
The Remedy Dimension of Vulnerability Analysis

Ulf Lindqvist1 Per Kaijser2 Erland Jonsson1

1Department of Computer Engineering
Chalmers University of Technology

SE-412 96 Göteborg, Sweden
ulfl, erland.jonsson @ce.chalmers.se

2Siemens AG
DE-81730 München

Germany
Per.Kaijser@mchp.siemens.de

Abstract

This work is aimed at supporting system and information
owners in their mission to apply a proper remedy when
a security flaw is discovered during system operation. A
broad analysis of the different aspects of flaw remedia-
tion has resulted in a structured taxonomy that will guide
the system and information owners through the remedy
identification process. The information produced in the
process will help to make decisions about changes to the
system or procedures. A selected vulnerability that was
able to be removed using three different remedies is used
as an example.

Keywords: Remedy, taxonomy, vulnerability, security,
system owner, information owner.

1 Introduction

When the discovery of a security flaw in a system has
come to the knowledge of a party that risks suffering a
direct loss if the vulnerability were to be exploited by
an attacker, that party must decide what remedial ac-
tion to take in order to remove the flaw from the sys-
tem. The party in question is usually the organization
that owns the system and/or the information stored and
processed in the system. The work presented in this pa-
per is aimed at supporting the owners in their mission to
apply a proper remedy once a flaw is discovered, by pro-
viding them with a framework for remedy identification
and analysis.

The traditional and most common situation in larger
organizations is that the ownership of, or right to ac-
cess, data and information stored and processed in a sys-
tem coincides with the ownership of the system3. For

3Information owner is normally referred to information with intel-
lectual property rights (IPR). However, it can also be used to denote the
individual or organization that is authorized to control access to a piece
of information that might or might not be IPR protected. In the context
of this paper, information owner covers both cases.

smaller organizations, particularly for the many small
and medium enterprises (SMEs), there is an increased
interest in outsourcing, that is, letting a professional ser-
vice provider own, manage and operate “your” system.
The result is that information owners and system own-
ers belong to different organizations. Still, both types of
owners are vulnerable to security breaches. An informa-
tion owner risks losing control of the information, and
a system owner may be forced to pay damages or risks
losing customers through a bad reputation.

To improve the security of IT systems, several guide-
lines and standards have been produced. These have been
aimed at the different actors that have an effect on the se-
curity of the IT system, such as the manufacturers, pro-
curers, managers, operators and users. For vendors and
manufacturers, the functionality of the system and the
development processes have been the target of standards
(TCSEC [18], ITSEC [6], CC [7]) that specify criteria
against which security evaluations can be made. These
have also led to an increased interest in research on for-
mal methods [11, 1, 16]. For procurers, baseline security
documents have been created that give a minimum set
of requirements on security features that an IT system
should possess [20]. Managers, operators and users of
an IT system need to follow certain rules in the form of
security policies in order to minimize potential threats.
For this purpose, guidelines and codes of practice have
been specified [4, 9].

In spite of all these efforts, the number of security vul-
nerabilities can only be reduced, not eliminated. But
what is more important: Only a minor part of the sys-
tems trusted with valuable information in trade, industry,
public services and academia today are designed and im-
plemented according to these criteria. Further, the ways
in which hardware and software can be combined and
interconnected are so complex that not even experts can
fully understand how to avoid vulnerabilities. Reports
about new vulnerabilities in computing systems are is-
sued on almost a daily basis, for example in CERT advi-
sories (such as [5]) posted on the Internet. It is true that



security policies and recommendations for system and
information owners play an important role, but they will
not solve all weaknesses. To put it briefly:

Vulnerabilities exist and will remain in all systems
in operation.

Everyone should realize that, whatever precautions are
taken, security flaws will be present in systems when de-
livered and in operation and that we need to form strate-
gies for dealing with these flaws. However, this does not
mean that we propose a penetrate-and-patch doctrine; it
is still very important to try to eliminate as many security
flaws as possible during early phases of system develop-
ment, because the costs and risks associated with a re-
pair increase dramatically later in the product life cycle.
We want to emphasize that security should be considered
throughout the entire system life cycle and that the efforts
in different phases complement one another.

