An Approach for Analyzing the Robustness of Windows NT' Software*

Anup K. Ghosh, Viren Shah, & Matt Schmid
Reliable Software Technologies Corporation
21515 Ridgetop Circle, #250, Sterling, VA 20166
phone: (703) 404-9293, fax: (703) 404-9295
email: {aghosh,vshah,mschmid}@rstcorp.com
http://www.rstcorp.com

Abstract

Today, the vast majority of software executing on
defense systems is untrusted commercial off-the-shelf
software such as Microsoft Windows software. Vulner-
abilities in this software may be exploited to gain unau-
thorized access to security-critical systems. A number
of studies have analyzed the robustness of software that
run on Uniz systems. The results of these studies have
pointed to vulnerabilities in the software that could be
potentially exploited into security intrusions. This pa-
per describes a new study aimed at analyzing the ro-
bustness of software running on Windows NT systems.
This relatively new operating system has not yet been
thoroughly analyzed by the security research commu-
nity using the tools and techniques applied to Unix
system software. The goal of the research is to iden-
tify robustness gaps in the application software and
operating system software that potentially could be ex-
ploited for violations of security. Contributions in this
paper include a grammar-based input generator, a tax-
onomy of failure conditions, and experimental results
from robustness testing of software running on the NT
platform.

1 Introduction

The specter of malicious computer users, organized
crime, or hostile nations waging information warfare
against the United States is a growing threat—enough
to concern the upper echelons of the U.S. government
[4, 10]. Because the threat is real, the U.S. must ur-
gently prepare for information warfare attacks. Cur-
rent security analysis tools attempt to assess network-

*This work is sponsored under the Defense Advanced Re-
search Projects Agency (DARPA) Contract F30602-97-C-0117.
THE VIEWS AND CONCLUSIONS CONTAINED IN THIS DOCUMENT
ARE THOSE OF THE AUTHORS AND SHOULD NOT BE INTERPRETED
AS REPRESENTING THE OFFICIAL POLICIES, EITHER EXPRESSED
OR IMPLIED, OF THE DEFENSE ADVANCED RESEARCH PROJECTS
AGENCY OR THE U.S. GOVERNMENT.

level vulnerabilities for a given site [2, 3, 9, 5]. These
tools do not provide an assessment of an organization’s
vulnerability to novel threats against vulnerable soft-
ware.

Recognizing that 90% of military systems use com-
mercial architectures [10], the problem of untrusted
software becomes of critical importance to those con-
cerned with information warfare. Application-level
vulnerabilities have particular significance in the area
of information warfare. While some information war-
fare campaigns might be waged through frontal as-
saults on a network firewall, more insidious campaigns
are those that wage war from within—via applications
that are currently executing on commanders’ desk-
tops. A dramatic example of the concern in the U.S.
Department of Defense about the vulnerability of de-
fense systems is illustrated by a memo the U.S. Air
Force issued. The memo stated that all “push-pull”
technology, such as those found in current versions
of PointCast, Marimba, Netscape Communicator 4.0,
and Microsoft Internet Explorer 4.0, are to be disabled
from Air Force network installations. The memo says:
“Currently, these technologies introduce security risks
and impact data throughput on our networks than
cannot be tolerated.” [1]. The risk is that push-
pull technology can be used to automatically sched-
ule downloads of untrusted executables onto sensitive
systems. Provided that Web service is provided to in-
ternal users, firewalls are currently ineffective in pre-
venting malicious executables from downloading, in-
stalling, and executing using push-pull technology.

Software applications with built-in vulnerabilities
(whether intentionally placed or not) may allow a ma-
licious misuse of system resources contrary to secu-
rity policy. Most software security vulnerabilities re-
sult from two factors: program bugs and malicious
misuse. Technologies and methodologies for analyz-
ing software in order to discover these vulnerabilities



(and potential avenues for exploitation) have focused
on software running on Unix systems. However, with
the ever growing market share of Windows NT sys-
tems in mission-critical applications, the vulnerabil-
ity of Windows NT software becomes imperative to
assess. In addition, source-code—based analysis tech-
niques often used on Unix systems are not feasible for
commercial off-the-shelf (COTS) software running on
Windows systems.

