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Abstract

Survivable information systems continue to perform their mission in the face of spontaneous faults, as well
as malicious attacks. To build such systems, it is necessary to detect and isolate problems before they impact
system performance, functionality or security. Previous research efforts in this area focussed primarily on
detecting intrusions, rather than preventing them. Moreover, the topic of automated responses to attacks has
not received much attention. In this paper, we propose a new approach that combines prevention, detection
and isolation techniques to recover from a variety of threats and malicious attacks. Our method is based on
high-level specifications of legitimate interactions between programs and their host operating systems. We
generate optimized detectors that can monitor the runtime behavior of programs to identify violations from
specified behavior. Programs that violate the specifications can be placed in an isolated environment where
they cannot cause any further damage to the system. This approach leads an attacker to believe that they
are succeeding in their attack, whereas in reality they are simply wasting their time and resource, meanwhile
giving the administrators of the attacked system an opportunity to observe and document their actions. The
isolation and corrective actions can also be specified uniformly within our specification-based framework.

Keywords: intrusion detection, survivable systems, network security, computer security.

1 Introduction

Information and networking technologies are playing increasingly important roles in our infrastructures for
such critical services as power generation and distribution, telecommunication, commerce and banking, and
transportation. Along with the potential benefits brought about by this change, several new dangers arise, as
individuals or organizations can wreak havoc on these critical services (for financial, political or military gains)
by mounting carefully orchestrated attacks on the underlying computing and networking infrastructures. It is
thus critical to make these computing and networking infrastructures highly robust and resilient, so that they
can continue to perform their critical functions even in the face of large-scale failures or coordinated, malicious
attacks. Unfortunately, the recent spate of medium and large-scale failures in the telecommunication network
and the Internet has highlighted the potential weaknesses of these systems. Existing technology relies heavily on
highly skilled professionals to configure and protect the infrastructures against attacks. Such manual approaches
are error-prone, costly, do not respond in a timely fashion, and are not scalable. Consequently, a lot of research
efforts have focussed on automating the tasks related to securing such systems.

A majority of attacks on modern computer systems are based on exploiting errors in various application
and system programs to gain unauthorized privileges in the system. For instance, the well-known Internet
worm [Spafford89] exploited a buffer-overflow error in the UNIX fingerd program, and also an inadequate
authentication error in the sendmail program involving the use of a debug option. In spite of extensive
use and several years of bug-fixes, the continuing stream of advisories from organizations such as CERT(TM)
coordination center indicates that similar errors will continue to persist in many application and system processes
in the foreseeable future. Thus, techniques for securing computer systems must focus on approaches that can
detect exploitation of such errors, rather than being based on eliminating the underlying errors themselves.
Several such techniques for inirusion detection have been developed recently [Anderson95, Forrest97, Tlgun93,
Kumar94, Ko96, Lunt93]. However, in order to build a reliable and survivable system, it is necessary to detect
and isolate the problems before they impact system performance or functionality. Previous research efforts
in this area focussed primarily on detecting intrusions, rather than preventing them. Moreover, the topic of
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automated responses to attacks has not received much attention. These two factors mean that a fast-progressing
attack can compromise system security and possibly disable the intrusion detection mechanisms themselves
before the problem is detected. Even in cases where the problem can be detected, an attacker may be able
to cause considerable amount of damage before adequate responsive action is taken. We therefore propose a
new approach that combines prevention, detection and isolation techniques aimed at automatically responding
to a variety of threats and malicious attacks, and recovering quickly from the damage caused by them. Our
approach is inspired by software auditing and formal specifications, two of the techniques that have been used
with significant success in telecommunication systems.

1.1 Overview of Approach

Software auditing is a technique that has been developed in the context of telecommunication switching systems,
and has been very successful in making these systems highly reliable. Software auditing does not attempt to
tackle the high-level behaviors of processes and systems, which are far too complex to make a precise distinction
between correct (or safe) and incorrect behaviors. Instead, it is based on constant runtime monitoring of
several integrity or consistency conditions that must hold in a system that is operating correctly. For instance,
dangling pointers, corrupted data structures, lost resources, etc. indicate potential problems in the system. By
continuously checking the data structures used by switching system software, this technique identifies corruption
and inconsistencies in data before they lead to system failures. Use of this technique resulted in an impressive
two to three orders of magnitude improvement in the MTBF (mean time between failures) of switching software.
Our approach seeks to extend this success to large-scale information systems.

