
A HOL Formalization of CAPSL Semantics

Stephen H. Brackin �

Arca Systems, Inc.

303 E. Yates St.

Ithaca, NY 14850

Abstract

This paper describes a state-based Higher Order

Logic theory of protocol failure that formalizes the se-

mantics of the Common Authentication Protocol Speci-

�cation Language, a speci�cation language being devel-

oped for use by all protocol designers and all protocol-

analysis tools. This theory gives the basis for a new,

fast and thorough, protocol-analysis tool based on auto-

matically constructing proofs.

1 Introduction

Cryptographic protocols are short sequences of mes-
sage exchanges, usually involving encryption, intended
to establish secure communication over insecure net-
works. They are central to any activities that require
such communication, such as commercial transactions
over the Internet.

Protocol failure [6] occurs when an active wiretap-
per, without performing successful code-breaking, can
obtain restricted information (a nondisclosure failure)
or trick legitimate protocol participants into thinking
that they are communicating with each other when
they are actually communicating with the wiretapper
(an authentication failure). The wiretapper does this
by cleverly intercepting, blocking, modifying, and re-
playing messages, tricking legitimate protocol partici-
pants into performing any decryptions needed by the
wiretapper.

This paper considers only the worst case, that in
which an active wiretapper is in complete control of
the network | i.e., every message sent by a legitimate
protocol participant goes to the wiretapper, and every
message received by a legitimate protocol participant
comes from the wiretapper. A sequence of wiretapper

�This work was supportedby the AdvancedResearchProjects

Agency through Rome Laboratory contract F30602-97-C-0303.

actions that results in a nondisclosure or authentication
failure under these conditions is called an attack. The
remainder of this paper will call the active wiretapper
the attacker.

Current tools for detecting protocol failure use one
or more of the following approaches:

� attempting to construct attacks, using algebraic
properties of the algorithms in the protocols [11,
10, 8];

� attempting to construct proofs, using specialized
logics based on a notion of \belief", that any at-
tacks are of limited e�ect | i.e., that protocol par-
ticipants can con�dently reach desired conclusions
[2, 1]; or

� attempting to construct proofs, using formal mod-
els of the actual computations performed in pro-
tocols, that attacks are impossible [16, 13, 15, 14].

The �rst approach is thorough, but slow and labor-
intensive, because it involves searches over a space of
possible attacker actions that grows exponentially with
the size of the protocol. The second approach is fast
and automatic, but it misses many failures [5] | e.g.,
it detects only authentication failures that occur when
there are no nondisclosure failures. The third approach
has yet to be fully automated.

This paper describes a step toward automating the
third approach. It describes PDL, for \Protocol De-
scription Logic", a state-based Higher Order Logic
(HOL) theory of protocol failure that is simpler and
more expressive than earlier, trace-based HOL theo-
ries of protocol failure. PDL formalizes the low-level
details of the actions actually performed by processes
executing a protocol.

Higher Order Logic (HOL) [7] is a collection of tools
for producing formal proofs. One of its central ideas
is de�ning \theorem" as a type over a strongly typed
metalanguage that is a powerful, general-purpose pro-
gramming language in its own right [12]. De�ning \the-



orem" as a type makes type checking in the metalan-
guage's compiler the mechanism for deciding whether
a theorem has been proved, and allows unconstrained
metalanguage programs for automatically constructing
proofs.

PDL is su�ciently expressive to formalize all proto-
cols speci�ed in the latest version of the Common Au-

thentication Protocol Speci�cation Language (CAPSL).
CAPSL is being developed by Millen, with the cooper-
ation of an international group of researchers, and is in-
tended to become a standard speci�cation language for
use by all protocol designers and all protocol-analysis
tools. CAPSL is still evolving; its latest revision is
available at www.csl.sri.com/~millen/capsl. It is
intended to be as similar as possible to the informal
notation normally used to describe protocols, but to
also have a formal semantics expressive enough to in-
clude all possible sources of protocol failure.

Some of the possible sources of protocol failure,
all giving failures missed by a belief-based protocol-
analysis tool [5], follow:

� Inadequate type and equality checking | proto-
col processes need not perform type and equality
checks that they could perform, checks that pre-
vent many attacks;

� Concurrent sessions | an attacker can replay mes-
sages from di�erent, possibly concurrent, execu-
tions of the protocol;

� Misinterpretations | attacker interference can
cause the actions taken by legitimate protocol par-
ticipants to not mean what they are supposed to
mean;

� Accidental disclosure | attacker interference can
cause legitimate protocol participants to acciden-
tally give away their secrets; and

� Algebraic properties attacks | the attacker can
use algebraic properties of the protocol's encryp-
tion functions to make meaningful modi�cations
to cryptotext without knowing the plaintext.

PDL models all these possibilities.
The remainder of this paper is organized as follows:

Section 2 gives a high-level overview of PDL. Section 3
gives PDL formalizations of the agents, roles, data ob-
jects, and functions involved in a protocol, and de�nes
three PDL languages as concrete recursive types:

� an action language de�ning the actions carried out
by individual processes;

� a state language describing the possible states of
a network with agents creating processes carrying

out the protocol, but with an attacker completely
controlling the network; and

� a belief language expressing the conditions that a
protocol analyst can either initially assume or re-
ceive compelling evidence for on the basis of the
computations performed by a protocol process.