In this paper, an approach for analyzing the ro-
bustness of Windows NT software is described. The
approach, in principle, can be applied to almost any
software executing on the Windows NT desktop in-
cluding application software, user utilities, COM com-
ponents, shared libraries, and system calls. The goal
of this research is to determine what gaps in Win-
dows NT software exist, if any, to classify the nature
of these robustness gaps, and to determine how they
may impact the security of Windows NT systems. An
architecture for a tool that analyzes the robustness of
Windows NT software is presented along with results
from analyzing GNU console applications that run on
Windows NT systems.

2 Prior art

Two research projects have independently defined
the prior art in assessing system software robustness:
Fuzz [8] and Ballista [6]. Both of these research
projects have studied the robustness of Unix system
software. Fuzz, a University of Wisconsin research
project, studied the robustness of Unix system utili-
ties. Ballista, a Carnegie Mellon University research
project, studied the robustness of different Unix oper-
ating systems when handling exceptional conditions.
The methodologies and results from these studies are
briefly summarized here to establish the prior art in
robustness testing.
2.1 Fuzz

One of the first noted research studies on the ro-
bustness of software was performed by a group out of
the University of Wisconsin [8]. In 1990, the group
published a study of the reliability of standard Unix
utility programs [7]. Using a random black-box test-
ing tool called Fuzz, the group found that 25-33% of
standard Unix utilities crashed or hung when tested
using Fuzz. Five years later, the group repeated and
extended the study of Unix utilities using the same
basic techniques. The 1995 study found that in spite
of advances in software, the failure rate of the systems
they tested were still between 18 and 23%.

The study also noted differences in the failure
rate between commercially developed software versus
freely-distributed software such as GNU and Linux.

Nine different operating system platforms were tested.
Seven out of nine were commercial, while the other
two were free software distributions. If one expected
higher reliability out of commercial software develop-
ment processes, then one would be in for a surprise in
the results from the Fuzz study. The failure rates of
system utilities on commercial versions of Unix ranged
from 15-43% while the failure rates of GNU utilities
were only 6%.

Though the results from Fuzz analysis were quite
revealing, the methodology employed by Fuzz is ap-
pealingly simple. Fuzz merely subjects a program to
random input streams. The criteria for failure is very
coarse, too. The program is considered to fail if it
dumps a core file or if it hangs. After submitting a
program to random input, Fuzz checks for the pres-
ence of a core file or a hung process. If a core file is
detected, a “crash” entry is recorded in a log file. In
this fashion, the group was able to study the robust-
ness of Unix utilities to unexpected input.

The causes of crashes were investigated by Fuzz re-
searchers analyzing source code provided by the com-
mercial vendors in addition to the source code avail-
able through freely distributed software. Errors pro-
grammers made include pointer/array errors, using
dangerous input functions, errors in signed characters,
and checking for the end of file when reading input.
For example, incrementing the pointer past the end
of an array is a common error made by many pro-
grammers. Also, the use of dangerous input functions
such as the gets() C function can result in program
crashes. More insidious manipulation of dangerous
input functions can permit “stack smashing” attacks
that allow the execution of arbitrary program code
embedded in user input. Another example of a pro-
grammer error is assuming that the end-of-file charac-
ter will always immediately follow a newline charac-
ter. User input may not necessarily follow this format.
Though the Fuzz study did not investigate the vulner-
ability of programs to buffer overrun attacks, some of
the gaps in robustness as measured by the Fuzz study
may be exploitable in this manner for security viola-
tions.

Finally, it is worth mentioning that in addition to
Unix utilities, the Fuzz research studied the robustness
of Unix network services, X-Window applications and
X-Window servers.