Whereas software auditing was focussed mainly on data-structures, in the context of survivability, we are
more interested in auditing security-related behaviors of processes. To simplify development of correct and
efficient auditing functions that can be readily customized to different applications and operating environments,
we propose to specify security-related behaviors declaratively in a high-level language called auditing specification
language (ASL). ASL is designed to be powerful enough to express a wide range of integrity constraints and
behaviors over time. The constraints can span multiple processes and/or hosts. The code for auditing is
generated by a compiler from these specifications. Qur approach is similar in motivation and spirit to the
approach of Ko et al [Ko94, K096], although the specification language and detection methods are quite different.
We describe this relationship in more detail in the next section.

We employ runtime enforcement techniques designed to ensure that a program satisfies the behavior specified
in ASL. When enforcement is impractical or undesirable, we employ detection techniques to identify deviations
from specified behavior, at which point automatic corrective actions can be taken. A simple corrective action
1s to terminate a process that deviates from specified behavior, but this may not be desirable since 1t may
alert an attacker that he/she has been detected. Instead, we develop isolation techniques that can isolate the
compromised software process in such a way that it cannot cause any further damage to the system. The process
is allowed to continue operation in this isolated environment, thus leading an attacker to believe that they are
succeeding in their attack, whereas in reality they are simply wasting their time and resource, while giving the
administrators of the attacked site an opportunity to observe and document the action of the attacker. We refer
to software that can be run in this manner as ablative software. These corrective actions are also described
within the specification-based framework using ASL.

For auditing-based detection to be successful, we need the ability to obtain the low-level information to
be monitored from the large base of existing software that does not provide any support for such monitoring.
To deal with this difficult problem, we decompose the detection system into two components. The primary
detection system (PDS) is designed to observe and intercept the system calls made by a process, which provide
the only mechanism through which a process can inflict damage on a system. In particular, operations for
manipulating files or network connections are all administered through system calls. Based on this observation,
our approach in PDS is to intercept and validate the system calls, their parameters and the return values. Note
that this approach gives us the ability to detect problems before they happen, and can thus be preventive.

Obtaining information on a more global scale is important to enlarge the class of problems that can be
detected. However, global information is associated with a higher cost than can be afforded in the performance-
sensitive PDS. We therefore propose to develop a secondary detection system (SDS) that trades off real-time
performance in favor of a larger class of problems that can be detected. One of the key issue in SDS is the
ability to obtain information about systems and applications from such heterogeneous sources as configuration



and log files, and SNMPT agents that provide information about the network and the other hosts.

The rest of this paper 1s organized as follows. We compare our work with previous research in intrusion
detection in Section 1.2, followed by a discussion of the salient features of our approach in Section 1.3. Our
specification language is described in Section 2 and illustrated with several examples in Section 3. Our techniques
for isolation are described in Section 4. A preliminary study of the effectiveness of our approach is presented in
Section b. Finally, implementation issues are described in Section 6.

1.2 Related Work

Intrusion detection techniques can be broadly divided into anomaly detection and misuse detection techniques.
Anomaly detection based approaches first compile a profile that defines normal behaviors and then detect
deviations from this profile. Several such techniques have been developed, based on statistical methods, expert-
systems, neural networks, or a combination of these methods [Fox90, Lunt88, Lunt92, Anderson95]. One of
the main advantages of anomaly-based intrusion detection is that the system can be trained to identify normal
behavior, and it can then automatically detect when observed behavior deviates significantly from this. The
downside is that an attacker can evade detection by changing behavior slowly over time. For this reason, most
systems combine anomaly detection with misuse detection, where we define and look for precise sequences of
events that result in compromising the security of a system. Intrusion can be flagged as soon as these events
occur. Techniques for misuse detection have been based on expert systems, state-transition systems [Porras92,
Tlgun93] and pattern-matching [Kumar94]. While it is relatively easy to deal with known vulnerabilities using
misuse detection, it is difficult to cope with unknown vulnerabilities.