It is the owners of the information and the owners of
the system who are primarily exposed to security risks.
Therefore, our work aims at supporting the owners in
this situation. The authors hope that the results of this
work will also be beneficial to the security community in
a wide sense, including international industrial consortia
such as I-44 and ESF5, incident response teams such as
CERT and, of course, system and information owners.

In the following, Section 2 describes some earlier
work in the field, while our analysis of the remedy di-
mension and our proposed taxonomy are presented in
Section 3. Examples of remedies follow in Section 4,
and some conclusions are drawn in Section 5.

2 Previous work

In our previous work on categorization6 of intrusions, we
made some general observations on the design of cate-
gorization schemes [15]. First, it is important to clearly
state the attribute or view of the intrusion on which the
categorization was based. We suggested the use of the
term dimension for that view. Second, it is desirable to
have mutually exclusive and collectively exhaustive cat-
egories, but this is often difficult, or even impossible, to
fulfil. Third, the true value of such a taxonomy is that its
formation and application enforces a structured analysis,
which clarifies the matter and can generate new ideas.

4International Information Integrity Institute, a part of SRI Con-
sulting which in turn is a subsidiary of SRI International. WWW:
https://rome.isl.sri.com/i4/

5European Security Forum, Plumtree Court, London EC4A 4HT,
England

6We prefer the term categorization to classification. The reason is
that in the security field, the latter term is traditionally associated with
a very specific dimension, namely, levels of confidentiality.

The choice of the remedy attribute as a further di-
mension for categorization of vulnerabilities is natural
and significant. It encompasses the whole life cycle of
an IT system and focuses on the parties exposed to the
risks that the vulnerabilities represent. Until now, little
has been published on how to actually perform remedy
planning and analysis, although several authors have ob-
served the need for such activities. In an insightful paper,
Kahn and Abrams stressed the importance of anticipating
system security failures and planning for recovery and
remediation [10]. Risk management, flaw remediation
and evolutionary development is argued to provide more
cost-effective and up-to-date security assurance than the
TCSEC model of risk avoidance and static systems.

In the Common Criteria [7], there is a so called as-
surance family named Life cycle support—Flaw reme-
diation (ALC FLR). Earlier drafts of the criteria were
studied by van Laenen [19], who points out the problem
of re-evaluation when a change to the system has been
made and also suggests two new requirements to be con-
sidered: Mean time to remediation and Maximum time to
remediation. It should be noted, however, that this con-
cerns only remedies provided by the developer.

3 Remedy analysis and taxonomy

In the terminology used in the field of dependable and
fault-tolerant computing systems [13], the term fault pre-
vention is used for methods that prevent faults from oc-
curring or being introduced into a system. Actions that
aim to reduce the presence of faults that already have
been introduced fall under the category of fault removal
and, especially, fault removal encountered during the op-
erational phase of a system’s life is called corrective
maintenance. The present paper investigates corrective
maintenance applied to faults that cause security failures
or, in other words, the remedy dimension of security vul-
nerabilities.

The remedy clearly depends on the nature of the vul-
nerability, but several new aspects must be carefully
taken into account:

What and who has caused the problem?

Is there a possible way to remove the flaw?

Will the changes introduce new vulnerabilities?

Will the changes affect the quality of service?

Will the changes actually remove the vulnerability?

What will it cost to make the changes?

What action should be taken—should any changes
be made at all? If so, by whom?



The system owner can become aware of a vulnerabil-
ity through internal experience as well as from external
sources such as a product developer who provides a cor-
rection, an alert group such as CERT which may point
out a vulnerability or from its own customers (the infor-
mation owners). The information owner—the organiza-
tion to which all users of the system belong—normally
comes to know about a fault after having had practical
experience with it, but may also be informed of it by oth-
ers, for example the system owner.

