

# **Fatpipe Crypto Module** FIPS 140-2 Non-Proprietary Security Policy

#### **Revision History**

| Date       | Version | Changes       |
|------------|---------|---------------|
| 07/25/2017 | 1.0     | Initial Draft |

| Ta | ble of Contents |   |
|----|-----------------|---|
| 1  | Modulo Ovoru    | , |

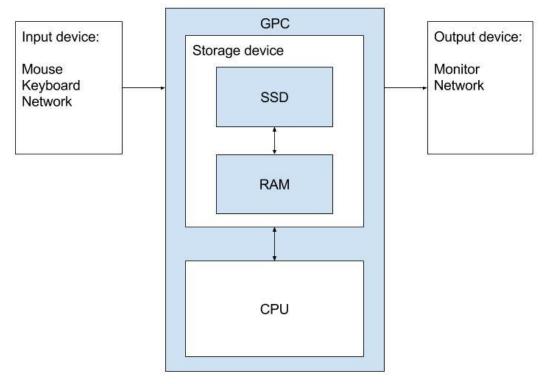
| 1 Module Overview                                        |
|----------------------------------------------------------|
| 1.1 Cryptographic Boundary                               |
| 1.1.1   Hardware Block Diagram                           |
| 1.1.2   Software Block Diagram                           |
| 2 Security Level                                         |
| 3 Ports and Interfaces                                   |
| 4 Security Rules                                         |
| 5 Modes of Operation                                     |
| 5.1 FIPS Approved Mode                                   |
| 5.2 Non-Approved mode                                    |
| 6 Identification and Authentication Policy               |
| 7 Access Control Policy                                  |
| 7.1 Definition of Critical Security Parameters           |
| 8 Self-Tests                                             |
| 8.1 Power-Up Tests                                       |
| 8.2 Conditional Tests                                    |
| 8.3 Self_test errors                                     |
| 9 Physical Security Policy                               |
| 10 Mitigation of Other Attacks Policy17                  |
| 11 Glossary                                              |
| 12 References                                            |
| Appendix A: Critical Security Parameters and Public Keys |
| Appendix B: CKG as per SP800-133                         |

# 1 Module Overview

The following summarize key features of the Fatpipe Crypto Module (Software Version: 9.1.2-fips). Herein, the Fatpipe Crypto Module may be referred to as "the module".

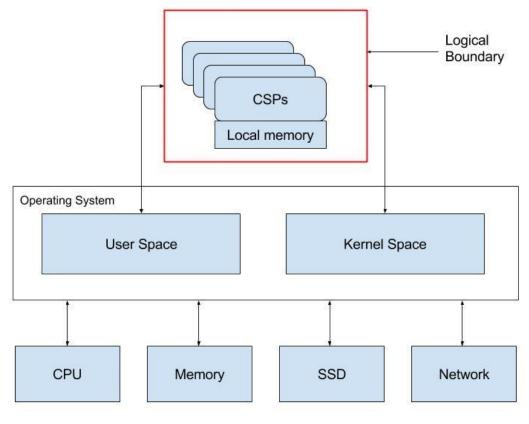
The module is a software-only cryptographic module designed to provide router clustering. It is an essential part of Disaster Recovery and Business Continuity Planning for Virtual Private Network (VPN) connectivity. It is integrated with several User Space and Kernel Space cryptographic algorithms and other security mechanisms.

The module is a multichip standalone module.


The module is tested under the configuration below:

| Table 1: Tested Configurations |  |
|--------------------------------|--|
|--------------------------------|--|

| <b>Operating System</b>            | Processor                       | Optimizations |
|------------------------------------|---------------------------------|---------------|
| LFS (Linux from scratch) 1.1.0 x86 | Intel(R) Xeon(R) CPU E3-1220 v5 | None          |
| 64 Pure 64                         | @ 3.00GHz without AES-NI        |               |
|                                    |                                 |               |


### 1.1 Cryptographic Boundary

### 1.1.1 Hardware Block Diagram



#### 1.1.2 Software Block Diagram

The logical boundary of the module is shown below.



. . .