A specification-based approach, first proposed by Ko et al [K094, Ko96], is aimed at overcoming the drawbacks
of misuse detection by describing intended behaviors of programs, which does not require us to be aware of all
the vulnerabilities in the program that could be misused. Our approach, although inspired by software-auditing,
1s in fact similar in spirit to their approach in that we also specify intended behaviors of processes. An important
improvement in our approach is that we can enforce the specified behaviors at runtime so as to prevent large
classes of attacks, whereas their approach uses offline analysis of audit logs. Another important distinction arises
in terms of the specification language used. [Ko96] uses a specification language based on context-free grammars
augmented with state variables, while our specification language is closer to regular languages augmented with
state variables. While regular grammars are less expressive than context-free grammars, the difference is much
less pronounced when these grammars have been augmented with state variables. Moreover, use of regular
grammars affords the ability to compile the specifications into an extended finite-state automaton (i.e., an FSA
augmented with state variables). Such an EFSA would enable very efficient runtime checking with bounded
resources (CPU or memory) that can be determined apriori. These factors are particularly important in the
context of an online approach such as ours.

Forrest et al [Forrest97, Kosoresow97] have developed intrusion detection techniques inspired by immune
systems in animals. They characterize “self” for a UNIX processes in terms of (short) sequences of system calls
that are made by the process in course of normal operation. Intrusion is detected when we observe “foreign”
system call sequences that have not been observed under normal operation. Their research results are largely
complementary to ours, in that their main focus is on learning normal behaviors of processes, where as our focus
is on specifying and enforcing these behaviors efficiently. In particular, the finite-state automaton learnt by the
technique of [Kosoresow97] can be fed as input to our runtime monitoring and isolation system.

Goldberg et al [Goldberg96] have developed the Janus environment designed for confining helper applications
(such as those launched by web-browsers) so that they are restricted in their use of system calls. Like our
techniques, they can also prevent unauthorized operations, such as attempts to modify a user’s .login file.
But their approach is designed more as a finer-grained access-control mechanism rather than as an intrusion
detection mechanism. The key distinction we make in this context is as follows. Access control mechanisms
enable us to provide the minimum set of access rights to each process that will enable them to get their job
done, while intrusion detection techniques are aimed at determining whether a process uses its access rights
in the intended fashion. For instance, problems such as race conditions and unexpected interactions among
multiple processes all manifest themselves as unintended use of access rights. Consequently, it is necessary for
us to support a more expressive specification language that can capture sequencing relationships among system
calls, whereas Janus permits restriction of access to individual system calls only. Moreover, they base their

tSNMP stands for simple network management protocol. It provides the mechanisms for obtaining network related information
through management information bases (MIBs).



techniques on specific operating system features provided by Solaris, whereas we are interested in detection and
flexible isolation techniques that can be applied to a wide range of operating systems.

Our approach to isolation has some similarities with the approach proposed in Deception Toolkit (DTK)
[Cohen98]. In particular, when an intrusion is detected, our approach aims to isolate the offending process to
a restricted environment in such a way that further actions taken by the process can no longer damage the
system. From the perspective of the attackers, this gives the impression that they are succeeding in their effort,
while in reality they are simply wasting their effort and resources. The DTK also employs a similar strategy.
DTK replaces each network service such as sendmail and telnet by a “fake” server that can carry on a dialogue
with a remote user much like the real server. However, the real service is no longer available when a deception
server is running on a machine. This contrasts with our approach, where standard server functionality is still
present.