Section 4 de�nes the formal semantics for the action
language and process creation by giving an inductively
de�ned function Possibly that identi�es the possible
network states that can arise for particular initial con-
ditions. Finally, Section 5 sketches how PDL can be
used to prove belief-inference theorems analogous to
the inference rules of the belief logics.

See [4, 3] for earlier versions of PDL. Report [3]
corrects and extends [4]. This paper signi�cantly ex-
tends PDL by adding the possibility of concurrent ses-
sions, and it signi�cantly changes PDL's interpretation
of beliefs by making beliefs functions of process' states
rather than parts of these states.

2 High-Level Overview

PDL is a theory of communicating sequential pro-
cesses. PDL de�nes these processes with a simple, im-
perative programming language intended to be conve-
nient for describing cryptographic protocols, but also
Turing-complete, hence able to describe arbitrary com-
putations. This language is derived from the impera-
tive subset of CAPSL.

PDL identi�es protocol participants with CAPSL
agents, where each agent is able to act in one or more
CAPSL roles. PDL determines a process performing
a role as a function of the data available to the agent
creating that process. PDL uses a combination of slots
and actions to describe the states of the di�erent pro-
cesses.

A slot is a family of abstract storage locations, each
capable of holding any �nite amount of data of any
type. Every slot has exactly one member for each pro-
cess. All slot names are known to all processes, but
for each process a slot simply names the unique stor-
age location member of that slot that belongs to this
process. There are no \global" values; each process
can only access its own storage locations. For simplic-
ity, the remainder of this paper will refer to the single
member of a slot that belongs to a particular process
as a \slot", since there is no ambiguity.

An action is a continuation, a program describing
the computation a process has yet to perform. A pro-
cess' execution state is completely determined by the
contents of its slots and the action it has yet to per-
form. PDL formally de�nes the meanings of its actions,



programs in an imperative programming language, by
inductively de�ning how the various processes' slots'
contents change if their computations advance and the
actions they have yet to perform change. PDL makes
no assumptions about the speed of computations, and
does not require that computations advance.

In PDL, every process also has an address consisting
of the name of the agent that created the process, the
name of the role the process is performing, and an inte-
ger session number. Every message in PDL is a triple
consisting of the addresses of its source and destination
processes and a \message body" �eld.

PDL only allows processes to change each others'
slots through \send" and \receive" actions. A process
executing a \send" hangs, repeatedly sending out a sig-
nal to the agent for the intended recipient, until this
signal is acknowledged by what the \send" presumes is
the intended recipient. The \send" then makes what
it presumes is a transfer of the intended message, and
terminates. A process executing a \receive" hangs, re-
peatedly testing to see if it has received a signal. If
it receives such a signal, the \receive" acknowledges
this signal, receives what it presumes is the intended
message from the sender, and terminates.

Unlike most theories of communicating processes,
PDL assumes that the network over which the pro-
cesses communicate is under the complete control of
an attacker who can do everything except violate the
intended cryptographic properties of the encryption,
hash, and nonce-generation functions used.

As in CAPSL, PDL assumes that message transfers
take place through the agents of the sending and receiv-
ing processes. If an agent receives a message addressed
to a process that does not exist, the agent �rst cre-
ates this process, then forwards the message to it. The
agent checks that the session numbers of sending and
receiving processes are equal. PDL also has a special
\start" message causing the agent to create the process
the message is addressed to, without considering the
session number of the sender, but to then discard the
\start" message. The \start" messages can be thought
of as coming from the attacker who controls the net-
work, modeling that the attacker might know exactly
when a legitimate agent will start a protocol session.

A PDL \state" element is a partial description of
a possible network state. While it is possible in PDL
to express full network states | the slot contents and
remaining actions of all processes, and all pieces of in-
formation obtained by the attacker | PDL is de�ned
so that this is not necessary for making deductions.

Time in PDL is like sex was in Victorian England: it
is always there, and always of great interest, but never
explicitly mentioned. The PDL conjunction operator

for \state" elements is interpreted as \and simultane-
ously", so that if \s1 and simultaneously s2" is a pos-
sible state, then s1 and s2 are both possible states, but
not necessarily vice-versa.

The next two sections describe the HOL implemen-
tation of PDL.

3 Types, Terms, and Languages

PDL de�nes the polymorphic concrete recursive
types :Term, :Expr, :Action, :Proc, :State and
:Belief. :Term de�nes the data objects exchanged
or computed during a protocol session. :Expr de-
�nes the computations protocol processes perform to
compute values. :Action and :Expr together de�ne
a simple programming language giving processes' ac-
tions. :Proc de�nes the processes carrying out pro-
tocol roles. :State elements give partial descriptions
of the network state. :Belief elements form a lan-
guage for expressing network properties that analysts
can either assume or become compelled to believe on
the basis of computations performed by processes.

