
An Open Framework for Risk Management1

(a paper for the NISSC)

Abstract
Risk assessment methodologies are ready to enter their third generation. In this next
generation, assessment will be based on a “whole system” understanding of the system to be
assessed. To realize this vision of risk management, we have begun development of an
extensible software tool kit. This tool kit breaks with the traditional approach to assessment
by having the analyst spend the majority of the assessment time building an explicit model that
documents in a single framework the various facets of the system, such as the system’s
behavior, structure, and history. Given this explicit model of the system, a computer is able to
automatically produce standard assessment products, such as fault trees and event trees. This
brings with it a number of advantages relative to current risk management tools. Among these
are a greater sense of completeness and correctness in assessment results and the ability to
preserve and later employ lessons learned.

1 This work was performed under the Laboratory Directed Research and Development Program at Sandia National
Laboratories, a multiprogram laboratory operated by Sandia Corporation (a Lockheed Martin Company) for the United
States Department of Energy under contract DE-AC04-94AL85000.

Rick Craft (POC)
Surety System Department

Sandia National Labs
505-844-8873 (voice)

505-844-9641(fax)
rlcraft@sandia.gov

Ruthe Vandewart
Decision Support Systems Architectures Dept.

Sandia National Labs
505-844-7798 (voice)

505-284-3850(fax)
rlvande@sandia.gov

Greg Wyss
Risk Assessment and Systems Modeling Dept.

Sandia National Labs
505-844-5893 (voice)

505-844-3321(fax)
gdwyss@sandia.gov

Don Funkhouser
Decision Support Systems Architectures Dept.

Sandia National Labs
505-844-9136 (voice)
505-284-3850 (fax)

drfunkh@sandia.gov

An Open Framework for Risk Management

Abstract
Risk assessment methodologies are ready to enter their third generation. In this next generation,
assessment will be based on a “whole system” understanding of the system to be assessed. To
realize this vision of risk management, we have begun development of an extensible software tool
kit. This tool kit breaks with the traditional approach to assessment by having the analyst spend
the majority of the assessment time building an explicit model that documents in a single
framework the various facets of the system, such as the system’s behavior, structure, and history.
Given this explicit model of the system, a computer is able to automatically produce standard
assessment products, such as fault trees and event trees. This brings with it a number of
advantages relative to current risk management tools. Among these are a greater sense of
completeness and correctness in assessment results and the ability to preserve and later employ
lessons learned.

Key Words: Risk Management, Risk Assessment, Risk Analysis, Reliability

Introduction
If one examines the computer security literature over the last 25 years, the methods and practices
employed for information system risk management have changed dramatically. In her paper
presented to the 1995 New Security Paradigms Workshop [F95], Dr. Sharon Fletcher asserted
that risk management has gone through two generations and needs to enter its third. First
generation approaches to risk management grew up in the era of centralized mainframes. These
approaches assumed a fixed threat environment and measured a computing facility’s security by
assessing how well the facility adhered to a prescribed set of safeguards.

As LANs proliferated and computing environments became more distributed, first generation
approaches were rendered obsolete. Distributed computing gave adversaries greater access to an
organization’s computing resources. Second generation thinking – typified by the general risk
framework developed in the NIST workshops [N95] – formalized six concepts in risk analysis: (1)
assets, (2) vulnerabilities, (3) threats, (4) impacts, (5) likelihoods, and (6) safeguards. Tools
based on this approach codify expert knowledge about relationships between these six concepts.
To assess a given system, the analyst applies the tool’s encapsulated expert knowledge against a
catalog of system assets to obtain a list of issues that need to be addressed. Thus, second
generation systems began to allow the analyst to tailor assessments on a system-by-system basis.

Third generation approaches, Dr. Fletcher suggests, should take a “whole system” approach to
assessment. These methods, and the tools that will embody them, define systems more broadly,
and will apply over a system’s entire life cycle. Rather than a system being merely a collection of
assets, third generation tools will document the system’s purpose and behavior, structure,
relationship to its environment, and history all in a common framework. Rather than supporting
the assessment of operational systems only, Dr. Fletcher asserts that these tools will help system
stakeholders “build the right thing, build it well, and protect it appropriately.”