1.3 Salient Features of Approach

e Prevention and/or early detection. One of the central features of our approach is that it enables early
detection of large classes of attacks before they compromise system security. This preventive ability enlarges
the class of threats we can deal with, e.g., we can protect against intrusions that exploit bugs in programs
that are otherwise trustworthy, as well as malicious programs (e.g., Trojan horses) from untrusted sources.
It also brings additional flexibility to the system, e.g., it enables a system administrator to respond quickly
to a newly discovered vulnerability, without having to wait for a vendor-supplied patch.

e Degree of transparency. It is desirable to achieve survivability without inconveniencing normal users. The
key to do this is to develop a highly transparent solution that is (a) application transparent so that existing
applications can run on a survivable system without requiring them to be rewritten, (b) user-transparent,
so that users continue to perceive the system as “open” and “user-friendly,” and (c) misuser-transparent,
so that a misuser or attacker can be fooled into believing that he/she is succeeding in their attack.

e Specification-based detection and response. Previous research in specification-based intrusion detection
focussed on specifying misuse or intended behavior. In contrast, our approach integrates detection as well
as the actions to be taken in response to intrusion attempts.

e Optimization techniques to minimize runtime overhead. We use the specifications as a basis for performing
optimizations necessary to meet the stringent efficiency requirements imposed by the fact that all system
calls have to be intercepted and monitored at runtime in our approach.

e Dynamically tunable monitoring. Our technique allows the granularity of monitoring to be changed on the
fly at runtime. We can use a low-level of monitoring under normal conditions, but can quickly increase
the level of monitoring when errors or suspicious activity is detected

2 Overview of ASL

In ASL, we model behaviors of processes and systems in terms of sequences of (security-related) events. In
general, events may be internal to a single process, e.g., a function call made by the process; or they may be
externally observable, e.g., a message delivered to a machine, or information that could be obtained from a
system utility or a remote machine. We represent an event in the form EventName(Argy, ..., Arg,), where
Argi, ..., Arg, are expressions denoting parameters of the event. An event history 1s a sequence of events
(internal or external) generated by a system. Security-related behaviors are captured using patterns on the
event history. Thus, our specifications are structured in the form of rules that consist of a pattern and reaction
components. The reaction component is executed whenever the pattern component matches the event history.

One of the classes of events in ASL includes network-level events, such as network management data obtained
using standardized management protocols such as SNMP. A more important class of events consists of system
calls made by processes to obtain services from the operating system kernel. Our approach is to enforce
behaviors of processes at runtime by intercepting the system calls made by each of them, and comparing them
against the specifications. When enforcement is infeasible or impractical, our monitor is designed to detect
violations as early as possible. At the system call level, we focus primarily on behaviors of individual processes
that can be observed without any regard to the actions being taken by other processes in the system. This



means that the runtime detection engines for different processes do not need to interact, which is desirable
for their efficient implementation. This does not always limit our approach from detecting intrusions involving
undesirable interactions among multiple processes. This is because we can often characterize such interactions
in terms of the actions performed by one process and the state of the system. (See Section 3 for an example
involving race conditions.) A more systematic approach for specifying behaviors that involve multi-process
interactions is currently being developed.

Modules At the top level, each monitoring specification will be structured as a collection of parameterized
modules. A module is characterized by a name and a set of parameters. It may define a set of state variables
and also instantiate other modules by providing appropriate parameters. The last component of a module 1s a
sequence of pattern-matching rules further described in the following sections.

The module construct i1s aimed at minimizing the need to duplicate similar or identical behaviors many
times. As is well-known in software engineering, such duplication leads to inconsistencies and obscure bugs over
the long term, and is to be avoided in a good language or system design. Modules capture generic behaviors that
are parameterized with respect to a set of module parameters. For instance, we can capture a behavior involving
the use of a sequence or repetition of certain system calls, and have the module parameterized with respect to
the system call arguments, time intervals between the calls, or the number of repetitions. Specific behaviors
can be obtained by instantiating the modules by providing the values of the parameters. A module may also
have substructure, i.e., it may instantiate other modules. Thus i1t provides for a grouping of related properties,
and more generally, a way to organize specifications in a hierarchical fashion. This grouping capability is
particularly important for dynamically altering the degree of monitoring in response to suspicious activities.
The same capability can also be used for isolating compromised processes as described in Section 4.