In its actual implementation, all identi�ers in PDL
either end with two underscores, or contain two under-
scores and a semicolon or ampersand, to avoid possible
conicts with names in standard HOL tools or in user-
supplied protocol speci�cations. To avoid clutter, this
paper will eliminate these underscores except in the
names of the various pairing operators; these names
would otherwise be semicolons or ampersands, which
have other meanings.

3.1 Primitive Types

In PDL, the following type variables are primitive,
instantiated with di�erent types for di�erent protocols:

� 'agent | person or machine performing one or
more protocol roles.

� 'data | arbitrary data, including keys, nonces,
and timestamps.

� 'function|code for a hash, encryption, or other
function, including equality tests and user-de�ned
type checks.

� 'location | slot name; each principal has dis-
tinct, disjoint slots for each pair of distinct loca-
tions.

� 'role | protocol role name.



3.2 Type :Term

:Term elements can be thought of as meaningful
names for bit strings. They give pieces of data that
are exchanged or computed during a protocol. De-
scriptions of the :Term constructors and their intended
meanings follow.

� Ta | 'agent element

� Tc | applied to a 'function and a :Term, it de-
notes the result of applying this function to this
term;

� Td | 'data element.

� Tf | 'function element.

� Tn| nonnegative integer, often a session number.

� Tr | 'role element, it makes this role into a
:Term.

� Ts| \start" value causing creation of an initiator
process.

� Tx | nonexistent term, the \no value" value.

� ; | in�x pairing operator for :Term values.

3.3 Type :Expr

:Expr elements identify the actual computations
performed by principals. In an :Expr, a 'location

element represents the value stored in the slot with
this name for the principal performing the computa-
tion. Descriptions of the :Expr constructors follow.

� Ec | applied to a 'function and an Expr, it de-
notes the result of applying the function given by
the code to the value given by the expression.

� El| applied to a 'location, it denotes the value
stored in the slot named by this 'location for the
principal evaluating the expression.

� Es | expression for a \sizeof" term, computed
at compile time, used in some of the CAPSL list
operations.

� Ez | zero expression; used for the CAPSL \for-
gets" operation.

� ; | in�x pairing operator for :Expr values.

3.4 Type :Action

:Action elements name actions taken by protocol
principals. The :Action constructors and informal de-
scriptions of their meanings follow. Their formalmean-
ings are given via the de�nition of function Possibly

in Section 4.

� Assign | applied to a 'location and an :Expr,
it stores the value given by the expression into the
slot named by the location.

� Done | stop.

� IfThenElse | applied to an :Expr and two
:Actions, it tests the boolean value given by the
expression, and, if this value is true, does the �rst
action, and otherwise does the second action.

� Nop | do nothing.

� Receive | applied to a 'location, it waits, re-
peatedly testing for a signal that a message is
ready. If there is such a signal, it acknowledges
it, receives the message, and stores it into the slot
named by the location.

� Send | applied to an :Expr, it waits, repeatedly
sending the agent in the \to" address in the mes-
sage given by the expression a signal that a mes-
sage is ready. If this signal is acknowledged, sup-
posedly by a process created by this agent, it sends
this process the message.

� Test | applied to an :Expr, it tests the boolean
value given by this expression. If this value is true,
it does nothing. Otherwise, it aborts all the pro-
cesses of the agent executing it in the same session.

� While | applied to an :Expr and an :Action,
it repeatedly tests the boolean value given by the
expression, and does the action if this value is true.

� ; | in�x pairing operator for :Action values.

3.5 Type :Proc

:Proc elements name either null processes or pro-
cesses with remaining actions and functions mapping
slots to data values. Descriptions of the :Proc con-
structors follow:

� Pr | applied to a function mapping 'location

values to :Term values, and to an :Action, it
names the process whose slots contain the values
given by the function and which has yet to perform
the action.



� Px | the null process.

The main use of the :Proc type is having a null
process, the \process" being run by an agent for a role
and session number for which that agent does not have
a process running.

3.6 Type Abbreviations

The remaining PDL type and function de�nitions
use the following type abbreviations:

A :Mem is a function mapping 'location values to
:Term values. It gives the contents of the slots for an
agent or process.

An :InitMem is a function mapping 'agent values
to the :Mem values giving these agents' initial data pos-
sessions.

A :RunState is a function mapping 'agent, 'role,
and session number values to :Proc elements. It gives
all agents' current or initial processes performing all
roles in all sessions.

3.7 Type :State

:State elements give potentially full descriptions of
possible network execution states. The :State con-
structors and informal descriptions of their meanings
follow. Their formal meanings are given via the de�ni-
tion of function Possibly in Section 4, which identi�es
possible state values as a function of the assumed alge-
braic properties of the protocol's functions and con-
stants, the initial data possessions of the protocol's
agents, and the means by which agents create processes
to perform the protocol's roles.

� AgentState | applied to a :RunState, it says
that each agent is currently running for each role
and session number the processes that is the value
of this run state for that agent, role, and session
number. This completely determines the state of
the agents.