To implement Dr. Fletcher’s vision of a third generation analysis paradigm requires that we
rethink our approach to risk management and the tools that support it. The questions of “What
capabilities should such these tools possess?” and “How would these tools be structured?” require
significant new thought and planning. Since the Fall of 1996, our organization has sponsored an
internal research and development project aimed at answering these questions. The goal of this
project is to produce an extensible tool kit for the support of third generation risk management.
Members of the research team are drawn from both the information security and the risk and
reliability assessment communities, and the framework is intended to be usable for the assessment
of many types of complex2 systems. This paper first summarizes our approach to the third
generation analysis framework, and then describes how it is planned to be implemented in a
software tool.

A Framework for Risk Management
The starting point for understanding the third generation approach is to define a framework that
captures the various activities that can occur during the risk management life cycle. As this
framework is meant to be encompassing, an activity’s presence in the framework means that it is
used in some assessments, but not that it will be used in every assessment. Whether or not an
activity is used depends on what the goal of the assessment and on the nature of the system being
assessed. In presenting this framework, we acknowledge that none of the tasks presented here is
new. In fact, many of the tasks are taken from work done for the Commission of the European
Communities [G92]. What is different here from what is generally found in the literature is the
notion that all of these tasks would be performed in the context of a single system assessment.

The framework that we use is as follows:
• Understand the system

• Understand Its Behavior
• Understand Its Physical Structure
• Understand Its Environment and Spatial Relationships
• Understand the Role of Timing in the System
• Understand the History of the System’s Components
• Understand Which System Elements Serve Protective Functions

• Establish Surety3 Objectives
• Identify Stakeholders
• Elicit Surety Objectives

• Understand Component Vulnerabilities
• Characterize Threat Agents
• Assess the System
• Rank Assessment Findings
• Safeguard the System

• Identify Constraints on Safeguards
• Evaluate and Rank Candidate Safeguards

2 By “complex”, we mean systems composed of diverse sets of technologies – not just information systems, but
information systems AND electronics AND pumps and pipes AND … .
3 This is a term used to mean the combination of safety, security, and reliability.

Understand the System
Sound assessment is predicated on the analyst understanding the system being assessed.
Depending on the nature of the assessment, the analyst may need to understand the system from
different points of view. These include knowing what the system does and why, knowing what
elements are used to build the system, knowing the nature of the environment in which the system
operates, and knowing where each component in the system has been prior to its inclusion in the
system being assessed4.

Understand Its Behavior -- In many systems, the analyst’s first understanding of the system is in
terms of the functionality that the system delivers. This understanding can be largely independent
of knowing specifically how this functionality is delivered. This view of a system is particularly
useful for identifying potential places to attack or protect in the system5. Questions addressed by
the analyst in documenting this view of the system include:
• What functions does the system perform, and how are they aggregated?
• What “stuff” flows6 between blocks of functionality?
• Is the functionality invariant or does it change as a result of various conditions?

Understand Its Physical Structure -- The second view of the system documents the system’s
physical structure. This is the classic “identify the assets” view prescribed in many first and
second generation approaches to risk management. The assets can be computing hardware,
software, data items, people, or anything that would qualify as the product of an implementers
hand. Once these assets and their interrelationships have been defined, the analyst specifies how
these components relate to the functional view. Thus, the analyst must specify which flows and
blocks of functionality are embodied in each physical component. Note that this mapping of
function to structure can be dynamic. For instance, in some distributed computing environments,
a given process can move amongst several computers depending upon service conditions.
Questions addressed by the analyst in documenting this view of the system include:
• Of what things is the system composed, and how are they interconnected?
• What are the relationships between these components? Which components exist in peer

relationships? In system/subsystem relationships? In “ X supports Y” relationships?
• In what physical component(s) is a given block of functionality embodied?
• Is this always the case or can this functionality move from one physical component another?