First, the source of the vulnerability should be identi-
fied. This includes identification of the technical location
of the fault in the system as well as identification of the
organizational unit whose activities introduced the fault.
The latter may for example be the producer of the prod-
uct, the system owner or the information owner.

The next step is to turn to those believed to be able to
provide a solution to the vulnerability. This is preceded
by an analysis of possible locations of a remedy. The
owner then informs the potential remedy providers about
the problem, its location in the system or the process that
is believed to cause it and, possibly, gives suggestions
for how to overcome it. The result may be one or more
proposed remedy actions that must be carefully analyzed
with respect to their impact on the system and on system
operation and use.

Before and after each of these steps, a decision must
be made as to how to proceed. Is it worth continuing the
remedy process? And, if it is considered worthwhile to
continue and there are alternatives, which one(s) should
be taken? All these decisions must be based on facts and
be viewed in the light of economic constraints. To sup-
port and aid the system and information owners in their
decisions, a four-stage remedy identification process is
proposed. The properties to be identified and analyzed
are:

Fault location

Remedy location

Remedy provider

Remedy impact

Each of these stages are described in detail below.

3.1 Identification of fault location

The point in the system structure, operation or use at
which the fault causing the vulnerability is located is
called the fault location. Since a vulnerability might con-
sist of a combination of circumstances [14], it may not
be possible to distinctively identify a single point as the
location of the fault. Still, the analysis is a necessary
starting point in the remedy process.

Our taxonomy on fault location is shown in Table 1.
The taxonomy of computer program security flaws pre-
sented by Landwehr et al. [12] partly serves the same
purpose, and our categorization can be viewed as a com-
bination and extension of the dimensions they call loca-
tion and time of introduction. The reader is urged to note
that, although the same diagram is used for categoriza-
tion of the remedy location in the following subsection,
the remedy location does not always coincide with the
fault location (see the example in Section 4).

Requirements
Product/ Design
solution Implementation

Requirements
Fault Integration Design
location Implementation

External issues
or Installation Internal issues

Policy
Remedy Operation/ Monitoring and
location administration enforcement of policy

Instructions
Policy

Use Monitoring and
enforcement of policy
Instructions

Table 1: Taxonomy of fault location or remedy location.

We will describe some of the categories below, hop-
ing that the names of the other categories will be self-
explanatory. We consider a fault to be located in the in-
tegration if a component is vulnerable as part of one sys-
tem but not of another. In the installation category, exter-
nal issues are located outside the chosen system bound-
ary (for example, physical protection) while internal is-
sues are initial configuration parameters etc.

The second-level categories below the top-level cat-
egories operation/administration and use may also call
for some clarification. A policy (or, more specifically,
a security policy) is basically a set of rules stating what
is allowed, what is not allowed and what must be done.
Monitoring and enforcement of policy concern the man-
agement’s efforts to make certain that the policy is re-
spected and obeyed (a flaw may consist in the lack of en-
forcement of an existing and appropriate policy). To help
administrators and users to operate the system in a way
consistent with the policy, instructions are required. For
example, if the policy states that owners and users must
take all reasonable action to prevent passwords from be-
ing revealed to an attacker, then the instructions should,
for example, tell the system owner how to operate the
system so that passwords are never sent in the clear via



an untrusted network.
The result of this phase of the remedy identification

process is the structural location of the cause of the fault.
This will aid the owner in the next step of the process,
namely, in determining where a remedy should be ap-
plied.

3.2 Identification of remedy location

Now the owner wishes to identify where in the system
structure, operation or use a remedy should be applied.
This step is based on the result of the fault location iden-
tification as well as on the type of flaw. The reason for
this categorization is twofold: first, to be able to find the
most appropriate remedy provider (see Section 3.3) and,
second, to be able to estimate the remedy impact (see
Section 3.4).

It should be noted that, from this stage and onward,
several alternative proposed remedies to the same flaw
may co-exist, each with its own location, provider and
impact. The alternatives need not even be mutually ex-
clusive, for example certain flaws might be of such a se-
vere nature that an immediate remedy action is required
until a more proper solution can be produced and applied.
This stage in the process needs to be revisited as new
proposals result from the owner’s contacts with possible
remedy providers.

