 800-56A, Section 5.7.1.2: ECC CDH Primitive

#	CAVP Certificate	Algorithm	Mode/ Method	Key Lengths or Curves	Use	Service that uses Algorithm
ECDSA-1				P-224, P-256, P-384, P-521	Key Pair Generation	Crypto Officer Services (13, 24) User Services (none)
ECDSA-2	<u>927</u>	ECDSA ²⁸	SHA-224, SHA-256, SHA-384, SHA-512	P-224, P-256, P-384, P-521	Digital Signature Generation	<u>Crypto Officer Services</u> (<u>5, 6, 7, 24</u>) <u>User Services</u> <u>5, 6, 7</u>
ECDSA-3			SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	P-192, P-224, P- 256, P-384, P-521	Digital Signature Verification	<u>Crypto Officer Services</u> (<u>5, 6, 7, 24</u>) <u>User Services</u> <u>5, 6, 7</u>
HMAC-2	<u>2673</u>	HMAC ²⁹	HMAC SHA-1, HMAC SHA-1- 96, HMAC SHA-224, HMAC SHA-256, HMAC SHA-384, HMAC SHA-512		Message Authentication	<u>Crypto Officer Services</u> (<u>5, 6, 7, 8, 24</u>) <u>User Services</u> (<u>5, 6, 7, 8)</u>
RSA-1	<u>2217</u>	RSA ³⁰	SHA-1 PKCS1 v.1.5	2048	Digital Signature Verification	<u>Crypto Officer Services</u> (<u>5</u> , <u>6</u> , <u>7</u>) <u>User Services</u> <u>5, 6, 7</u>

²⁸ FIPS 198-1

²⁹ FIPS 198-1

³⁰ FIPS 186-2

#	CAVP Certificate	Algorithm	Mode/ Method	Key Lengths or Curves	Use	Service that uses Algorithm		
RSA-2			Random Public Exponent e	2048	Key Pair Generation	Crypto Officer Services (<u>13, 24</u>) <u>User Services</u> (<u>none)</u>		
RSA-3		RSA ³¹	SHA-224, SHA-256, SHA-384, SHA-512 PKCS1 v.1.5	2048	Digital Signature Generation	Crypto Officer Services (7, 24) User Services (7)		
RSA-4	-				SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 PKCS1 v1.5	2048	Digital Signature Verification	<u>Crypto Officer Services</u> (<u>5</u> , <u>6</u> , <u>7</u> , <u>24, 24</u>) <u>User Services</u> (<u>5, 6, 7</u>)
SHS-2	<u>3369</u>	SHS ³²	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512		Message Digest	Crypto Officer Services (5, 6, 7, 8, 11, 12, 21, 22, 24) User Services (5, 6, 7, 8)		
TDES-2 ³³	<u>2236</u>	Triple-DES ³⁴	TECB, TCBC	192	Self-Test	Crypto Officer Services (24)		

³¹ FIPS 186-4

³² FIPS 180-4

 $^{\rm 33}$ Although the certification contains Triple-DES, Triple-DES is used only for self-tests

³⁴ SP 800-67rev1

	#	CAVP Certificate	Algorithm	Mode/ Method	Key Lengths or Curves	Use	Service that uses Algorithm
Ī							User Services
							none

6.4 Allowed Algorithms

Algorithm	Caveat	Use	Service that uses Algorithm
Diffie-Hellman	Provides 112 bits of encryption strength.	Key establishment	<u>Crypto Officer Services</u> (<u>5, 6, 7</u>) <u>User Services</u> (<u>5, 6, 7)</u>
Elliptic Curve Diffie-Hellman Supported curves: P-256 or P-384 (<u>CVL #911</u>)	Provides 128 or 192-bits of encryption strength.	Key establishment	<u>Crypto Officer Services</u> (<u>5</u> , <u>6</u> , <u>7</u>) <u>User Services</u> (<u>5, 6, 7)</u>
NDRNG ³⁵	A minimum of 256-bits of entropy is obtained before generating keys.	Seeding for the DRBG	Crypto Officer Services (none) User Services (none)