# 2 Security Level

The module meets the overall requirements applicable to Security Level 1 of FIPS 140-2, as shown below.

| Table 2: Security I | Level Summary |
|---------------------|---------------|
|---------------------|---------------|

| Security Requirements                        | Level |
|----------------------------------------------|-------|
| Cryptographic Module Specification           | 1     |
| Cryptographic Module Ports and Interfaces    | 1     |
| Roles, Services and Authentication           | 1     |
| Finite State Model                           | 1     |
| Physical Security                            | N/A   |
| Operational Environment                      | 1     |
| Cryptographic Key Management                 | 1     |
| Electromagnetic Interference/Electromagnetic | 1     |
| Compatibility (EMI/EMC)                      |       |
| Self-Tests                                   | 1     |
| Design Assurance                             | 1     |
| Mitigation of Other Attacks                  | N/A   |

## 3 Ports and Interfaces

The physical ports of the general-purpose computer on which the module runs, such as keyboards, harddisks, displays, etc., provide a means to access the module. The physical ports of the general purpose computer that were tested are listed here:

- 4-port Gigabit NIC
- (Qty. 2) USB ports
- Serial Console port
- Power Port
- VGA Port

The module does not support a Maintenance interface. The logical interfaces are described below.

| Interface     | Description |
|---------------|-------------|
| Data Input    | Via API     |
| Control Input | Via API     |
| Data Output   | Via API     |
| Status Output | Via API     |

#### Table 3: Module Logical Interfaces

# 4 Security Rules

The following specifies the security rules under which the module shall operate:

- Installation of the module is the responsibility of the Administrator.
- The module enforces logical separation between all data inputs, data outputs, control inputs, and status outputs.
- All data output is inhibited when in an error state, during self-tests, and during zeroization.
- Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- The general purpose-computing platform includes a power port.
- The module protects public keys and CSPs from unauthorized disclosure, unauthorized modification, and unauthorized substitution.
- Power-up self-tests do not require any operator intervention.
- The module does not support bypass capability.
- The module does not output intermediate key values.
- The module does not support a maintenance interface or role.
- When performing zeroization, the operator of the module is **required** to reformat and overwrite the drive completely, and the operator **must** reboot the module.

# 5 Modes of Operation

The module supports two modes of operation: FIPS Approved mode and non-Approved mode.

### 5.1 FIPS Approved Mode

The Crypto Officer shall follow these steps to initialize the module to run in the FIPS Approved mode:

- 1. Power on the module
- 2. Load Linux kernel module
  - a. In init function, fips\_test is called to perform self-tests without operator intervention.
- 3. After self-tests are passed, the module is in FIPS Approved mode, user will see "ALL TESTS [PASSED]. ENTERING FIPS\_MODE" output via API on console.

In FIPS Approved mode, the module supports the following Approved Security Functions:

| CAVP<br>Cert. | Algorithm                        | Standard               | Mode / Method                           | Key Lengths,<br>Curves or<br>Moduli                      | Use                                                  | Kernel<br>Space or<br>User<br>Space |
|---------------|----------------------------------|------------------------|-----------------------------------------|----------------------------------------------------------|------------------------------------------------------|-------------------------------------|
| #4314         | AES                              | FIPS 197,<br>SP800-38A | СВС                                     | 128, 192, 256 <sup>1</sup>                               | Data<br>Encryption /<br>Decryption                   | User Space                          |
| #4315         | AES                              | FIPS 197,<br>SP800-38A | CBC                                     | 128, 192, 256 <sup>1</sup>                               | Data<br>Encryption /<br>Decryption                   | Kernel<br>Space                     |
| #1028         | CVL<br>IKEv2<br>KDF <sup>2</sup> | SP800-<br>135rev1      | N/A                                     | N/A                                                      | Key<br>Derivation                                    | User Space                          |
| #1027         | CVL<br>Partial DH                | SP800-56A              | FFC                                     | 2048                                                     | Key Pair<br>Generation                               | User Space                          |
| #1372         | DRBG                             | SP800-90A              | CTR_DRBG <sup>3</sup> ,<br>Hash_DRBG    | N/A                                                      | Deterministic<br>Random Bit<br>Generation            | User Space                          |
| #1149         | DSA                              | FIPS 186-4             | KeyPairGen                              | (2048, 224), <sup>4</sup><br>(2048, 256),<br>(3072, 256) | Key Pair<br>Generation;<br>Prerequisite to<br>KAS DH | User Space                          |
| #2846         | HMAC                             | FIPS 197               | HMAC-SHA-1,<br>HMAC-SHA-256             | 112, 256                                                 | Message<br>Authentication                            | User Space                          |
| #3549         | SHS                              | FIPS 180-4             | SHA-1, SHA-256,<br>SHA-512 <sup>5</sup> | N/A                                                      | Hashing                                              | User Space                          |