� MsgReceive| applied to a message :Term, it says
that the process identi�ed by the \to" address in
this message has received the message, will receive
it after this process' agent creates it, or, if the
\data" �eld is the \start" message, will be created
and the message discarded.

� MsgSend | applied to a message Term, it says
that some process has sent the message to the
process identi�ed in the \to" address in the mes-
sage. Whether that process actually receives it,
of course, depends on the attacker controlling the
network.

� NetHas | applied to a :Term, it says that an at-
tacker in complete control of the network either
has the term in its possession or could compute it
from other terms that are in its possession.

� & | in�x conjunction operator for :State val-
ues. This operator is interpreted as \and simulta-
neously" so not all properties of ordinary conjunc-
tion hold for it.

3.8 Type :Belief

:Belief elements name network conditions that an-
alysts can assume or come to believe, including beliefs
about other process' actions, on the basis of the compu-
tations performed by a process. In the comments that
follow, this process is called \the process being exam-
ined". Informal de�nitions of the :Belief constructors
follow. Section 5 sketches how these constructors can
be formalized in a future extension of PDL.

� Believes | applied to an address :Term and a
:Belief, it says that the computations performed
by the process with this address provide com-
pelling reason to hold this belief.

� Fresh| applied to a :Term, it says that this term
denotes a value that was created for the �rst time
by a process having the same session number as
the process being examined.

� Holds | applied to an address Term and an ar-
bitrary second Term, it says that the process with
the address given by the �rst :Term either had the
value given by the second :Term when this process
was created, received this value since its creation,
or could compute this value from other values that
it holds.

� KnownOnlyTo | applied to an address :Term list
and an arbitrary :Term, it says that only the pro-
cesses whose addresses are in this list can possibly
compute the value denoted by this term.

� PrivateKey| applied to an 'agent, 'function,
and :Term, it says that this agent, for encryptions
using this function, has the value given by this
term as one of its private keys.

� PublicKey | applied to an 'agent, 'function,
and :Term, it says that this agent, for encryptions
using this function, has the value given by this
term as one of its public keys.

� Received| applied to an address Term and an ar-
bitrary second Term, it says that the process with



the address given by the �rst :Term either had the
value given by the second :Term when this pro-
cess was created or received this value since its
creation.

� Recognizes | applied to an address Term and
an arbitrary second Term, it says that the pro-
cess with the address given by the �rst :Term can
identify the value given by the second :Term as
meaningful information.

� SameValue | applied to an address :Term, an
:Action, and two Expr values, it says that for the
process with the address given by the term, when
it had yet to perform the :Action, the value given
for it by the �rst expression was the same as the
current value given by the second expression for
the process currently being examined.

� Trustworthy| applied to an 'agent, it says that
all processes created by this agent can be trusted
to follow the protocol and perform all the tests
that the protocol calls for them to perform.

� & | in�x conjunction operator for :Belief ele-
ments.

The :Belief constructs are modeled after corre-
sponding constructs in the BGNY belief logic [2], in
the hope that theorems analogous to the rules in this
belief logic will be true.

4 Language Meanings

PDL assigns meanings to its :Action and :State

languages via its inductive de�nition of the function
Possibly, which identi�es all valid partial descriptions
of all network states that are possible for particular ini-
tial conditions. Possibly has the following �ve argu-
ments:

1. a conjunction of hypotheses about the functions
and constants used in the protocol;

2. a :Term giving values initially held by an attacker
in control of the network;

3. a function mapping agents to the :Mem elements
that give these agents' initial data possessions;

4. a function de�ning the processes agents create to
play particular roles in particular sessions for the
protocol; and

5. a :State element.

Possibly has value \true" if its �fth argument is a true
partial description of a possible network state under the
initial conditions given by its other four arguments.

The de�nition of function Possibly uses several
subfunctions, as well as constants used to name un-
evaluated abstract functions.

4.1 Function Constants

The de�nition of Possibly uses the following func-
tion constants:

� SizeOf is an unevaluated function mapping :Term
elements to :num (i.e., non-negative integer) val-
ues.

� Vs is an unevaluated function mapping :State el-
ements to truth values.

� Vt is an unevaluated function mapping :Term ele-
ments to bit-string values.

The SizeOf value of a term is the bit size of the
amount of memory the term occupies. PDL uses
SizeOf to model the sizeof CAPSL construct for de-
scribing possibly ambiguous concatenation operations.

The Vs value of a state is the truth value of the
assertion that this state holds, and the Vt value of a
term is the binary value of this term. PDL uses Vs

and Vt to make inferences using assumed algebraic and
logical properties of the intended values of :State and
:Term elements.

4.2 Subfunctions

The de�nition of Possibly uses several subfunc-
tions, but all except one of these subfunctions are triv-
ial. These trivial subfunctions check that terms sent or
received as messages are of the appropriate form, and
if so extract particular parts of these messages.

A PDL address is a :Term that is a triple (i.e., a
pair whose second element is a pair) consisting of an
agent (i.e., Ta) term, a role (i.e., Tr) term, and a session
number (i.e., Tn) term. A PDL message is a :Term that
is a triple consisting of two PDL addresses | a \to"
address and a \from" address | followed by the body
of the message, which is an arbitrary :Term.