Table 9 Comware V7 Firmware - Allowed Algorithms

6.5 Non-Approved Algorithms

Table 10 Non-Approved Algorithms³⁶

³⁵ This implementation satisfies Scenario 1(a) of IG 7.14

Algorithm	Use	Service that uses Algorithm
AES (non-compliant)	Encryption / Decryption, Message Authentication	IKEv2, IPsec
Camelia	Encryption/Decryption	IKEv2, IPsec, SSH, SSL
DES	Encryption / Decryption	IKEv1/v2, IPsec, SSH, SSL
Diffie-Hellman	Key Establishment - Non-compliant less than 112 bits of encryption strength	IKEv1/v2, IPSEC, SSH, SSL, TLS
DSA (FIPS 186-2)	Digital Signature Generation	IKEv1/v2, IPSEC, SSH
DSA (FIPS 186-4)	Digital Signature Generation	IKEv1/v2, IPSEC, SSH
ECDSA (FIPS 186-2)	Digital Signature Generation	IKEv1/v2, IPSEC, SSH, SSL, TLS
ECDSA (FIPS 186-4; non-compliant)	Digital Signature	IKEv1/v2, IPSEC, SSH, SSL, TLS
HMAC-MD5	Keyed Hash	IKEv1/v2, IPSEC, SSH, SSL, TLS
MD5	Message Digest	IKEv1/v2, IPSEC, SSH, SSL, TLS
RC2		SSL

³⁶ Please see NIST document SP800-131A for guidance regarding the use of non FIPS-approved algorithms

RC4		SSL
RNG (ANSI x9.31)	Random Number Generation	Self-Test
RSA (FIPS 186-2)	Asymmetric Key Generation	IKEv1/v2, IPSEC, SSH, SSL, TLS
RSA	Key Wrapping – non-compliant less than 112 bits of encryption strength	SSL, TLS

7 Self-Tests

HPE Networking devices include an array of self-tests that are run during startup and during operations to prevent any secure data from being released and to insure all components are functioning correctly.

7.1 Power-On Self-Tests

The following table lists the power-on self-tests implemented by the switches. The switches perform all power-on self-tests automatically at boot. All power-on self-tests must be passed before any role can perform services. The power-on self-tests are performed prior to the initialization of the forwarding function, which prevents the security appliance from passing any data during a power-on self-test failure.

Implementation	Tests Performed
Security Appliance Software	Software/firmware Test (non-Approved RSA 2048 with SHA-256 which is at least as strong as a 16-bit EDC)
	DSA signature and verification PWCT
	ECDSA signature and verification PWCT
	ECDH KAT
	Kernel Triple-DES encryption and Triple-DES decryption KAT
	Triple-DES encryption and Triple-DES decryption KAT
	RSA signature and verification KAT
	RSA signature and verification PWCT
	RSA encryption and decryption PWCT
	Kernel AES encrypt KAT and AES decrypt KAT
	AES encrypt KAT and AES decrypt KAT
	Kernel AES-GCM encrypt KAT and AES-GCM decrypt KAT
	AES-GCM encrypt KAT and AES-GCM decrypt KAT
	Kernel SHA KATs (SHA-1, SHA-256, SHA-384, and SHA-512)
	SHA KATs (SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512)
	Kernel HMAC KATs (SHA-1, SHA-256, SHA-384, and SHA-512)
	HMAC KATs (SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512)
	Kernel GMAC KAT
	SP800-90a CTR_DRBG KATs (Instantiate KAT, Generate KAT and Reseed KAT)

Table 11 Power-On Self-Tests

7.2 Conditional Self-Tests

The following table lists the conditional self-tests implemented by the switches. Conditional self-tests run when a switch generates an ECDSA or RSA key pair and when it generates a random number.