Patterns ASL patterns are designed to capture valid or invalid behaviors. The patterns consist of event
patterns composed using temporal operators. The event patterns describe specific events of interest, while the
temporal operators capture the sequencing and timing relationships that must hold between these events. The
event patterns are of the form event|cond, where event is of the form EventName(Argy, ..., Arg,), and cond
1s an expression on the variables in Argy, ..., Arg, that evaluates to true or false. The condition component
can make use of standard arithmetic, comparison and logical operations. It will also support regular expression
matching, which 1s particularly useful for file-name-related operations. Finally, for events that represent system
calls, C-style array and structure access operations may be used on the system call arguments.

Event patterns allow us to describe conditions on the events that are permissible and those that are not.
For instance, we can capture allowable processes that can be executed by the fingerd as follows:

exec(filename, ...)|realpath(filename) = “/usr/uch/ finger”

Here, the event exec refers to any of the possible exec-related system calls.f. In the condition component, we use
a predefined function in ASL called realpath to resolve all links, symbolic links, and references to “.” and “..”
contained in filename. We then check that the resolved name is /usr/ucb/finger. This simple pattern can
prevent the exploitation of the vulnerability that was used in the Internet worm attack on the finger daemon.

To capture sequencing or timing relationships among events, we need to use temporal operators. In order
to define the meaning of these operators, we develop the notion of an event history satisfying a pattern.

e e(pay, ..., pay), where e is an event with argument patterns pay, ..., pay, is satisfied by any event history of
the form ...,e(ay, ..., an) where a; is an instance of pa;.

e patyiopats is satisfied by an event history H of the form HoH, HsH, provided H; satisfies paty, H» satisfies
pats, and Hs does not satisfy either pat; or pats. Intuitively, the operator ‘o’ denotes the notion of one
event following another, with other unrelated events possibly occurring between the two. Note here that
Hy, ..., H3 are event histories in themselves such that their concatenation HoHiHzH> yields the entire
history H.

e pat” 1s satisfied by an event history HoHyH- - -- H, provided that H; satisfies pat, for every 1 <7 < n.
This operator is used for repetition of patterns.

e paty || pats is satisfied by an event history H if either pat; or pats is satisfied by H.

{The relationships among the different variations of this system call are described separately to the ASL compiler, and we skip
the details here due to space considerations.



e pat within ¢ is satisfied by an event history HoH, if H; satisfies pat and the time interval between the
first and last events in H; is less than or equal to t.

When a variable occurs multiple times within a pattern, an event history will satisfy the pattern only if the
history instantiates all occurrences of the variable with the same value. For instance, the pattern e (z) o ea()
will not be satisfied by the event history ej(a)ea(b), but will be satisfied by e (a)ea(a).

We illustrate the use of some of these temporal operators below. Race conditions in file access, which often
lead to errors, can be captured using patterns such as:

[access(name, ...)|realpath(name) = f1] o [open(name, ...)|realpath(name) # f1] within 3 sec

This pattern can capture several attacks that exploit the small window of time between the time access per-
missions are checked and the file actually opened by a privileged program on behalf of a normal user. This
vulnerability existed in many programs, including passwd, rdist and xterm. The three-second “time-out” is
used so that unrelated system calls dispersed widely in time are not accidentally identified as intrusions.
Repetitive actions, such as repeated login failures, can be captured as shown below. Here, the event
login(username) is an synthesized event that is generated by some component of the monitoring system, possibly
based on an examination of system log files or audit logs. This event is then fed into the detection system.

[login(name, ...)]* within 5 min

As another example, consider a TCP SYN attack. One way to detect this attack is to monitor an SNMP MIB
variable called tcpAttemptFails and look for sudden increases in this value. We can model periodic polling
for the value of this variable using an event of the form tep Attempt Fails(n), where n denotes the value of this
MIB variable. With this model, a pattern to identify a (warning sign of) SYN attack is given by:

[tepAttempt Fails(nl) o (tepAttempt Fails(...))° o tepAttempt Fails(n2)|(n2 — nl > max)] within ¢

Here max and t are constants defined elsewhere in the specification.