| Table   | 4: | Approved        | Security | Functions    |
|---------|----|-----------------|----------|--------------|
| 1 00000 |    | <i>ipprovea</i> | Security | I WINCHIOTIS |

<sup>&</sup>lt;sup>1</sup> Only AES-256 is utilized in the Approved mode of operation. All other key sizes are latent functionality and are not available in any service in the Approved or non-Approved mode of operation.

<sup>&</sup>lt;sup>2</sup> It should be noted that no parts of the IKEv2 protocol, other than the KDF, have been tested by the CAVP.

<sup>&</sup>lt;sup>3</sup> It should be noted that in the Approved mode of operation, the module only supports AES-256-CTR DRBG. All other modes are latent functionality.

<sup>&</sup>lt;sup>4</sup> It should be noted that the only key size and mode utilized is (2048, 256). All other key size and modes are latent functionality and are not available in any service in the Approved or non-Approved mode of operation.

<sup>&</sup>lt;sup>5</sup> It should be noted that SHA-512 is latent functionality and is not available in any service in the Approved or non-Approved mode of operation.

The following non-Approved algorithms and protocols are allowed within the Approved mode of operation:

| Table 5: Non-Approved | but allowed algorithms |
|-----------------------|------------------------|
|-----------------------|------------------------|

| Algorithm      | Caveat                                                                                      | Use                                        |
|----------------|---------------------------------------------------------------------------------------------|--------------------------------------------|
| Diffie-Hellman | Key agreement; key establishment<br>methodology provides 112 bits of<br>encryption strength | Key establishment within IKEv2<br>protocol |
| NDRNG          |                                                                                             | Seeding for the Approved DRBG              |

### 5.2 Non-Approved mode

The module provides the following non-FIPS approved algorithms only in non-FIPS mode of operation.

| Non-Approved<br>Algorithm                     | Usage / Description                            |
|-----------------------------------------------|------------------------------------------------|
| AES CBC 128, 192, 256<br>(non-compliant)      | Data Encryption / Decryption                   |
| CVL<br>IKEv2 KDF (non-<br>compliant)          | Key Derivation                                 |
| DRBG (non-compliant)                          | Deterministic Random Bit Generation            |
| DSA (non-compliant)                           | Key Pair Generation;<br>Prerequisite to KAS DH |
| HMAC-SHA-1 (non-<br>compliant)                | Message Authentication                         |
| HMAC-SHA-1-96 (non-<br>compliant)             | Message Authentication                         |
| IKEv2 KDF with HMAC-<br>SHA-1 (non-compliant) | Key Derivation                                 |
| KAS DH (non-compliant)                        | Key Pair Generation                            |
| SHA-1, SHA-256 (non-<br>compliant)            | Hashing                                        |
| Triple-DES TCBC (non-<br>compliant)           | Data Encryption / Decryption                   |

Table 6: Algorithms in Non-Approved mode

| Table 7: | Services | available | in non-A | Approved i | mode |
|----------|----------|-----------|----------|------------|------|
|----------|----------|-----------|----------|------------|------|

| Service                | Usage / Description                                                    | Algorithms used                                |
|------------------------|------------------------------------------------------------------------|------------------------------------------------|
| Configuration of PSK   | Set up matching keywords for IPSec establishment                       | IKEv2 KDF                                      |
| Establish IPSec tunnel | Perform DH key exchange and algorithm negotiation; Set up ipsec tunnel | AES<br>HMAC<br>IKEv2 KDF                       |
| Show tunnel status     | Show status of IPSec tunnel                                            | N/A                                            |
| Display Module Status  | Output status of module                                                | N/A                                            |
| Perform Self-Tests     | Perform Self-Tests                                                     | N/A                                            |
| Zeroization            |                                                                        | KAS DH AES<br>HMAC<br>IKEv2 KDF<br>AES<br>DRBG |

## 6 Identification and Authentication Policy

The Cryptographic Module supports an Administrator (Crypto Officer) role and a User role. A role is implicitly assumed based upon the service that is invoked.