2.2 Ballista

Ballista is a research project out of Carnegie Mellon
University that is attempting to harden COTS soft-
ware by analyzing its robustness gaps. Ballista auto-
matically tests operating system software using com-



binations of both valid and invalid input. By deter-
mining where gaps in robustness exist, one goal of the
Ballista project is to automatically generate software
“wrappers” to filter dangerous inputs before reaching
vulnerable COTS operating system (OS) software.

A robustness gap is defined as the failure of the
OS to handle exceptional conditions [6]. Because real-
world software is often rife with bugs that can generate
unexpected or exception conditions, the goal of Bal-
lista research is to assess the robustness of commercial
OSs to handle exception conditions that may be gen-
erated by application software.

Unlike the Fuzz research, Ballista focused on assess-
ing the robustness of operating system calls made fre-
quently from desktop software. Empirical results from
Ballista research found that read(), write, open(),
close(), fstat(), stat(), and select () were most
often called [6]. Rather than generating inputs to
the application software that made these system calls,
the Ballista research generated test harnesses for these
system calls that allowed generation of both valid and
invalid input.

Based on the results from testing, a robustness gap
severity scale was formulated. The scale categorized
failures into the following categories: Crash, Restart,
Abort, Silent, and Hindering (CRASH). A failure is
defined by the error or success return code, abnormal
terminations, or loss of program control. The catego-
rization of failures is more fine-grained than the Fuzz
research that categorized failures as either crashes or
hangs.

The Ballista robustness testing methodology was
applied to five different commercial Unixes: Mach,
HP-UX, QNX, LynxOS, and FTX OS that are often
used in high-availability, and some-times real-time sys-
tems. The results from testing each of the commercial
OSs are categorized by the CRASH severity scale and
a comparison of the OSs are found in [6].

In summary, the Ballista research has been able
to demonstrate robustness gaps in several commercial
OSs that are used in mission-critical systems by em-
ploying black-box testing. These robustness gaps, in
turn, can be used by software developers to improve
the software. On the other hand, failing improvement
in the software, software crackers may attempt to ex-
ploit vulnerabilities in the OS.

The research on Unix system software presented in
this section serves as the basis for the robustness test-
ing of the NT software system described in this paper.
The goal of the work presented in this paper is to as-
sess the robustness of application software and system
utilities that are commonly used on the NT operating

system. By first identifying potential robustness gaps,
this work will pave the road to isolating potential vul-
nerabilities in the Windows NT system.

3 Analyzing the robustness of
Windows NT software
The objective of the tool described here is to de-
velop an environment in which Windows NT software
can be tested for robustness. The types of software to
be analyzed in this environment include:

e console applications,

GUI applications,

e network servers,

Dynamically Linked Libraries (DLLs),
e system functions, and
e OLE/COM/DCOM components.

The Random and Intelligent Data Design Library En-
vironment (RIDDLE) is an environment that was cre-
ated for testing the robustness of COTS software on
Windows NT systems. Because RIDDLE is used for
analysis of COTS software, no access to source code
is assumed. The environment uses black-box testing
techniques to generate input for the application being
tested. Because the goal of the testing is to assess
the robustness of the software being tested, the input
generated can be characterized as “anomalous”. That
is, the input generated by RIDDLE in most cases falls
outside of the normal operational profile for the soft-
ware being tested.

Figure 1 shows the architecture implemented by
RIDDLE for assessing robustness of Windows NT soft-
ware. A component is tested using the input genera-
tion components of RIDDLE. The functions in the in-
put generation library support testing with random in-
put, intelligent input generation using the input gram-
mar of the component, and generation of malicious in-
put. In addition to random testing, generating input
intelligently using the input grammar of the compo-
nent permits stress testing of more of the software’s
functions from a black-box perspective. Combining
random input, malicious input, and boundary value
conditions with the legal grammar of the program, the
component can be tested more thoroughly than with
simple random black-box testing.