Rules A rule is of the form pat — actions, where pat is a pattern of the form described above, and actions is
a sequence of responsive steps to be initiated as soon as we identify a system behavior that satisfies the pattern.
In the simplest case, the sequence could be empty, in which case no action is undertaken.

An action can be an assignment to state variable belonging to the module that contains the rule. It may
also be an invocation of any pre-defined ASL function. Two important class of functions are important in the
primary detection system. The first class consists of all system calls. The second class consists of the single
action fa:l which prevents the system call from being completed. An optional argument to fail permits “fake”
return values (and error codes) to be transmitted back to the calling program. These actions are particularly
useful in the context of isolation mechanisms described later on.

Finally, two other forms of action are permitted to enable us to change the level of monitoring. The switch
action enables switching to a completely different specification for monitoring. The activate action enables
additional rules in the specified module to be activated for monitoring, while the rules in the current module
are still active. The use of the reaction component is further detailed in Section 4.

3 Example Specifications for Intrusion Prevention/Detection

Finger Daemon The following specification restricts the finger daemon so that it can open only a select set
of files for reading, cannot open any file for writing, cannot execute any file, and cannot initiate connection to
any machine. When any of these conditions are violated, the offending system call is not allowed to execute, and
an error code is returned. The following specification pertains to the GNU finger program, and in particular,
the finger daemon running as the master server. Note that the implementation of GNU finger daemon is quite
different from the Berkeley implementation mentioned earlier.

Module fingerd(datadir)
open(file, mode)|(realpath(file) & {*‘/etc/utmp’’, ‘‘/etc/passwd’’, ‘‘$datadir/*’’})
V(mode # 0_RDONLY) — fail
disallowed : exec, connect, chmod, chown, chgrp, create, truncate, sendto, mkdir
end



Here, exec stands for all variations of the system call for executing programs. We also use a shorthand notation
to list all disallowed calls, rather then writing a pattern that disallows each specific call. (The example shows
only a subset of disallowed system calls rather than providing a complete list.) With this specification, we can
prevent a variety of attacks, including the buffer overflow attack used by the Internet worm.

FTP Daemon With FTP, we may be interested in ensuring that the files accessed by the FTP server are
accessible to the user making use of the FTP service. We can accomplish this using the following specification:

getpwname(name) o open(file, mode, ...)|maccessible(realpath(file), mode, name)) — fail

Since the name of the user is not an argument to any system call (except possibly a setuid call that may be
executed after the ftp user login procedure is completed by some ftp servers), we need to observe a library call
such as getpwnam. If this is not possible, then we should rely on information logged into system and ftp server
log files to detect this problem.

Race conditions in xterm and passwd Old versions of xterm on certain UNIX implementations needed
to run as super-user. When xterm was invoked with a logging option, it needed to ensure that the invoking user
had the permissions to write to the log file. Between the time xterm checks the access permissions on the file
and the time it actually opens the file (as a superuser), there is a small window of time that can be exploited by
an attacker to overwrite arbitrary files. The attacker can create a file that is a symbolic link to one of his/her
files at the time xterm checks access permissions, and then relink it to a file such as /etc/passwd by the time
xterm opens the file. A specification for this problem may look as follows:

[access(name, ...)|namel = realpath(name) o open(name, ...)|realpath(name) # namel] — fail

A Utility Program from Untrusted Source In this case, we may want to ensure that the program can
only read world readable files, it can write only within /tmp directory, cannot execute any programs, and cannot
perform network operations. This is easily ensured by the following specification:

Module fingerd(datadir)
open(file, mode)|[realpath(file) & {“/tmp/*"}
A (mode & (O_WRONLY | O_APPEND | O_CREAT | O_TRUNC))]
V(—accessible(realpath(file), mode, “nobody”)) — fail
disallowed : exec, connect, bind, chmod, chown, chgrp, sendto, mkdir
end

4 Isolation

Once a compromised process has been identified, the system must ensure that this process can no longer affect
the system integrity. The simplest policy is to kill the compromised process and restart it afresh. However,
this is not satisfactory for several reasons. It does not give an indication of the nature of the problem, and it
may alert the attacker too quickly that the system is counter-reacting. Instead, we reconfigure the environment
of the compromised process to isolate it from the rest of the system. Others parts of the system will not be
affected by the isolation and continue to operate normally. This approach can fool the attacker into believing
that the attack is succeeding, when in reality they are merely wasting their own resources as well as providing
the owner of the attacked system an opportunity to track down the attacker. We refer to software that can be
isolated from a system and continue running as ablative software.