Understand Its Environment and Spatial Relationships – Every physical system exists in a
context. The nature of the environment in which a system operates can significantly impact the
system’s surety. For this reason, an analyst may need to document the environment in which a
system exists. This documentation consists of defining named regions in the system’s
environment and identifying what things populate these regions. Note that a single component
(e.g., a cable) can exist in multiple regions of the environment, and a given region can host
multiple components. Physical form and spatial relationships between elements can also be
important (e.g., in a communications analysis, “Can this signal be detected at this point in

4 Much of our thinking regarding “understanding the system” has been influenced by the work being done at the
Queensland University of Technology. See [C92, A94, K96].
5 This view is also useful when the system is completely abstract, such as in the early stages of a system’s design.
6 While flows in the system may be information, they may also be material or energy. Our experience has shown
that, in complex systems, all three types are usually represented.

space?”). Spatial relationships are particularly important for physical security assessments.
Questions typically addressed in this task include:
• Is there a significant partitioning of the environment in which the system operates?
• What are the relationships that exist between these partitions?
• What elements (both inside and outside the system) populate each partition?
• What are the dimensions of each element? How do they relate to each other in space?
• Can the environmental and spatial relationships change over time? If so, under what

conditions does this occur?

Understand the Role of Timing in the System – Depending on the nature of the system being
assessed, timing issues can play a role in determining the surety of the system. To address this,
the analyst documents the normal, minimum, and maximum “propagation delays” associated with
the various functions in the system. This information can then be used in analyses to determine if
“race conditions” can drive the system toward undesirable outcomes.

Understand the History of the System’s Components – In some applications, the analyst needs
to know what has happened to a component prior to its inclusion in the system being assessed
because actions that occurred in one stage of a component’s life cycle can adversely affect its
performance in subsequent stages. To account for these issues, the analyst can document and
analyze a component’s life cycle. Questions that the analyst asks in this task may include:
• Could a given component in the system being assessed have been subverted prior to the

component’s inclusion in this system?
• If so, at what points in the component’s life cycle could this have occurred?
• What is the nature of the system at each of these points (this can cause the analyst to ask for

this new system the entire set of questions asked to understand the main system)?

Understand Which System Elements Serve Protective Functions – In existing systems, some
system elements may exist solely to safeguard the system. If the analyst wishes to compare the
effectiveness of existing safeguards with proposed changes, he may wish to remove the existing
safeguards from the model and analyze a “bare” system as a “baseline” case. During the
safeguards assessment, the existing safeguards can then be reintroduced as one of a number of
safeguard suites to be evaluated.

Establish Surety Objectives
In addition to understanding the system being assessed, the analyst needs to identify the system
surety objectives. These come in two flavors: those things that must be prevented (e.g., the
unauthorized disclosure of a given piece of information) and those things that must be assured
(e.g., a specified level of system availability). In defining these objectives, the analyst may first
need to identify stakeholders, elicit objectives from each stakeholder, and then combine and
prioritize the list of objectives.

Identify Stakeholders – Since a single system can impact multiple individuals or organizations, an
analyst may need to collect surety objectives from more than one stakeholder. Thus, the first step
in establishing system surety objectives is to identify stakeholders. Note that the definition of a
stakeholder can vary from system to system. In general, stakeholders can include system users,

persons affected by the system, people who monitor or regulate its use, or entities that pay for the
system’s development or operation.

Elicit Surety Objectives – For each element of the system model, the analyst asks each
stakeholder what objectives exist for that element. While some objectives will be expressed in
terms of the physical structure of the system or its environment, most (but not all) can be traced
back to the functional view of the system. The objectives then need to be compiled and
prioritized. Conflicting objectives are brought back to the stakeholders for discussion and
resolution. The objectives can be prioritized on the basis of either explicit cost metrics or simple
negotiation among the users. Questions that the analyst asks in this task may include:
• For this element or flow, are there any things that we must prevent or assure? If so, why?
• Which of these objectives are mandatory, and which are optional?
• Do any of the collected objectives conflict? If so, how will conflicts be resolved?
• What is the relative importance of the various objectives? Why?

Understand Component Vulnerabilities
Just as the analyst must understand a system as it is supposed to exist, the analyst must also
understand how its individual elements can fail or be subverted. As the system can be understood
from different points of view (functional, physical, etc.), this task inherently spans all views. In
looking at the functional view, the analyst asks questions regarding the characteristics of abnormal
flows or the effects of corrupting given chunks of functionality. In the physical view, the analyst
catalogs weaknesses in the components and considers what other aspects of the physical
component bear on the system’s behavior. In the environmental view, the analyst considers how
changes in the structure or relationships between environmental elements can affect their
behavior. Questions that the analyst asks in this task include:
• How can a flow be perturbed? How can this perturbation be caused?
• How can relationships (e.g., peer, system/subsystem) between system elements be altered?
• What is the effect of each perturbation or change on the system and its associated elements?
• Can an element exist in a fault state? How does the fault state affect the element’s behavior?
• What immediate influences could cause the element to enter a fault state?
• Can a system element respond to any other flows that are not part of the normal system model

but that cause the element to fail or be subverted?