The scheme for categorization of remedy location is
identical to that of fault location, as shown in Table 1.

3.3 Identification of remedy provider

By remedy provider, we mean the party that needs to
make the necessary changes in a component or process
in order to remove the vulnerability. Identification of the
remedy provider is naturally closely related to the rem-
edy location, but is also related to the fault location. The
organization behind the process in which the flaw was in-
troduced is probably, but not necessarily, the best suited
to provide information leading to a remedy. Furthermore,
the originator of the fault has at least a moral, if not legal,
responsibility to fix the problem.

The taxonomy of remedy provider is shown in Table 2.
The categorization is based on the fact that the top-level
categories often represent different organizations. Prod-
uct developers are responsible for the production and
maintenance (in terms of error correction and evolution)
of the product. Integrators are responsible for the inte-
gration of products and solutions into a workable system.
Solution providers are responsible for customer-specific
solutions.

It should be noted that the system and information
owners are also actively involved in the maintenance of
the system, regardless of which party provides the actual

Designers
Product developers Implementors/

maintenance
Integrators
Solution providers

Remedy Policy makers
provider System owners Administrators/

operators
Policy makers

Information owners Administrators/
operators
End-users

Table 2: Taxonomy of remedy provider.

remedy. Whereas a product developer often provides the
technical solution for the removal of a fault, it is the sys-
tem owner’s administrators and operators that perform
the update or ask the information owners to do it at their
sites.

The identification of the remedy provider together
with the result of the remedy location analysis helps the
owner to identify the best way to remove the vulnerabil-
ity. In the final step of the process, the results of the re-
sponses from the remedy providers (the suggested reme-
dies) must be analyzed with respect to their impact on
the system and the business.

3.4 Analysis of remedy impact

It is important to thoroughly analyze the impact of a sug-
gested remedy on the system before applying it. If there
are several different suggestions, the analysis could also
help in choosing the optimum solution. This fourth step
in the remedy process is based on our taxonomy of rem-
edy impact as shown in Table 3. The reader should note
that the category groups numbered 1 through 10 in Ta-
ble 3 are not mutually exclusive. In fact, every remedy
analyzed with respect to impact should be assigned to
a single subcategory within each of these 10 different
groups, as illustrated in Section 4.

The primary technical effects category concerns to
what extent the remedy takes care of the vulnerability
and what effects it has on the functionality of the com-
ponent in which the changes were applied. If a particu-
lar instance of the vulnerability is removed but the basic
flaw endures, we consider the vulnerability to be partly
eliminated. On the other hand, a provisionally eliminated
vulnerability means that the flaw itself is not repaired,
but the situation in which it can be exploited is rendered
impossible, for the time being (a typical example is the
shutdown of a faulty service). The category of secondary
technical effects concerns whether a new vulnerability is



Category No.

Provisionally
Primary technical effects Target vulnerability eliminated Partly 1

Completely
Impaired

Functionality Unchanged 2
(of changed parts) Improved

High
Secondary technical effects Severity of Medium 3

identified new vulnerability Low
None
Impaired

Functionality Unchanged 4
(of unchanged parts) Improved

High
Remedy Primary economic effects Cost for internal resources Medium 5
impact (related to performing the change) Low

High
Cost for external resources Medium 6

Low
None
Increased

Secondary economic effects Cost in human resources Unchanged 7
(after the change) Decreased

Increased
Processing time Unchanged 8

Decreased
Increased

Cost in computer resources Unchanged 9
Decreased
Long

Time to remediation Medium 10
Short

Table 3: Taxonomy of remedy impact.

introduced, and how the functionality of unchanged (but
dependent) parts is affected.