RIDDLE does not use an oracle for its analysis.
That is, RIDDLE will not reveal whether the com-
ponent executed correctly. Rather, RIDDLE uses



grammar-

test
specification

—_— ; handl_i ng

generator Component

assertion

COTS

security
assertion

Input Generation

Post Processing

RIDDLE

Figure 1: The RIDDLE architecture. RIDDLE is an environment that supports robustness testing of COTS
software components. Once the testing specification for a component is decided, grammar-based input generation
creates syntactically correct but anomalous input for the component under test. The RIDDLE environment
controls the execution of the component under test to send inputs and capture the resulting output from the
component. The use of assertions in post-processing can reveal robustness gaps in the software.

assertions of incorrect exit codes, unhandled excep-
tions, hung processes, insecure behavior (such as wip-
ing files), or system crashes to determine whether a
component is robust to anomalous input. The soft-
ware component under test can be as fundamental as
a system function in the NT operating system or as
complex as a desktop application with a graphical user
interface (GUI). RIDDLE provides the set of input
generation functions to drive these components given
an interface specification. RIDDLE currently supports
testing of console applications (such as DOS utilities)
and network servers. Development is on-going for cre-
ating test harnesses for OS functions, Windows events,
and COM components.

4 Grammar-based robustness testing

The ability to generate intelligent input is essen-
tial for the type of stress testing necessary for robust-
ness assessment. The simplest form of testing involves
generating random streams of data that are used by
the program being tested; this was done in the Fuzz

project. While random input generation can test the
ability of a program to handle non-conforming input,
it typically will not exercise much of a program’s func-
tionality. Testing applications with syntactically cor-
rect data will result in more thorough testing of that
application than testing with purely random data. For
example, many applications that take command line
arguments will immediately terminate if they do not
receive the correct number of parameters, or if they
receive an invalid flag. In this situation, random test-
ing will not test any further into the program than
this initial check.

On the other hand, syntactically correct arguments
(or input parameters) will result in more of the ap-
plication being tested. In order to exercise more of a
program’s functionality and to test more of the func-
tion’s response to anomalous input, RIDDLE employs
a grammar-based input generation component. With
the creation of a grammar-based input generation
component, RIDDLE can test software with syntac-
tically correct data that contains unexpected, anoma-



lous input. The anomalous input itself will be gen-
erated through function calls to the data generation
library.

Figure 2 shows the architecture of the grammar-
based input generation component of RIDDLE. RID-
DLE takes a grammar specification as input, and pro-
duces random, yet syntactically correct, strings of data
by employing functions from the data generation li-
brary.

The data generation library can be used to gener-
ate data with a variety of levels of intelligence. When
testing an application that takes a file name as a pa-
rameter, the data generation library can be used to
produce a number of substitutions for this parame-
ter. In the case of a file name, the data generation
library can produce the name of an existing file, a
valid file name that doesn’t exist, an invalid file name,
the name of a file with specific permissions set, an ex-
tremely long file name, or otherwise. Each of these
possibilities results in a different test case that may
exercise the application being tested in a new way.

The grammar specification is defined in two parts.
The first part is a definition of the grammar written
in a format similar to Backus-Naur Form (BNF). The
second part is a file that contains definitions of all
of the tokens used in the grammar. RIDDLE begins
by parsing the grammar definition and checking that
it is syntactically correct (see Figure 2). Next, RID-
DLE begins the process of generating data based on
the grammar that it has read. The data that RID-
DLE generates relies on the terminal definitions that
have been supplied in the token definition file and the
functions called from the data generation library.

For each program being tested, the grammar def-
inition must be created. The definition declares the
format for the input that is syntactically correct for
exercising the program under test. Each production,
or rule, consists of a left-hand side and a right-hand
side, separated by a colon. The left-hand side identi-
fies a single non-terminal. The right-hand side of the
production identifies a set of non-terminals and to-
kens that the non-terminal on the left-hand side can
reduce to. A single non-terminal could have a number
of choices of reductions. In this case, each reduction is
separated by the symbol “|”. Tokens are productions
that reduce only to a single terminal (they are there-
fore only one step away from being terminals them-
selves). In RIDDLE’s case, terminals always reduce
to a string. The terminal that a token reduces to is
specified separately from the grammar definition in
the token definition file.