Characterize Threat Agents
Once the model of the system has been elaborated to include the fault behaviors of each system
element, the analyst has a basis for identifying and characterizing potential threat agents. In
identifying potential threat agents, the analyst considers each flow in the system and asks, “What
agent is capable of producing or influencing this flow?”. Both “passive” and “active” threats must
be considered. Passive threats often have their genesis in the environment (e.g., fire, flood, etc.),
while active threats exhibit intelligence. While these are typically humans, they can also be non-
living entities, such as software agents. In characterizing threat agents, the analyst always
documents the agents’ capabilities. For active threats, the analyst also documents factors such as
motivation and risk aversion. Questions asked by the analyst in this task include:
• What agent is capable of producing or influencing a flow or system element?
• Which elements (inside or outside the system model) could be this agent?

• What are capabilities of this threat agent?7

• If this is an active threat agent, what are its characteristics (objectives, risk aversion,
knowledge of the system, etc.)?

• If a threat agent has any capabilities that are not currently modeled in the system description,
could these capabilities be significant to the functioning of the system?

Assess the System
Given that the analyst understands the system, knows how the components can fail or be
subverted, and has identified system surety objectives, the analyst can assess the surety of the
system as a whole. Assessment approaches available to the analyst come in four varieties:
deductive logic techniques, inductive logic techniques, heuristic searching, and simulation.

Deductive Logic Techniques – In deductive logic techniques, the analyst selects a given surety
objective and then chains backwards (against system flows) starting from the point in the system
where the objective manifests itself. Here the analyst seeks to determine what event sequence(s)
could cause the objective to be subverted. Fault tree analysis is typical example of this approach.

Inductive Logic Techniques – In inductive logic techniques, the analyst specifies one or more
initiating events and then chains forward (in the direction of the system flows) in order to
determine the universe of possible system outcomes to which the events can lead. Event tree
analysis and Failure Modes and Effects Analysis are typical examples of this approach.

Heuristic Searching – In heuristic searching, the analyst defines a threat agent that is to attack
the system. The agent has an initial set of capabilities, some degree of access to the system, and
one or more goals to reach. Given this, the agent begins interacting with the system model in an
attempt to gain additional capabilities and to increase its level of system access until its goals are
reached.

Simulation – Simulation is used to give the analyst more insight into the system than might be
gained through static models of the system. In simulation, the analyst sets the initial state of the
various system elements and then “starts” the system model. The analyst can then alter specified
parameters in the model and observe the associated outcomes.

Rank Assessment Findings
The results of an assessment generally consist of a set of “incident scenarios”. In the classic
probabilistic approach to ranking, each scenario is associated with a consequence and likelihood
of occurrence. The consequence measures (“costs”) are identified by the stakeholders (often
through an iterative process), and are often based upon actual dollar loss values, although other
metrics, such as lives lost or ecological damage, may be more appropriate for some systems. The
likelihood of occurrence helps provide a context for the consequence measure. This measure may
be either qualitative or quantitative, conditional or unconditional. It may be an actual frequency
of occurrence or simply the relative difficulty that an attacker would have in executing the
scenario (determined based on relationships between the threat agents and the elements that they

7 This is done to identify those capabilities that an agent may possess but that are not documented in the set of
capabilities defined during the cataloging of threat agents

attack). The consequence and likelihood values are then used to determine the risk8 each event
sequence represents to the system. Alternatively, the analyst can choose other approaches to
establishing an ordering of the assessment finding. Different decision theoretic approaches,
combinations of approaches, or even “expert judgement” can be used in each situation as
appropriate. Questions associated with this task may include:
• What are the costs associated with failure to meet this objective?
• How important is one cost relative to other costs in the system?
• In relative terms, which outcome is most at risk?
• What system elements or flows contribute most to the aggregate system risk?
• Which system element is found in the greatest number of undesirable outcomes?