In addition to technical effects, there are also eco-
nomic effects of a remedial action. The only such effects
of interest to the decision-maker are of course the ones
concerning their own organization. We have also sepa-
rated the economic effects into primary and secondary,
where the former are related to the immediate cost of
performing the change, while the latter concern the long-
term consequences after the change is made. The im-
mediate cost consists of the internal cost from workload
among the owner’s own staff and the cost of paying for
equipment, services or solutions from external sources
(depending on the contract situation). An example of
long-term impact is the case in which the change results
in a certain additional working time for some adminis-

trator or user tasks. On the other hand, if the system ser-
vices are faster and simpler after the change, a secondary
economic effect would be decreased processing time.

The time the owner needs to wait for the remedy is of
course a significant factor in the decision process, since
the system and information are vulnerable until the rem-
edy has been applied. The category of time to reme-
diation with the rough subcategories long, medium and
short is meant to be used in a relative rather than abso-
lute sense.



4 A vulnerability and examples of
remedies

In this section, we present a well-known vulnerability
and some examples of remedies in order to illustrate and
exemplify the taxonomy presented in Section 3. For the
sake of brevity, the technical description of the flaw is
here kept to a minimum; the interested reader will find
more detailed descriptions in the references cited.

4.1 The Unix X terminal emulator logging
vulnerability

The X Window System terminal program xterm, running
with the effective user id of root (super-user) in some
Unix variants, had a flawed logging facility that could be
used to create an arbitrary new file or modify any existing
file by appending an arbitrary set of data to it [5, 14, 2].

Our first step is to identify the vulnerability. It turns
out that, in the procedure implementing the logging fa-
cility, xterm makes certain critical system calls with the
privileges of root instead of with the privileges of the
user invoking the program. In this case, the flaw must
clearly be categorized as being located in the product de-
sign, since the program presumes root privileges but is
not designed with the precaution needed for privileged
programs.

A correction can either be provided by the product de-
velopers, product maintenance or even the system owner,
giving rise to three alternative remedy actions for us to
consider:

a) Remove the super-user privileges from xterm

b) Disable the logging facility of xterm

c) Rewrite xterm according to “the principle of least
privilege”

We thus note that there is only one entry for fault loca-
tion whereas there are three for both remedy location and
remedy provider.

4.2 Remedy a:
remove the super-user privileges

The quickest and easiest way to remedy the xterm flaw
is to clear the set-user-id flag of the program, that is,
to remove its super-user privileges. However, there is a
reason why xterm was installed with those privileges: it
needs to change the owner of the pseudo-terminal slave
device, an action which requires root access7. When test-

7There are Unix variants in which xterm works without special priv-
ileges. In such cases, this particular vulnerability never existed, and the
remedy discussion is a non-issue.

ing this remedy on a SunOS 4.1.2 system in a university
computer security laboratory, we found the following:

To the terminal user, xterm appears to function nor-
mally.

The pseudo-terminal slave device, to which xterm
connects, is still owned by root. In order for the de-
vice to be readable and writable for the user, it must
be so for a group of users or even all users. Conse-
quently, a new vulnerability is introduced, primarily
threatening the user rather than the system owner.

If the system logging file /etc/utmp is writable only
to root (which was the case in the test system, since
a writable /etc/utmp constitutes another vulnerabil-
ity, see [14]) the terminal connection is not reported
by some programs that list the users logged on to
the system, for example who.

We can only consider the vulnerability to be provision-
ally eliminated by this remedy because, for example, an
uninformed administrator who discovers the device and
logging problems might assume that the privileges have
been turned off by mistake or by accident. If the admin-
istrator turns the privileges back on, the system would
again be vulnerable. Any economic effects of this sim-
ple remedy are negligible.

With the information at hand, we make the following
categorization of this remedy:

Fault location: Product: Design

Remedy location: Installation: Internal issues

Remedy provider: System owners:
Administrators/operators

Remedy impact: see Table 4.