#### Table 8: Roles and Required Identification and Authentication (FIPS 140-2 Table C1)

| Role                           | Type of Authentication | Authentication Data |
|--------------------------------|------------------------|---------------------|
| Administrator (Crypto Officer) | N/A                    | N/A                 |
| User                           | N/A                    | N/A                 |

#### Table 9: Strengths of Authentication Mechanisms (FIPS 140-2 Table C2)

| Authentication Mechanism | Strength of Mechanism |  |
|--------------------------|-----------------------|--|
| N/A                      | N/A                   |  |

### 7 Access Control Policy

The following table describes the services of the module available in FIPS Approved Mode along with which role, cryptographic keys and CSPs, and type of access it corresponds to.

Table 10: Services Authorized for Roles, Access Rights within Services (FIPS 140-2 Table C3, Table C4)

| Role                   | Service                      | Description                                                                        | Cryptographic Keys & CSPs                                                                                                                                                                                                                                    | Type(s) of<br>Access<br>R = Read<br>W = Write<br>D = Delete |
|------------------------|------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Administrator          | Installation of the module   | Installation of the module                                                         | N/A                                                                                                                                                                                                                                                          | N/A                                                         |
| Administrator          | Initialization of the module | Initialization of the module                                                       | N/A                                                                                                                                                                                                                                                          | N/A                                                         |
| Administrator          | Configuration of PSK         | Set up matching<br>keywords for<br>IPSec<br>establishment                          | IKEv2 Pre-Shared Secret (PSK)                                                                                                                                                                                                                                | RWD                                                         |
| Administrator          | Establish IPSec tunnel       | Perform DH key<br>exchange and<br>algorithm<br>negotiation; Set<br>up IPSec tunnel | IKEv2 Pre-Shared Secret (PSK)<br>IKEv2 AES Key<br>IKEv2 HMAC Key<br>IKEv2 KDF State<br>IPSec AES Key<br>IPSec HMAC Key                                                                                                                                       | RWD                                                         |
| Administrator<br>/User | Show tunnel status           | Show status of<br>IPSec tunnel                                                     | N/A                                                                                                                                                                                                                                                          | N/A                                                         |
| Administrator<br>/User | Display Module Status        | Output status of module                                                            | N/A                                                                                                                                                                                                                                                          | N/A                                                         |
| Administrator<br>/User | Perform Self-Tests           | Perform Self-<br>Tests                                                             | N/A                                                                                                                                                                                                                                                          | N/A                                                         |
| Administrator<br>/User | Zeroization                  |                                                                                    | Local DH Private Key<br>Local DH Public Key<br>Peer DH Public Key<br>DH Shared Secret<br>IKEv2 Pre-Shared Secret (PSK)<br>IKEv2 AES Key<br>IKEv2 HMAC Key<br>IKEv2 KDF State<br>IPSec AES Key<br>IPSec HMAC Key<br>CTR_DRBG Internal State<br>CTR_ DRBG Seed | W                                                           |

#### 7.1 Definition of Critical Security Parameters

The following list enumerates the secret keys, private keys, and public keys contained in the module. Details about the lifecycle of each cryptographic key and CSP can be found in Appendix A:

- 1. Local DH Private Key
- 2. Local DH Public Key
- 3. Peer DH Public Key
- 4. DH Shared Secret
- 5. IKEv2 Pre-Shared Secret (PSK)
- 6. IKEv2 AES Key
- 7. IKEv2 HMAC Key
- 8. IKEv2 KDF State
- 9. IPSec AES Key
- 10. IPSec HMAC Key
- 11. CTR\_DRBG Internal State
- 12. CTR\_DRBG Seed