Safeguard the System
Once a ranked list of system problems exists, the analyst can begin the process of selecting
safeguards. This process consists of identifying any constraints that might be levied on the
safeguards process, of identifying candidate safeguards and evaluating their effectiveness, and
then ranking safeguard results to identify the best options.

Identify Constraints on Safeguards – Typically, constraints are levied that specify some aspect
of the safeguards that can be applied to a system. These constraints can include limitations on the
amount of money to be spent on safeguards, constraints on reduction in system performance
introduced by safeguards, usability requirements, power and space requirements, and legal
requirements. The process of identifying these constraints is much like the process of setting
surety objectives: stakeholders are identified, constraints are solicited, and a final prioritized list is
produced through negotiation among the stakeholders. Questions addressed in this task are:
• Who is impacted by the use of a safeguard at a given point in the system? How?
• What resources (money, bandwidth, CPU cycles, space, power, manpower, etc.) can be used

in a system element to design, purchase, operate and maintain elements that support surety?
• What legal, regulatory or political constraints apply to the safeguards process?
• How firm are each of these constraints, and how will conflicts between them be resolved?
• What is the relative importance of the various constraints? Why?

Evaluate and Rank Candidate Safeguards – Given the ranked list of problems to be solved and
the ranked list of constraints, the analyst identifies candidate suites of safeguards to be applied to
the system. If the system being assessed already had safeguards that were stripped out before
assessment, then these safeguards are considered to be one candidate safeguard suite and are
evaluated like any other suite. For each of the suites applied to the system, the analyst runs the
same system assessments that were performed on the bare system in order to create a consistent
basis for comparison. The ranking techniques applied to the bare system are then applied to the
safeguarded systems. The relative mitigation effects are then assessed by the analyst, and a
specific suite selected for implementation. Questions addressed in this task include:
• Which safeguards will address the ranked system problems within the identified constraints?

8 Risk is a function of likelihood and consequence. Originally the simple product of likelihood and consequence, it
is now most frequently viewed as a more general (possibly nonlinear) function that more accurately expresses the
stakeholders’ tangible and intangible values related to the system under analysis. It can be thought of as being
similar to the utility function in an optimality analysis.

• How should these individual safeguards be combined into suites to achieve the best mitigation
effect subject to the constraints?

• What are the relative strengths and weaknesses of each suite?
• Which suite gives the best overall reduction in system risk?
• Which suite gives the most balanced approach to security?

An Open Tool Kit
To our knowledge, there is no tool available today that supports the full set of tasks specified in
the framework. In particular, we have not found any that adopt a “whole system” approach to
understanding the system9 nor have we found any that allow us to deal with complex systems.
For this reason, we began our research and development project aimed at producing a tool that
would deliver the capabilities that we have described.

We discovered in the course of our research that concepts found in the object-oriented analysis
arena go a long way to meeting our needs. In particular, “objects” can be used to document a
system’s behavior, its structure, its environment, and how these different views of the system
relate to one another. With proper structuring, objects can be used to document component life
cycles, to capture the information needed for timing analysis, and to model the fault mechanisms
and vulnerabilities found in system components. In fact, with the exception of those aspects of a
model related to a system element’s physical dimensions, orientation, and location, we have found
the language elements found in object-oriented analysis to constitute a suitable language for
development of our risk management tool.

In the developing this tool, we have adopted two main philosophies. First, the tool should permit
an analyst to use the right methods at the right time. Just as a hammer is not always the right tool
for the job at hand, a specific assessment method will never be universally applicable. This has
lead us to implement a “tool kit” instead of a monolithic tool. Our intent is to permit tools in the
tool kit will be used in mix-and-match fashion and to minimize the effort required to add new
tools in the future. Second, we believe that the folks at QUT are correct when they assert that “it
is more productive to perform a relatively simple analysis on a comprehensive [system] model
than to undertake sophisticated analysis of a simplistic one” [K96]. Because of this, the starting
point of an assessment using our tool kit is the development of an explicit system model.