4.3 Remedy b: disable the logging facility

The patches distributed by the developers in response to
the CERT warning disable the logging facility. The func-
tion of the logging facility is to provide a simple means
for the user to save the terminal output in a file, a service
evidently impaired by this remedy. Another disadvan-
tage of this approach is that it does not solve the basic
problem, namely, that xterm unnecessarily makes all its
system calls with root privileges, leaving the system vul-
nerable to a number of other, similar and yet undiscov-
ered flaws (see the discussion on Remedy c below).

Fault location: Product: Design

Remedy location: Product: Implementation



Impact of remedy a b c No.

Primary technical Target vulnerability eliminated Provisionally Partly Completely 1
effects Functionality Unchanged Impaired Unchanged 2
Secondary technical Severity of identified new vuln. Medium None None 3
effects Functionality Impaired Unchanged Unchanged 4
Primary economic Cost for internal resources Low Low Low 5
effects Cost for external resources None None Depends 6
Secondary Cost in human resources Unchanged Unchanged Unchanged 7
economic Processing time Unchanged Unchanged Unchanged 8
effects Cost in computer resources Unchanged Unchanged Unchanged 9
Time to remediation Short Medium Long 10

Table 4: Impact analysis of the three suggested remedies.

Remedy provider: Product developers:
Implementors/maintenance

Remedy impact: see Table 4.

4.4 Remedy c: rewrite the program

Regardless of whether the concern is reliability, safety
or security, it has long been known that critical regions
of software should be as small and simple as possible,
since complex programs are error-prone. It is also well-
known in the security community that no action should
be performed with higher privileges than those abso-
lutely necessary to complete the task. These two rules
are known as the principles of “economy of mechanism”
and “least privilege”, respectively [17]. The flawed ver-
sion of xterm is a large program running with constant
super-user privileges, although such powers are neces-
sary only for a small fraction of its duties. Unfortunately,
xterm is not the only Unix utility that violates both of the
above principles; sendmail is another notorious example.

This remedy action suggests xterm to be rewritten
in a defensive, security-conscious programming style,
following “best practice” guidelines for privileged pro-
grams [3, 8]. In this case, not only the logging flaw
would be eliminated, but also any similar security flaws
in other parts of the code. This is a relatively expensive
solution, however, and there is always a risk that new se-
curity flaws and other bugs are introduced when such a
large piece of software is modified extensively.

Fault location: Product: Design

Remedy location: Product: Design

Remedy provider: Product developers: Designers

Remedy impact: see Table 4.

4.5 Discussion

In our example, a single fault was able to be removed
using three different remedies with different impacts.
Thanks to the taxonomy, the three remedies can be easily
compared. It gives the system owner well-founded facts
for making a decision, and we see that even if remedy c
is preferred, either a or b could probably be accepted as
a temporary solution.

How different owners would categorize a certain as-
pect of a given remedy may appear somewhat subjective.
It should be remembered that each owner needs to find
and validate remedies according to site-specific circum-
stances. Categorizations might therefore vary for differ-
ent owners. Future development of categorization crite-
ria could perhaps further help users of the taxonomy.

5 Conclusions

The purpose of the remedy identification process de-
fined and described in this paper is to aid and support
those exposed to the threats—the system and informa-
tion owners—in how to proceed in their decision process,
rather than to design a remedy for a given vulnerability.
Our process consists of four phases; locating the fault, lo-
cating the remedy, identifying the provider of the remedy
and analyzing the impact of the remedy. Each of these
phases requires a taxonomy for easy categorization. The
paper has described four taxonomies that are the core of
the analysis in each of these steps. The remedy location
and remedy provider phases can be iterative, since the
result of each may require an update of the other. This
is different from the first phase (fault location), which
only serves as initial input, and the last phase (remedy
impact), which analyzes the output from the two middle
phases. The final result—the impact of each proposed
remedy—is the desired outcome on which the owner can
base a sound decision as to how to proceed.



References

[1] M. D. Abrams and M. V. Zelkowitz. Striving for
correctness. Computers & Security, 14(8):719–
738, 1995.