### 8 Self-Tests

#### 8.1 Power-Up Tests

- 1. Software Integrity Test:
  - a. HMAC-SHA-1 (performed on all cryptographic module software (User Space and Kernel Space))
- 2. Known-Answer Tests:
  - a. AES (256-bit) key size KAT (encrypt) in CBC Mode (Kernel Space and User Space)
  - b. AES (256-bit) key size KAT (decrypt) in CBC Mode (Kernel Space and User Space)
  - c. SHA-256 KAT (User Space Only)
  - d. SP800-90A AES-256-CTR DRBG KAT (User Space Only)
  - e. SP800-56A Diffie-Hellman KAT (User Space Only)
  - f. SP800-135 IKEv2 KDF KAT (User Space Only)
  - g. HMAC-SHA-256 KAT (User Space Only)
- 3. Critical Functions Tests:
  - a. N/A

#### 8.2 Conditional Tests

- 1. Bypass Test: N/A
- 2. Software Load Test: N/A
- 3. Continuous Random Number Generator (RNG) Test
  - a. Performed on the output of the NDRNG (/dev/urandom)
  - b. Performed on the output of the Approved SP800-90A CTR\_DRBG

#### 8.3 Self\_test errors

- 1. In the event of a Software Integrity Test failure, the operator shall see the following message: "Fatpipe Integrity Check ... different checksum [FAIL]"
- 2. In the event of a Power-On Self-Test failure in Kernel Space, the operator shall see the following error message: "Kernel Alg Test: [FAILED]"
- 3. In the event of a Power-On Self-Test failure in User Space, the operator shall see the following error message: "<self test name> failed"
- 4. In the event of a Conditional Self-Test failure for NDRNG and SP800-90A CTR\_DRBG, the operator shall see the following error message: "OpenSSL internal error, assertion failed"

### 9 Physical Security Policy

The Fatpipe Crypto Module is a software module. The physical security requirements are not applicable.

| Physical Security Mechanisms | Recommended Frequency of<br>Inspection/Test | Inspection/Test Guidance Details |
|------------------------------|---------------------------------------------|----------------------------------|
| N/A                          | N/A                                         | N/A                              |

#### Table 11: Inspection/Testing of Physical Security Mechanisms

# 10 Mitigation of Other Attacks Policy

The Fatpipe Crypto Module is not designed to mitigate any specific attacks.

Table 12: Mitigation of Other Attacks (FIPS 140-2 Table C6)

| Other Attacks | Mitigation Mechanism | Specific Limitations |
|---------------|----------------------|----------------------|
| N/A           | N/A                  | N/A                  |

#### 11 Glossary

The following table defines the acronyms used in this document.

#### Table 13: Acronym Table

| Term/Acronym | Description                               |  |
|--------------|-------------------------------------------|--|
| AES          | Advanced Encryption Standard              |  |
| CBC          | Cipher-Block Chaining                     |  |
| CSP          | Critical Security Parameter               |  |
| CVL          | Component Validation List                 |  |
| DES          | Data Encryption Standard                  |  |
| DH           | Diffie-Hellman                            |  |
| DRBG         | Deterministic Random Bit Generator        |  |
| DSA          | Digital Signature Algorithm               |  |
| FIPS         | Federal Information Processing Standard   |  |
| HMAC         | Keyed-Hash Message Authentication Code    |  |
| IKEv2        | Internet Key Exchange                     |  |
| IPSec        | Internet Protocol Security                |  |
| KAS          | Key Agreement Scheme                      |  |
| KAT          | Known-Answer Test                         |  |
| KDF          | Key Derivation Function                   |  |
| NDRNG        | Non-deterministic Random Number Generator |  |
| SHA          | Secure Hash Algorithm                     |  |
| SHS          | Secure Hash Standard                      |  |

# 12 References

| Title                                           | Link                                                        |
|-------------------------------------------------|-------------------------------------------------------------|
| Security Requirements for Cryptographic Modules | http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf   |
| (FIPS PUB 140-2)                                |                                                             |
| Advance Encryption Standard (FIPS PUB 197)      | http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf     |
| Recommendation for Random Number Generation     | http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.S |
| Using Deterministic Random Bit Generators       | <u>P.800-90Ar1.pdf</u>                                      |
| (NIST SP 800-90A)                               |                                                             |
| Digital Signature Standard (FIPS PUB 186-4)     | http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf   |
| The Keyed-Hash Message Authentication Code      | http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf   |
| (FIPS PUB 198-1)                                |                                                             |
| Recommendation for Pair-Wise Key                | http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.S |
| Establishment Schemes Using Discrete Logarithm  | P.800-56Ar2.pdf                                             |
| Cryptography (NIST SP 800-56A)                  |                                                             |
| Secure Hash Standard (FIPS PUB 180-4)           | http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf   |