The 1solation component is integrated seamlessly into our specification based framework for detection. When
we detect an intrusion, we use the switch action to switch to a new specification that contains ASL rules to
isolate the compromised process. These rules modify the behavior of system calls in such a way that compromised
processes are prevented from executing operations that can damage the rest of the system. Specifically, the
reaction component can be used to perform one or more of the following:

e return error code or bogus return value. When a system call that can potentially damage the system is
invoked by the compromised process, we can prevent the system call from being completed, and instead
return an error code or a bogus return value.



e log the activity for later analysis.

e reduce resources consumed by the rogue process.

e restrict access to files. We can use the setuid system call to change the effective userid of the process to
that of a user with very few access rights. Alternatively, we could use the chroot system call to change
the root directory of the compromised process.

To illustrate this idea, consider the finger daemon with a slightly modified specification to implement isolation.
In particular, we introduce the rule:

exec(...) = chroot(“/altroot”); setuid(—1); nice(100); switch genericlsolate;

This rule changes the root of the calling process to a decoy file system (called altroot), changes the userid
to nobody, reduces the priority of the process, and finally switches to a new monitoring specification called
genericlsolate, which may be specified as:

Module genericlsolate
connect(...) = sleep(60); fail ETIMEDOUT
bind(...) = sleep(b); fail EADDRINUSE
recv(...) — sleep(1); continue
open(...) = sleep(1); continue

end

There may be several other rules in this module, but the ones given above are illustrative. Since the process is
operating in a decoy file system, file system operations are allowed go through. However, network operations are
restricted. Most operations are slowed down using sleep, so that the CPU and resource usage on the attacked
system are minimized, while the intruder will likely perceive a slow system and/or congested network.

5 On the Effectiveness of our Approach

In this section we present a preliminary evaluation of the effectiveness of the our approach. For this purpose, we
studied the advisories put out by CERT(TM) coordination center [CERT98] from 1993 through May of 1998.
Our results are shown in the following table.

Category Count | Detectability
Buffer overflow 29 Most
Insecure filename handling 14 Most
Other inadequate argument checking 7 Majority
Trojan Horses in privileged programs 3 Moderate
Insecure program features 7 Moderate
Configuration errors 10 Minority
Kernel-level attacks 3 None
Weak authentication /encryption protocols 7 None

Since the CERT advisories do not provide detailed description of vulnerabilities, some of the attacks in the table
may be misclassified. Moreover, the table indicates only whether a vulnerability can be captured in an ASL
specification; we have not yet experimentally verified that we can indeed capture the attacks. Nevertheless, the
table gives an idea of the categories of vulnerabilities that have a low or high likelihood of being identified by
our technique. It also provides preliminary indication that our technique will likely be able to capture a large
fraction of intrusions known to date.

The number of UNIX related advisories over this period was 96, out of which we could not determine the
underlying vulnerability for 16. We have classified the remaining 80 into eight categories as shown above. We
provide a brief description of some of these categories below, together with a justification of the detectability
figure. Buffer overflows typically involve a privileged program forking a shell connected to an attacker, or
otherwise performing actions that are well out of the norm for the attacked process. As such, our technique has
a high likelihood of capturing such attacks. Insecure filename handling refers to the fact that a program fails
to perform adequate checking on the target file (especially when a file happens to be a symbolic link). Since
the result is typically that the program overwrites a file that it is not normally supposed to touch, this class of



attacks can also be generally captured by us. The third category also involves operations on objects typically
not accessed by a program, and hence can be largely identified by our technique.