With respect to this second point, we have found that if the analyst takes the time to explicitly
document what he understands about the system being assessed, several benefits are realized.
First, the requirement to “hand tool” each assessment disappears or is minimized. For example, in
fault tree analysis, the analyst begins by defining a top-level event and then works backwards
through the cause-and-effect links to determine what chain(s) of events could result in the top-
level event. In current manual assessment methods, each time the analyst defines another top-
level event, he must again go through the process of tracing the causal chains back to their
initiating events. In contrast to this, if an explicit system model has been developed, the
generation of the fault trees can be done automatically by a computer. All the analyst needs to do
is to identify the top-level events of interest and the computer does the rest. In fact, the computer
can use the same model base with a range of assessment techniques. We are currently convinced

9 The “Risk Data Repository” being developed at Queensland comes closest to what we are looking for.

that given a single explicit model of a system, we can automatically develop the assessment
models for a range of techniques including fault tree analysis, event tree analyses, HAZOP
analysis, failure modes and effects analyses, and vital areas analysis.

The second benefit to using an explicit system model is that many of the features that people have
wanted in assessment tools are finally realizable. In particular:
• assessment results become traceable – a person can see how the analyst got to a particular

set of conclusions
• there is a sense of completeness to the assessment – the use of an explicit model makes it

possible to see what has been investigated and what has not
• it is possible to assess the correctness of the assessment – since the model is explicit, it is

easier for system stakeholders to determine whether or not the models reflect reality
In traditional assessment approaches most of what the analyst understands about the system exists
only in the analyst’s head; consequently, assessment details, like how the analyst linked attacks to
outcomes, are often hidden. Similarly, if issues seem to be missing from the assessment results, it
is not clear whether the analyst understood these issues and considered them inconsequential or
whether the analyst was simply oblivious to the critical facts underlying these issues.

The third benefit is that management of assessment information becomes an easier task for the
analyst. Even in small systems, the number of facts that need to be gathered and retained can be
overwhelming. While no one fact may be difficult to understand, the sheer volume of facts can
often make understanding the “big picture” difficult. To address this problem, object-oriented
analysis approaches permit a system to be modeled in hierarchical fashion. When needed, the
analyst can view a component as nothing more than a block that interacts with other blocks in a
system. How the component operates internally is hidden when not relevant to the analysis being
performed at the moment. At the same time, when the details of how the component works need
to be understood, the analyst can “open” the component to investigate these details and, if
appropriate, ignore the details of how the system outside the component operates.

Fourth, the use of an explicit object-oriented model organized makes it possible to preserve
“lessons learned”. In our approach to modeling, the system’s functionality and its structure are
modeled as separate objects. For instance, a computer responsible for supporting a portion of a
distributed application would be modeled as two collections of components: those that document
the behavior of that portion of the application that resides on the computer and those that model
the computer. The reason for this is that the vulnerabilities that exist in the computer and that put
the application at risk are really properties inherent to the computer and not the application that
the computer happens to support. By separating an application’s behavior from the components
used to deliver that behavior, we can encapsulate what we know about component vulnerabilities
within the components themselves and then reuse this knowledge in analyses of other systems
built with the same components. For example, if Windows NT is running on a computer that
controls a manufacturing process, the analyst may discover that it is possible to corrupt the
process by attacking the interprocess communications (IPCs) in a specific way. The effect in the
system is to corrupt some portion of the manufacturing process, with the result that products are
destroyed and money lost. The analyst may later assess another system that uses Windows NT
and the same types of IPC. When the analyst adds the Windows NT component to the model of
this new system, it brings with it knowledge of the IPC attack gained in the previous system

assessment. Any assessment that then trace their way to cooperating processes on the NT
platform will end up automatically linking in the IPC attack thread.

In developing a system model, the analyst defines a network of cooperating objects. An object in
this network can represent a block of functionality delivered by the system, a component from
which the system is composed, or an element in the system’s environment (such as a building that
contains system objects or a threat agent that attacks the objects). Within a view of the system
(e.g., the system’s functions or its structure) and across views, objects communicate with each
other. The communications within a view represent real flows in the system. Communications
between views tend to represent “supports” relationships but can represent other things. For
instance, a connection between two objects in the physical view of the system indicates that
“stuff” flows between these objects. On the other hand, the connection between a functional
object and a physical object, like a computer, indicates that the physical object supports that
functionality. If the computer is lost, then so is the functionality that it supports. Objects in a
system model can also be hierarchically decomposed into constituent objects. As discussed
above, this permits an analyst to hide details about an object within the object when not needed
for whatever problem is currently being considered. It also makes it possible for the analyst to
conduct an assessment without having to have all of the details about the system before beginning
to derive results. By modeling a system in hierarchical fashion, the analyst can create a top-level
model of the system and assess it to get an initial feel for where problems might exist. The objects
in the system that seem to be problematic can then be decomposed and developed more fully as
the analyst explores the details of these components.