This paper will not give the de�nitions of the
Possibly subfunctions for extracting parts of PDL
messages, but their names and descriptions of what
they do follow:

� Fst gives the �rst element of a pair, or Tx when
applied to a term that is not a pair.



� Snd gives the second element of a pair, or Tx when
applied to a term that is not a pair.

� AgTr maps an agent term to itself, or Tx when
applied to a term that is not an agent term.

� RlTrmaps a role term to itself, or Tx when applied
to a term that is not a role term.

� SnTr maps a session number term to itself, or Tx
when applied to a term that is not a session num-
ber term.

� TsTr tells whether a term is Ts, the \start" value.

� ToAgMsg gives the \to" agent term in a PDL mes-
sage, or Tx when applied to a term that is not of
the appropriate form.

� ToRlMsg gives the \to" role term in a PDL mes-
sage, or Tx when applied to a term that is not of
the appropriate form.

� ToSnMsg gives the \to" session number term in a
PDL message, or Tx when applied to a term that
is not of the appropriate form.

� FrAgMsg gives the \from" agent term in a PDL
message, or Tx when applied to a term that is not
of the appropriate form.

� FrRlMsg gives the \from" role term in a PDL mes-
sage, or Tx when applied to a term that is not of
the appropriate form.

� FrSnMsg gives the \from" session number term in
a PDL message, or Tx when applied to a term that
is not of the appropriate form.

� BdMsg gives the body of a PDL message, or Tx

when applied to a term that is not of the appro-
priate form.

The only non-trivial Possibly subfunction is Eval,
which �nds the :Term value of an :Expr with respect
to a :Mem element associating values with slots. Its
de�nition follows. The pairing operator for expressions
(__;) changes into the pairing operator for terms (;__).
In this de�nition, to avoid clutter, all variables that
begin with lower-case letters are implicitly universally
quanti�ed.

(Eval mm (Ec f ex) = Tc f (Eval mm ex)) /\

(Eval mm (El l) = mm l) /\

(Eval mm (Es tr) = Tn (SizeOf tr)) /\

(Eval mm Ez = Tn 0) /\

(Eval mm (ex1 __; ex2) =

Eval mm ex1 ;__ Eval mm ex2)

4.3 Rules

The 22 rules that inductively de�ne the function
Possibly follow. Each rule is preceded by a short
phrase that summarizes the event or property that the
rule de�nes and is followed by comments that note any
special features of the rule. In all of these rules, to
avoid clutter, variables that begin with lower-case let-
ters are implicitly universally quanti�ed. The rules use
standard HOL notation; the ! symbol stands for the
\for all" quanti�er, and the \ symbol stands for the
lambda, \function of", operator. This paper gives a
detailed description of only the �rst rule, which de�nes
the Assign action. The other rules are either simpler
than, or similar to, the �rst rule.

Rule A1 | a process performs an assignment:

Possibly hyp nhas initmem initproc

(AgentState ags _&_ st) /\

(ags ag rl sn =

Pr mm (Assign l ex _;_ ac)) /\

(Eval mm ex = tr) /\

(hyp ==> (Vt tr = Vt tr')) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (Pr (\l'. (l' = l)

=> tr'

| (mm l')) ac)

| (ags ag' rl' sn')) _&_

st)

Rule A1 says that if it is possible that

1. the agents are running the processes given by
the \agent state" function ags, which maps ev-
ery agent, role, and session number to a process,
and

2. simultaneously, the state st holds, and

3. for agent ag, role rl, and session number sn, the
value of ags is the process having memory mm and
remaining action (Assign l ex _;_ ac), and

4. for memory mm, expression ex evaluates to term
tr, and

5. the conjunction of hypotheses about the functions
and constants used in the protocol shows that tr
and tr' have the same value,

then it is possible that



1. the agents are running the processes given by an
\agent state" function equal to ags except for
agent ag, role rl, and session number sn, for which
the process is changed to one in which the value
stored in slot l is tr', the values stored in all the
other slots are the same as those for memory mm,
and the process' remaining action is ac, and

2. simultaneously, the state st holds.

Rule A2 | a process takes a \true" if-then-else
branch:

Possibly hyp nhas initmem initproc

(AgentState ags _&_ st) /\

(ags ag rl sn =

Pr mm (IfThenElse ex ac1 ac2 _;_ ac3)) /\

(Eval mm ex = tr) /\

(hyp ==> (Vt tr = [T])) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (Pr mm (ac1 _;_ ac3))

| (ags ag' rl' sn')) _&_

st)

Rule A3 | a process takes a \false" if-then-else
branch:

Possibly hyp nhas initmem initproc

(AgentState ags _&_ st) /\

(ags ag rl sn =

Pr mm (IfThenElse ex ac1 ac2 _;_ ac3)) /\

(Eval mm ex = tr) /\

(hyp ==> (Vt tr = [F])) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (Pr mm (ac2 _;_ ac3))

| (ags ag' rl' sn')) _&_

st)