Configuration errors, kernel-level attacks and weak protocols all generally fall outside the scope of our
technique. For instance, kernel-level attacks (such as ping-of-death) are not even visible at the system call
level, and hence cannot be captured. Weakness in authentication or cryptographic protocols are also completely
outside our model. A minority of configuration errors can be captured by our technique, to the extent that the
error results in a process accessing data that it does not typically access.

6 Implementation Issues

6.1 Compilation of ASL for Fast Intrusion Detection

Our specification-based approach enables us to focus on the relationships, constraints and behaviors that must
hold in a system that operates correctly, as opposed to the details of implementing the checks for these conditions.
Efficient implementation of auditing functions are derived automatically from the ASL specifications by our ASL
compiler. This approach enables us to analyze the ASL specifications and optimize them, using techniques such
as sharing of common computations across multiple auditing functions. Such optimization is especially critical
for PDS, where potentially every system call is subjected to auditing.

Note that the behavior of a single process is typically constrained by several ASL rules. A naive imple-
mentation of pattern-matching for these rules would require us to test each system call against each of these
patterns. This will lead to unacceptable overheads for runtime monitoring. Thus, it is critical to speed up
the checking by (a) avoiding sequential search through all ASL patterns to be checked, and (b) enabling in-
cremental checking of temporal patterns, without having to explicitly sequence through the history of system
calls made in the past. The key idea here is to factor the pattern-matching operations into a sequence of test
operations so that we can share expensive tests across multiple patterns. Moreover, a single test may enable us
to rule out many candidate patterns, so that we can quickly zoom in on the applicable patterns. We remark
that optimizations such as sharing and factoring come for “free” in our specification-based approach. On the
other hand, if the auditing functions were hand-implemented, considerable additional effort would be required
to obtain these benefits. More importantly, hand-coding of such optimizations typically leads to intertwining of
different auditing functions, leading to code that is difficult to understand or evolve.

The ASL compiler will translate the ASL specifications into an extended finite-state automaton (EFSA). An
EFSA extends traditional finite-state machine by adding auxiliary variables, in addition to the states of the
automaton. Each system call made by a monitored process is passed to the EFSA, which makes transitions
based on the name and arguments of this system call. If a transition takes it to a final state, then any action
associlated with the final state 1s performed. The action would correspond to the reaction component of an
ASL specification. Otherwise, the system call is passed onto the kernel. EFSA-based representations are
crucial for efficient runtime monitoring of multiple ASL assertions; analogous FSA representations form the
basis for efficient techniques for similar problems in other domains, including regular-expression matching and
tree-pattern matching.

6.2 Runtime Monitoring and Isolation

We propose to implement the runtime monitoring and isolation mechanisms within the system call interface
layer of the operating system kernel. As compared to some of the other approaches mentioned below, this
approach lends itself to a more secure 1implementation, since a user process can only access the OS through
well-defined entry points and cannot modify kernel code in a well-designed operating system. Moreover, the
response actions need not be constrained by the privileges of the userid corresponding to the monitored process.

The monitoring system will be implemented as a loadable module in the operating system kernel. If the
operating system does not support loadable modules, then we would need to integrate an interpreter for EFSA
permanently into the OS kernel, which would read in compiled EFSA code. In either case, the ASL specifications
and the compiled EFSA code can all be held within a secure repository, with access to the repository carefully
controlled.

An alternative to the kernel-based approach is to implement the monitoring within the process space of the
monitored process, by using a modified version of the system call library. This modified library will perform
the checking operations before passing the call onto the kernel. This approach has the benefit that it does not



require any changes to the kernel. But the downside is that it can be defeated by malicious attacks that exploit
the memory-unsafety of the C-language (or machine code, for that matter) to corrupt the data or code. For
instance, the approach cannot prevent buffer-overflow attacks.

A third approach makes use of user-level system-call tracing facility provided by System V style UNIX
operating system through the /proc interface. This approach is more robust than the library-based approach,
but a limiting factor is that such mechanisms may not be available on all operating systems. Even where they
are available, they typically do not provide the flexibility needed for implementing the isolation mechanism,
which requires us to be able to execute arbitrary system calls on behalf of the calling process.
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