In our approach to modeling, when an object receives something from another object, it responds
in some fashion. This response can include ignoring the communication, outputting its own
communications, and/ or changing its internal state. To capture this knowledge about an object,
we use state charts, data flow diagrams, attributes, attribute values, and decision tables. State
charts are used to document the fact that the way that the an object responds to communications
can vary with time. The way in which an object acts at a specific point in time is documented with
data flow diagrams. Decision tables are used to document the behavior of processes in the data
flow diagrams. Attributes and their associated values are used to describe the communications
that flow between objects and to document the internal state of the object.

Given this type of system model, we have found that we can use the same language constructs to
specify surety objects, to describe system vulnerabilities, to model threat agents, and to create the
building blocks of assessment structures, such as events in a fault tree. It is this fact that permits
us to create the tool kit in such a way that products of one tool can be manipulated by other tools.

By the time this paper is presented, we expect to have completed a first version of the tool kit. In
this initial incarnation, we intend to use the Rose CASE tool from Rational Software to support
modeling of the system’s functional, physical structure, and environmental views. Custom applets
will be used to specify system objectives and to control assessments. A risk analysis engine called
ARRAMIS will be used to analyze fault trees and event trees pulled from the models developed in
Rose. The process steps that address safeguarding the system will not be addressed due to limits
on time and manpower. In this version of the tool kit, the model base created by Rose will serve
as the tool kit’s model repository. The custom applets and ARRAMIS will read from and write to

this model base. In subsequent versions of the tool, we intend to create a separate, stand-alone
repository. We have already acquired the Versant object-oriented database for this purpose.

Conclusion
Risk assessment methodologies are ready to enter their third generation. By taking a broader
view of what constitutes a system, these methodologies increase the workload levied on the
analyst; therefore, automation support will be a necessity. We believe that techniques developed
in object-oriented analysis world and embodied in CASE tools can be used effectively to develop
the explicit systems models from which standard assessment mechanisms can be automatically
derived. One of the primary benefits of this approach will be the ability to deliver higher quality
assessments than is possible now. This approach also makes it possible to retain (and even
exchange) expert knowledge regarding component vulnerabilities and failure mechanisms. A tool
intended to embody this approach to assessment is in development and an initial version of it
should be available by the end of the current fiscal year.

Bibliography
[A94] Anderson, A., Longley, D., and Kwok L. F., “Security Modeling for Organisations,”
Proceedings of the 1994 ACM Conference on Computers and Communications Security,
November 1994, Fairfax, Va.

[C92] Caelli, W., Longley, D., and Tickle, A., “A Methodology for Describing Information and
Physical Security Architectures,” Internal Report of the Information Security Research Center of
the Queensland University of Technology, April 7, 1992

[F95] Fletcher, S., Jansma, R., Lim, J., Halbgewachs, R. Murphy, M., Wyss, G., “Software
System Risk Management and Assurance,” Proceedings of the 1995 New Security Paradigms
Workshop, August 22-25, 1995, San Diego, CA.

[G92] Glover, I., “Commission of the European Communities Security Investigations Projects:
Project S2014 – Risk Analysis”, Proceedings of the 1992 NIST Risk Model Builders Workshop,
March 30 - April 1, 1992, Ottawa, Canada.

 [K96] Kwok, L. F. and Longley, D., “A Security Officer’s Workbench,” Computers and
Security, Vol. 15, No. 8, pp. 695-705, 1996

[N92] NIST, Proceedings of the 1992 NIST Risk Model Builders Workshop, March 30 - April 1,
1992, Ottawa, Canada.

	An Open Framework for Risk Management
	Introduction
	A Framework for Risk Management
	Understand the System
	Establish Surety Objectives
	Understand Component Vulnerabilities
	Characterize Threat Agents
	Assess the System
	Rank Assessment Findings
	Safeguard the System

	An Open Tool Kit
	Conclusion
	Bibliography

	Table of Contents