Rule A4 | a process performs a null operation:

Possibly hyp nhas initmem initproc

(AgentState ags _&_ st) /\

(ags ag rl sn = Pr mm (Nop _;_ ac)) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (Pr mm ac)

| (ags ag' rl' sn')) _&_

st)

Rule A5 | a process receives a message:

Possibly hyp nhas initmem initproc

(AgentState ags _&_

MsgReceive tr _&_ st) /\

(hyp ==> (Vt tr = Vt tr')) /\

~(TsTr (BdMsg tr')) /\

(ToAgMsg tr' = Ta ag) /\

(ToRlMsg tr' = Tr rl) /\

(ToSnMsg tr' = Tn sn) /\

(FrSnMsg tr' = Tn sn) /\

(ags ag rl sn =

Pr mm (Receive l _;_ ac)) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (Pr (\l'. (l' = l)

=> tr'

| (mm l')) ac)

| (ags ag' rl' sn')) _&_

st)

Rule A5 requires a process to have the same session
number as a message's putative sender before it allows
this process to receive that message. It also excludes
the \start" message. Otherwise, it assigns the message
to the slot into which the process is waiting to receive
a message.

Rule A6 | a process sends a message:

Possibly hyp nhas initmem initproc

(AgentState ags _&_ st) /\

(ags ag rl sn =

Pr mm (Send ex _;_ ac)) /\

(Eval mm ex = tr) /\

(hyp ==> (Vt tr = Vt tr')) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (Pr mm ac)

| (ags ag' rl' sn')) _&_

MsgSend tr' _&_

st)



Rule A7 | a process performs a test that passes:

Possibly hyp nhas initmem initproc

(AgentState ags _&_ st) /\

(ags ag rl sn =

Pr mm (Test ex _;_ ac)) /\

(Eval mm ex = tr) /\

(hyp ==> (Vt tr = [T])) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (Pr mm ac)

| (ags ag' rl' sn')) _&_

st)

Rule A8 | a process performs a test that fails:

Possibly hyp nhas initmem initproc

(AgentState ags _&_ st) /\

(ags ag rl sn =

Pr mm (Test ex _;_ ac)) /\

(Eval mm ex = tr) /\

(hyp ==> (Vt tr = [F])) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

(sn' = sn)

=> (Pr (\l. Tn 0) Abort)

| (ags ag' rl' sn')) _&_

st)

Rule A8 aborts and zeros the memory of every process
in a session that involves a test that fails.

Rule A9 | a process continues a \while" loop:

Possibly hyp nhas initmem initproc

(AgentState ags _&_ st) /\

(ags ag rl sn =

Pr mm (While ex ac1 _;_ ac2)) /\

(Eval mm ex = tr) /\

(hyp ==> (Vt tr = [T])) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (Pr mm (ac1 _;_

While ex ac1 _;_

ac2))

| (ags ag' rl' sn')) _&_

st)

Rule A10 | a process exits a \while" loop:

Possibly hyp nhas initmem initproc

(AgentState ags _&_ st) /\

(ags ag rl sn =

Pr mm (While ex ac1 _;_ ac2)) /\

(Eval mm ex = tr) /\

(hyp ==> (Vt tr = [F])) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (Pr mm ac2)

| (ags ag' rl' sn')) _&_

st)

Rule A11 | a process performs a pair of actions:

Possibly hyp nhas initmem initproc

(AgentState ags _&_ st) /\

(ags ag rl sn =

Pr mm ((ac1 _;_ ac2) _;_ ac3)) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (Pr mm (ac1 _;_ ac2 _;_ ac3))

| (ags ag' rl' sn')) _&_

st)

Rule C1| operator _&_ is commutative, associative,
and idempotent:

Possibly hyp nhas initmem initproc st /\

((!stx sty. Vs (stx _&_ sty) =

Vs (sty _&_ stx)) /\

(!stx sty stz.

Vs ((stx _&_ sty) _&_ stz) =

Vs (stx _&_ sty _&_ stz)) /\

(!stx. Vs (stx _&_ stx) = Vs stx) ==>

(Vs st = Vs st')) ==>

Possibly hyp nhas initmem initproc st'

Rule C1 is the only rule involving Vs. It uses Vs to state
several general properties of the \and simultaneously"
operator at the same time.

