
An Attack on RSA Digital Signature
An attack has been found on some implementations of RSA digital signatures using the padding
scheme for RSASSA-PKCS1-v1_5 (as specified in Public Key Cryptography Standards (PKCS)
#1 v2.1: RSA Cryptography Standard 2002) when the public key e = 3. Hereafter, RSASSA-
PKCS1-v1_5 will be referred to as PKCS1-v1_5. Details of the attack on implementations of this
scheme are provided below. A similar attack could also be applied to implementations of RSA
digital signatures as specified in American National Standard (ANS) X9.31. Note that this attack
is not on the RSA algorithm itself, but on improper implementations of the signature verification
process.

The testing used by the Cryptographic Algorithm Validation Program (CAVP) has been modified
to test for this improper implementation on new RSA signature applications that undergo CMVP
testing. However, many implementations that have already been certified as implementing RSA
signatures using PKCS1-v1_5 might have been implemented with this problem.

NIST has designed a sequence of messages that can be used by a vendor to test the vulnerability
of an implementation to this type of attack (see http://csrc.nist.gov/cryptval/anncmnts.htm.).
Concerned users should contact the vendor of their RSA digital signature application to request
information on the vulnerability of their implementation.

Details of the Attack

At the rump session of Crypto 2006, Daniel Bleichenbacher gave an attack on RSA digital
signature. The attack works on RSA digital signature with public exponent e = 3 and PKCS1-
v1_5 padding. The following is a brief explanation of the attack.

Background:

A PKCS1-v1_5 digital signature is computed on a hash value H(M) that is padded as follows:

00 01 FF FF …FF 00 || ASN.1 || H(M),

where 00 01 FF FF …FF 00 is a padding value, ASN.1 is used to provide information about the
hash function (basically, the length of the hash value), and H(M) is the hash value. Note that the
hash value H(M) is supposed to be right-justified. In this case, after the digital signature is
decrypted using the public exponent e = 3, the padded message shown above should be obtained.
The hash value H(M) can be extracted by searching past the padding and the ASN.1 values, and
selecting the appropriate number of bytes that follow. One way to verify the signature is to
compare the extracted value of H(M) with a separately computed hash value on the received
message M. If they compare, then the digital signature is considered valid.

X9.31 specifies a similar padding method. The only difference is, instead of being right-justified,
the hash value is followed by a 2 byte trailer with a fixed value. When SHA-1 is used, the padded
hash value is as follows:

6B BB BB ...BB BA || H(M) || 33 CC

Problem:

Some implementations extract the number of bits for the hash value by their position relative to
the padding without checking for unexpected data after the hash value. In the case of PKCS1-
v1_5, the hash value is selected by finding the end of the padding and the ASN.1 value, and then
extracting the hash value without checking whether or not additional data follows the hash value
(i.e., whether or not the hash value is right justified in the padded hash string). In the case of the
RSA digital signature specified in ANS X9.31, the hash value is selected by finding the end of the

padding, and then extracting the hash value without checking that only two bytes with the
expected values follow the hash value in the padded hash string.

Attack:

When the PKCS1-v1_5 padding method is used, for any message M” with hash value H(M”), it is
rather easy to find a cubic root of a string like

00 01 FF …FF 00 || ASN.1 || H(M”) || garbage

where the number of occurrences of FF in the padding is reduced, and garbage is cleverly chosen
to make the modified string into a cube of some value.

When the ANS X9.31 padding method is used, the padded hash could be altered as follows by
reducing a number of occurrences of BB in the padding:

6B BB BB ...BB BA || H(M) || garbage

where the last two bytes of garbage are the expected trailer (e.g., 33 CC), and the modified
padded hash string has a cubic root.

The attack was presented with e = 3 as an example. For both padding methods, whenever a small
value of e is used, and an eth root of a string like the above can be found, then the attack will
apply. When e is large, finding an eth root modulo n will be hard.

How to prevent the attack when PKCS1-v1_5 is used:

• Do not use 3 as the public exponent for RSA Signatures.

• If the PKCS-v1_5 padding is used to find the hash value, then verify that there is no more
data on the right of the hash value.

How to prevent the attack when the RSA digital signature specified in ANS X9.31 is used:

• Do not use 2 or 3 as the public exponent for Digital Signatures.

• If the ANS X9.31 padding is used to locate the hash value, then verify that the hash value
is followed by only two bytes containing the expected value of the trailer.