Implementation	Tests Performed		
	Pairwise consistency test for RSA		
	Pairwise consistency test for DSA		
	Pairwise consistency test for ECDSA		
Security Appliance Software	Continuous Random Number Generator Test for the FIPS- approved SP800-90a CTR_DRBG		
	SP800-90A Section 11.3 Health Tests for CTR_DRBG (Instantiate, Generate and Reseed).		
	Continuous Random Number Generator Test for entropy source (NDRNG)		
	Firmware Load Test (RSA PKCS#1 v1.5 2048 bits with SHA-256)		

Table 12 Conditional Self-Tests

8 Delivery and Operation

8.1 Secure Delivery

To ensure no one has tampered with the goods during delivery, inspect the Networking switch physical package and check as follows:

- 1. Outer Package Inspection
 - 1) Check that the outer carton is in good condition.
 - 2) Check the package for a HPE Quality Seal or IPQC Seal, and ensure that it is intact.
 - 3) Check that the IPQC seal on the plastic bag inside the carton is intact.
 - 4) If any check failed, the goods shall be treated as dead-on-arrival (DOA) goods.
- 2. Packing List Verification

Check against the packing list for discrepancy in material type and quantity. If any discrepancy found, the goods shall be treated as DOA goods.

3. External Visual Inspection

Inspect the cabinet or chassis for any defects, loose connections, damages, and illegible marks. If any surface defect or material shortage found, the goods shall be treated as DOA goods.

- 4. Confirm Software/firmware
 - 1) Version verification

To verify the software version, start the appliance, view the self-test result during startup, and use the display version command to check that the software version³⁷.

- For the 5700, "HPE Comware Software, Version 7.1.045, Release R2422P01" indicates it is a FIPS 140-2 and CC certification version.
- For the 5900, "HPE Comware Software, Version 7.1.045, Release R2422P01" indicates it is a FIPS 140-2 and CC certification version.
- For the 5920, "HPE Comware Software, Version 7.1.045, Release R2422P01" indicates it is a FIPS 140-2 and CC certification version.

If software loading failed or the version information is incorrect, please contact HPE for support.

2) RSA with SHA-256 verification

To verify that software/firmware has not been tampered, run SHA Hash command on the appliance. If the hash value is different from release notes of this software, contact HPE for support. To get release notes, please access HPE website.

5. DOA (Dead on Arrival)

³⁷ All modules in this validation were tested with the Comware release R2422P01.

FIPS 140-2 Non-Proprietary Security Policy for HPE FlexFabric 5700, 5900 and 5920 Switch Series

If the package is damaged, any label/seal is incorrect or tampered, stop unpacking the goods, retain the package, and report to HPE for further investigation. The damaged goods will be replaced if necessary.

8.2 Secure Operation

The rules for securely operating an HPE Networking switch in FIPS mode are:

- 1. Install and connect the device according to the installation and configuration guides.
- 2. Start the device, and enter the configuration interface.
- 3. Check and configure the clock.
- 4. By default, the device does not run in FIPS mode. Enable the device to work in FIPS mode using the **fips mode enable** command in system view. This will allow the switch to internally enforce FIPS-compliance behavior, such as run power-up self-test and conditional self-test.
- 5. Set up username/password for crypto officer role. The password must comprise no less than 15 characters and must contain uppercase and lowercase letters, digits, and special characters.
- 6. Save the configurations and re-start the device.

The device works in FIPS mode after restarting:

1. Configure the security appliance to use SSHv2.

An operator can determine whether a switch is in FIPS mode with the command **display fips status**. When in FIPS mode:

- 1. The FTP/TFTP server is disabled.
- 2. The Telnet server is disabled.
- 3. The HTTP/S server is disabled.
- 4. SNMP v1 and SNMP v2c are disabled. Only SNMP v3 is available.
- 5. The SSH server does not support SSHv1 clients
- 6. Generated RSA key pairs have a modulus length 2048 bits.
- 7. Generated ECDSA key pairs with curves P-256, P-384 and P-521.
- 8. SSHv2, SNMPv3 and IPsec do not support Non-FIPS approved cryptographic algorithms.

9 Physical Security Mechanism

FIPS 140-2 Security Level 2 Physical Security requirements mandate that a cryptographic module have an opaque enclosure with tamper-evident seals for doors or removable covers. HPE Networking devices include both appliance and chassis models. The tamper-evident seals and opacity shields shall be installed for the module to operate in a FIPS Approved mode of operation. All Networking devices need tamper-evident seals to meet the Physical Security requirements.