Rule C2| part of a possible state is a possible state:

Possibly hyp nhas initmem initproc

(st1 _&_ st2) ==>

Possibly hyp nhas initmem initproc st1



Rule I1 | a state with all agents running no pro-
cesses is possible:

Possibly hyp nhas initmem initproc

(AgentState (\ag rl sn. Px))

Rule N1 | the attacker possesses everything that is
sent by every process:

Possibly hyp nhas initmem initproc

(MsgSend tr _&_ st) /\

(hyp ==> (Vt tr = Vt tr')) ==>

Possibly hyp nhas initmem initproc

(NetHas tr' _&_ MsgSend tr' _&_ st)

Rule N2 | the attacker can send anything that it
possesses:

Possibly hyp nhas initmem initproc

(NetHas tr _&_ st) /\

(hyp ==> (Vt tr = Vt tr')) ==>

Possibly hyp nhas initmem initproc

(MsgReceive tr' _&_ NetHas tr' _&_ st)

Rule N3| the attacker can pair any two things that
it possesses:

Possibly hyp nhas initmem initproc

(NetHas tr1 _&_ NetHas tr2 _&_ st) /\

(hyp ==> (Vt (tr1 __; tr2) = Vt tr3)) ==>

Possibly hyp nhas initmem initproc

(NetHas tr1 _&_

NetHas tr2 _&_

NetHas tr3 _&_

st)

Rule N4 | the attacker can take apart any pairs
that it possesses:

Possibly hyp nhas initmem initproc

(NetHas (tr1 __; tr2) _&_ st) ==>

Possibly hyp nhas initmem initproc

(NetHas tr1 _&_

NetHas tr2 _&_

NetHas (tr1 __; tr2) _&_

st)

Rule N5 | the attacker can apply any functions
whose code it possesses to any terms that it possesses:

Possibly hyp nhas initmem initproc

(NetHas (Tf f) _&_ NetHas tr1 _&_ st) /\

(hyp ==> (Vt (Tc f tr1) = Vt tr2)) ==>

Possibly hyp nhas initmem initproc

(NetHas (Tf f) _&_

NetHas tr1 _&_

NetHas tr2 _&_

st)

Rule N6 | the attacker has the nhas and \start"
terms, and all agent names, role names, and session
numbers:

Possibly hyp nhas initmem initproc st ==>

Possibly hyp nhas initmem initproc

(NetHas (nhas __; Ts __;

Ta ag __; Tr rl __; Tn sn) _&_

st)

Rule P1 | an agent starts a new process and dis-
cards the \start" message:

Possibly hyp nhas initmem initproc

(AgentState ags _&_

MsgReceive tr _&_

st) /\

(hyp ==> (Vt tr = Vt tr')) /\

TsTr (BdMsg tr') /\

(ToAgMsg tr' = Ta ag) /\

(ToRlMsg tr' = Tr rl) /\

(ToSnMsg tr' = Tn sn) /\

(ags ag rl sn = Px) /\

(initproc ag rl sn = Pr mm ac) /\

(!l.

(mm l = Tn 0) \/

(mm l = initmem ag l) \/

(mm l = Ta ag) \/

(mm l = Tr rl) \/

(mm l = Tn sn)) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (Pr mm ac)

| (ags ag' rl' sn')) _&_

st)

A \start" message need not come from a putative
sender with the same session number as the process this
message initiates. Every slot for a new process must
contain zero, or a value initially held by the agent start-
ing the new process, or some part of the new process'
address.

Rule P2 | an agent starts a new process and for-
wards a message to it:

Possibly hyp nhas initmem initproc

(AgentState ags _&_

MsgReceive tr _&_

st) /\

(hyp ==> (Vt tr = Vt tr')) /\

~(TsTr (BdMsg tr')) /\



(ToAgMsg tr' = Ta ag) /\

(ToRlMsg tr' = Tr rl) /\

(ToSnMsg tr' = Tn sn) /\

(FrSnMsg tr' = Tn sn) /\

(ags ag rl sn = Px) /\

(initproc ag rl sn = Pr mm ac) /\

(!l.

(mm l = Tn 0) \/

(mm l = initmem ag l) \/

(mm l = Ta ag) \/

(mm l = Tr rl) \/

(mm l = Tn sn)) ==>

Possibly hyp nhas initmem initproc

(AgentState

(\ag' rl' sn'.

((ag' = ag) /\

(rl' = rl) /\

(sn' = sn))

=> (initproc ag rl sn)

| (ags ag' rl' sn')) _&_

MsgReceive tr _&_

st)

An ordinary message to a non-existent process must
come from a putative sender with the same session
number as the process this message initiates. Every
slot for a new process must contain zero, or a value
initially held by the agent starting the new process, or
some part of the new process' address.

5 Belief Inferences

This section sketches how belief inferences analogous
to the rules of the belief logics can later be added to
PDL as proved theorems.

The �rst step will be de�ning \beliefs are correct" in-
terpretations of PDL's belief constructs by formalizing
their informal meanings. After that, it will be possible
to prove theorems of the form that if the \beliefs are
correct" interpretations of belief hypotheses hold, then
the \beliefs are correct" interpretations of belief con-
clusions also hold. These theorems can then be used to
reason directly from assumed initial beliefs to desired
belief conclusions, as in belief-logic inferences, but in a
completely rigorous way.

Proving such theorems will probably be di�cult, be-
cause of the large number of possibilities that must
be considered, but the \beliefs are correct" interpreta-
tions, and the exact statements of the theorems, can be
adjusted to make the theorems true. Paulson's work on
proving analogous theorems for his models [13, 14, 15]
should be helpful in dealing with these complexities,
as will work by Lowe on proving that searches �nd all

possible attacks [9], and work by Thayer, Herzog, and
Guttman on proving properties of abstract characteri-
zations of possible protocol executions [17].