[2] T. Aslam, I. Krsul, and E. H. Spafford. Use of a tax-
onomy of security faults. In Proceedings of the 19th
National Information Systems Security Conference,
pages 551–560, Baltimore, Maryland, Oct. 22–25,
1996. National Institute of Standards and Technol-
ogy/National Computer Security Center.

[3] M. Bishop. How to write a setuid program. ;login:
(The USENIX Association Newsletter), 12(1):5–11,
Jan./Feb. 1987.

[4] British Standards Institution. Code of Practice for
Information Security Management, 1995. BS 7799.

[5] CERT Coordination Center, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh,
PA 15213-3890, USA. xterm Logging Vulnerabil-
ity, Nov. 11, 1993. CERT Advisory CA-93:17.

[6] Commission of the European Communities. In-
formation Technology Security Evaluation Criteria,
June 1991. Version 1.2.

[7] Common Criteria Implementation Board. Common
Criteria for Information Technology Security Eval-
uation, May 1998. Version 2.0. See also ISO/IEC
15408.

[8] S. Garfinkel and G. Spafford. Practical UNIX &
Internet Security. O’Reilly & Associates, second
edition, 1996.

[9] INFOSEC Business Advisory Group. The IBAG
Framework for Commercial IT Security, Sept.
1993. Version 2.0.

[10] J. J. Kahn and M. D. Abrams. Contingency plan-
ning: What to do when bad things happen to
good systems. In Proceedings of the 18th Na-
tional Information Systems Security Conference,
pages 470–479, Baltimore, Maryland, Oct. 10–13,
1995. National Institute of Standards and Technol-
ogy/National Computer Security Center.

[11] C. E. Landwehr. Formal models for computer se-
curity. ACM Computing Surveys, 13(3):247–278,
Sept. 1981.

[12] C. E. Landwehr, A. R. Bull, J. P. McDermott, and
W. S. Choi. A taxonomy of computer program se-
curity flaws. ACM Computing Surveys, 26(3):211–
254, Sept. 1994.

[13] J.-C. Laprie, editor. Dependability: Basic Con-
cepts and Terminology, volume 5 of Dependable
Computing and Fault-Tolerant Systems. Springer-
Verlag, 1992.

[14] U. Lindqvist, U. Gustafson, and E. Jonsson. Anal-
ysis of selected computer security intrusions: In
search of the vulnerability. Technical Report 275,
Department of Computer Engineering, Chalmers
University of Technology, Göteborg, Sweden,
1996. Presented at NORDSEC – Nordic Workshop
on Secure Computer Systems, Göteborg, Sweden,
Nov. 7–8, 1996.

[15] U. Lindqvist and E. Jonsson. How to systemati-
cally classify computer security intrusions. In Pro-
ceedings of the 1997 IEEE Symposium on Security
and Privacy, pages 154–163, Oakland, California,
May 4–7, 1997. IEEE Computer Society Press, Los
Alamitos, California.

[16] P. G. Neumann. Architectures and formal represen-
tations for secure systems. Technical Report SRI-
CSL-96-05, Computer Science Laboratory, SRI In-
ternational, Menlo Park, CA 94025-3493, USA,
May 1996.

[17] J. H. Saltzer and M. D. Schroeder. The protection
of information in computer systems. Proceedings
of the IEEE, 63(9):1278–1308, Sept. 1975.

[18] U.S. Department of Defense. Trusted Computer
System Evaluation Criteria, Dec. 1985. DoD
5200.28-STD.

[19] F. van Laenen. Pedigree and credentials, remedia-
tion and legal aspects to gain assurance in IT prod-
ucts and systems. Master’s thesis, Katholieke Uni-
versiteit Leuven, Belgium, and Norges Tekniske
Høyskole, Norway, 1995.

[20] X/Open Company Ltd., UK. X/Open CAE Speci-
fication: Baseline Security Services (XBSS), 1995.
X/Open Document Number C529.


	The Remedy Dimension of Vulnerability Analysis
	1 Introduction
	2 Previous work
	3 Remedy analysis and taxonomy
	4 A vulnerability and examples of remedies
	5 Conclusions
	References

	Table of Contents