## Appendix A: Critical Security Parameters and Public Keys

1. Local DH Private Key

Type: minimum 2048-bit Generation: SP800-90A. As per SP800-133 Section 6.2, the random value (K) needed to generate key pairs for the finite field is the output of the SP800-90 DRBG; this is Approved as per SP800-56A. Establishment: N/A Entry: N/A Output: N/A Output: N/A Storage: plaintext in RAM (fresh for each session) Zeroization: by power cycle

- 2. Local DH Public Key
  - Type: minimum 2048-bit

Generation: SP800-90A. As per SP800-133 Section 6.2, the random value (K) needed to generate key pairs for the finite field is the output of the SP800-90 DRBG; this is Approved as per SP800-56A. Establishment: N/A Entry: N/A Output: signed HMAC with PSK authenticated by HMAC-SHA1 Storage: plaintext in RAM (fresh for each session) Zeroization: by power cycle

3. Peer DH Public Key

Type: minimum 2048-bit Generation: N/A Establishment: N/A Entry: signed with HMAC with PSK authenticated by HMAC-SHA1 Output: N/A Storage: plaintext in RAM Zeroization: by power cycle

4. DH Shared Secret

Type: minimum 2048-bit Generation: N/A Establishment: via IKEv2 negotiation Entry: N/A Output: N/A Storage: plaintext in RAM Zeroization: by power cycle

 IKEv2 Pre-Shared Secret (PSK) Type: 112-bit HMAC key used for authentication during IKE negotiations Generation: N/A Establishment: N/A Entry: N/A as per FIPS 140-2 IG 7.7 Output: N/A Storage: Plaintext Zeroization: Active overwrite

6. IKEv2 AES Key

Type: 256-bit key. Used in CBC mode to encrypt/decrypt within IKEv2. Generation: SP800-135 KDF Establishment: via IKEv2 negotiation Entry: N/A Output: N/A Storage: plaintext in RAM Zeroization: by power cycle

- 7. IKEv2 HMAC Key Type: HMAC-SHA-1 key (at least 112 bits) Generation: N/A Establishment: via IKEv2 negotiation Entry: N/A Output: N/A Storage: plaintext in RAM Zeroization: by power cycle
- IKEv2 KDF State
   Type: HMAC-SHA-256
   Generation: N/A
   Establishment: via IKEv2 negotiation
   Entry: N/A
   Output: N/A
   Storage: plaintext in RAM
   Zeroization: by power cycle
- 9. IPSec AES Key

  Type: 256-bit key. Used in CBC mode to encrypt/decrypt within IPSec.
  Generation: N/A
  Establishment: via IKEv2 negotiation
  Entry: N/A
  Output: N/A
  Storage: plaintext in RAM
  Zeroization: by power cycle
- 10. IPSec HMAC Key Type: HMAC-SHA-1 key (at least 112 bits) Generation: N/A Establishment: via IKEv2 negotiation Entry: N/A Output: N/A Storage: plaintext in RAM Zeroization: by power cycle
- 11. CTR\_DRBG Internal State

Type: SP800-90A CTR\_DRBG Generation: seeded by /dev/urandom Establishment: N/A Entry: N/A Output: N/A Storage: plaintext in RAM Zeroization: by power cycle

12. CTR\_DRBG Seed Type: SP800-90A CTR\_DRBG Generation: seeded by /dev/urandom Establishment: N/A Entry: N/A Output: N/A Storage: plaintext in RAM Zeroization: by power cycle

# Appendix B: CKG as per SP800-133

In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) as per SP800-133 (vendor affirmed). The resulting generated seed, for asymmetric key generation, is the unmodified output from the SP800-90A DRBG. Please see Appendix A: Critical Security Parameters and Public Keys for more information.