Unlike the belief logics, PDL will not consider justi�-
able beliefs to be parts of process' states, but functions
of these states. This will guarantee that PDL belief
inferences are made only on the basis of the computa-
tions actually performed by processes.

PDL will address the inference limitations identi�ed
in Section 1 as follows:

� Type and equality checking | all belief inferences
will be functions of the tests and computations
processes have actually performed, not the tests
and computations they could perform.

� Concurrent sessions | CAPSL and PDL model
arbitrary numbers of concurrent sessions, includ-
ing sessions in which the same agent plays multiple
roles.

� Misinterpretations | PDL will make belief infer-
ences from computations performed by one pro-
cess, if these inferences depend on computations
performed by another process, only if the com-
putations performed by the �rst process justify
SameValue conclusions relating the data the �rst
process holds to data released by the second pro-
cess, and will then make these inferences only from
the computations performed by the second process
before it released this data.

� Accidental disclosure | PDL will address this pos-
sibility with its KnownOnlyTo construct and con-
servative inferences based on all the information
that might have been released to the network in
an arbitrary number of previous or concurrent ses-
sions.

� Algebraic properties attacks | The hyp argument
to PDL's Possibly function will make it possible
for PDL to model all of these attacks, though it
will only be possible to consider some of them in
a fast, automatic, proof-construction algorithm.

The great advantage of this approach is that the
complexities that arise in proving desired belief infer-
ences will not need to be considered again once these
inferences are proved. This gives the possibility that
PDL-based protocol analyses can be comparable in
thoroughness to the attack-construction analyses, but
still be comparable in speed to the belief-logic analyses.



References

[1] S. Brackin. Deciding cryptographic protocol ade-
quacy with HOL: The implementation. In Theo-

rem Proving in Higher Order Logics, number 1125
in Lecture Notes in Computer Science, pages 61{
76, Turku, Finland, August 1996. Springer-Verlag.

[2] S. Brackin. A HOL extension of GNY for automat-
ically analyzing cryptographic protocols. In Pro-

ceedings of Computer Security Foundations Work-

shop IX, County Kerry, Ireland, June 1996. IEEE.

[3] S. Brackin. A State-Based HOL Theory of Pro-
tocol Failure. Technical Report 98007, Arca Sys-
tems, Inc., Ithaca, NY, October 1997. Available
at www.arca.com.

[4] S. Brackin. A state-based HOL theory of protocol
failure. In Supplementary Proceedings of the 10th

International Conference on Theorem Proving in

Higher Order Logics: TPHOLs '97, pages 35{47,
Murray Hill, NJ, August 1997.

[5] S. Brackin. Evaluating and improving proto-
col analysis by automatic proof. In Proceedings

of Computer Security Foundations Workshop XI,
Rockport, MA, June 1998. IEEE.

[6] D. Dolev and A. Yao. On the security of public
key protocols. Technical Report STAN-CS-81-854,
Stanford University, Stanford, CA, May 1981.

[7] M. Gordon and T. Melham. Introduction to HOL:

A Theorem Proving Environment for Higher Or-

der Logic. Cambridge University Press, Cam-
bridge, 1993.

[8] G. Lowe. Some new attacks upon security proto-
cols. In Proceedings of Computer Security Founda-

tions Workshop IX, County Kerry, Ireland, June
1996. IEEE.

[9] G. Lowe. Towards a completeness result for model
checking of security protocols. In Proceedings

of Computer Security Foundations Workshop XI,
Rockport, MA, June 1998. IEEE.

[10] C. Meadows. A system for the speci�cation and
analysis of key management protocols. In Proceed-

ings of the Symposium on Security and Privacy,
pages 182{195, Oakland, CA, May 1991. IEEE.

[11] J. Millen. The Interrogator model. In Proceedings

of the Symposium on Security and Privacy, pages
251{260, Oakland, CA, May 1995. IEEE.

[12] L. Paulson. ML for the Working Programmer.
Cambridge University Press, Cambridge, 1993.

[13] L. Paulson. Proving properties of security proto-
cols by induction. Technical Report 409, CUCL,
December 1996.

[14] L. Paulson. Mechanized proofs for a recursive
authentication protocol. Technical Report 418,
CUCL, Cambridge, UK, April 1997.

[15] L. Paulson. Mechanized proofs of security proto-
cols: Needham-Schroeder with public keys. Tech-
nical Report 413, CUCL, Cambridge, UK, Jan-
uary 1997.

[16] E. Snekkenes. Formal Speci�cation and Analysis

of Cryptographic Protocols. PhD thesis, University
of Oslo, Oslo, Norway, January 1995.

[17] J. Thayer, J. Herzog, and J. Guttman. Honest
ideals on strand spaces. In Proceedings of Com-

puter Security Foundations Workshop XI, Rock-
port, MA, June 1998. IEEE.


	A HOL Formalization of CAPSL Semantics
	1 Introduction
	2 High-Level Overview
	3 Types, Terms, and Languages
	4 Language Meanings
	5 Belief Inferences
	References

	Table of Contents