The Crypto Officer is responsible for properly placing all tamper evident labels on a device and is responsible for the securing and control of any unused seals and opacity shields. The Crypto Officer shall clean the module of any grease, dirt, or oil before applying the tamper-evident labels or opacity shields. The tamper-evident labels are to be placed according to the figures in sections 2.2.3, 2.3.3 and 2.4.3 of this document. The Crypto Officer is also responsible for the direct control and observation of any changes to the modules such as reconfigurations where the tamper-evident labels or opacity shields are removed or installed to ensure the security of the module is maintained during such changes and the module is returned to a FIPS approved state. The security labels recommended for FIPS 140-2 compliance are provided in the FIPS Kit. These security labels are very fragile and cannot be removed without clear signs of damage to the labels.

5900 series

Unit	Opacity Kit – Description	Opacity kit – Part Number
HPE FlexFabric 5900AF- 48XG-4QSFP+ Switch	HPE FlexFabric 5900AF-48XG-4QSFP+ Switch Opacity Shield Kit	JH063A ³⁸
HPE FlexFabric 5900AF- 48G-4XG-2QSFP+ Switch	HPE FlexFabric 5900AF-48G-4XG-2QSFP+ Switch Opacity Shield Kit	JH063A ³⁸
HPE FlexFabric 5900AF- 48XGT-4QSFP+ Switch	HPE FlexFabric 5900AF-48XGT-4QSFP+ Switch Opacity Shield Kit	JH719A ³⁹
HPE FlexFabric 5900CP- 48XG-4QSFP+ Switch	HPE FlexFabric 5900CP-48XG-4QSFP+ Switch Opacity Shield Kit	JH719A ³⁹

5920 series

Unit	Opacity Kit – Description	Opacity kit – Part Number
HPE 5920AF-24XG Switch	HPE 5920AF-24XG Switch Opacity Shield Kit	JG720A

5700 series

Unit	Opacity Kit – Description	Opacity kit – Part Number
HPE FlexFabric 5700- 32XGT-8XG-2QSFP+	HPE FlexFabric 5700-32XGT-8XG-2QSFP+ Switch Opacity Shield Kit	JH063A ³⁸

³⁸ Multiple switches have the same external form factor and share the same opacity shield. The j-number for the opacity shield is the same for these switches.

³⁹ Multiple switches have the same external form factor and share the same opacity shield. The j-number for the opacity shield is the same for these switches.

FIPS 140-2 Non-Proprietary Security Policy for HPE FlexFabric 5700, 5900 and 5920 Switch Series

Switch		
HPE FlexFabric 5700- 40XG-2QSFP+ Switch	HPE FlexFabric 5700-40XG-2QSFP+ Switch Opacity Shield Kit	JH063A ³⁸
HPE FlexFabric 5700- 48G-4XG-2QSFP+ Switch	HPE FlexFabric 5700-48G-4XG-2QSFP+ Switch Opacity Shield Kit	JH063A ³⁸

All units use the same tamper evidence label kits:

Label Kit – Description	Label Kit - Part Number
HPE 12mm x 60mm Tamper-Evidence (30) Labels	JG585A
HPE 12mm x 60mm Tamper-Evidence (100) Labels	JG586A

Each modular switch is entirely encased by a thick steel chassis. Power cable connection is provided on the power supplies.

Use the procedure described in FIPS enclosure install instruction to apply tamper evident labels to the switch.

The Crypto Officer should inspect the tamper evident labels periodically to verify they are intact and the serial numbers on the applied tamper evident labels match the records in the security log. If evidence of tampering is found with the TELs, the module must immediately be powered down and all administrators must be made aware of a physical security breach in compliance the local site policies and procedures for dealing with this type of incident.

10 Mitigation of Other Attacks

The Security appliances do not claim to mitigate any attacks in a FIPS approved mode of operation.

11 Documentation References

11.1 Obtaining documentation

You can access the HPE Networking products page: <u>http://h17007.www1.hp.com/us/en/</u>, where you can obtain the up-to-date documents of HPE Routers and Switches, such as datasheet, installation manual, configuration guide, command reference, and so on.

11.2 Technical support

For technical or sales related question please refer to the contacts list on the HPE website: <u>http://www.HP.com.</u>

The actual support website is:

http://www8.hp.com/us/en/support-drivers.html