The following simple grammar is equivalent to the

regular expression (a)*b, or any number of a’s followed
by a single b (i.e., b, ab, aab, etc).
Grammar Definition

START: B

| A START ;

Token Definitions

A: llall
B: llbll

RIDDLE always begins with the first production
rule that is given. All possible syntactically correct
sentences must begin from this production. In this ex-
ample, the production that defines the non-terminal
START is the starting production. When reducing
the non-terminal START, the data generator has a
choice of picking either the production rule that re-
sults in token B (in the example above), or the pro-
duction rule that results in the token A followed by the
non-terminal START. The data generation component
uses a repeatable random number generator to choose
between the production choices that it faces. Addi-
tionally, RIDDLE provides a means of weighting the
choice of production rules. This probability is spec-
ified by adding a weight to the end of a production.
The START production could be written as:

START: B 1
| A START 3 ;

This grammar definition indicates that the chance of
non-terminal START reducing to A START is 3 times
more likely then it reducing to B. Or in other words,
there is a 75% chance that it will reduce to A START
and a 25% chance that it will reduce to B.

When the grammar-based data generation compo-
nent is called upon to produce syntactically correct
data it begins with the starting production. It then
chooses productions at random (taking into account
the probabilities that were added) until all of the non-
terminals have been reduced to tokens. For example,
the grammar above might produce the string of tokens
AAAAB. The final step of the process is to reduce the
tokens to their values. In our example, A reduces to
the string “a” and B reduces to string “b”, giving us
the string “aaaab”. The data that is produced will
be syntactically correct with respect to the grammar
that was used to create it.

RIDDLE allows the user to specify that a token
reduces to either a string literal, or a function that
returns a string literal. In the previous example, to-
ken B reduced to the string literal “b”. The user
could specify that token B reduce to the function



Grammar
Definition

Token
Definition

Grammar-based Input Generation

Figure 2: Grammar-based input generation. This component of the RIDDLE architecture permits intelligent
black-box testing using anomalous input. The data generation program uses the grammar of a program to generate
syntactically correct, albeit anomalous input, for the program under test. Core input generation functions are

called from the data generation library of RIDDLE.

call RandomFileName (). This function could return
a string that would be used in place of the token B
(e.g., the choices of file names that were mentioned
earlier). This is how RIDDLE is able to generate data
that will serve as anomalous program input. The func-
tions that can be used in the reduction of a token make
up the data generation library. This library will con-
tain functions that reduce to numerous user-specified
strings that can be used for testing purposes.

RIDDLE is designed to test two types of applica-
tions: those that take input from the command line,
and those that take streams of data as input. The
former class of applications includes many commonly
used operating system utilities. Examples of such
Unix utilities include the cp, 1s, man, and ps com-
mands. Windows NT examples include mode, tree,
subst, and format. Applications that rely on streams
of data include Web servers (httpd), ftp servers, ftp
clients, 1pr, and grep.

A simplified example of testing the UNIX utility cp
can be demonstrated. This grammar definition only
accounts for a small subset of the command’s func-

tionality, but it is useful for illustrative purposes.
Grammar Definition

START: SP LOW_F START
| SP LOW_P START
| SP FILE_NAME FILE_NAME ;
Token Definition
LOW_F: n—fn
LOW_P: "-p"
FILE_NAME: GenerateFileName()
SP: " "

This grammar specification will provide for the pro-
duction of an input string that consists of any number
of -f’s and -p’s followed by two strings produced by
the GenerateFileName () function. The input strings
that are produced could then be used in test cases.
The following are some test cases that RIDDLE might
produce:

cp -p oaisud aoisudf
cp -p -f -p —p <existing file>



<existing directory>
cp -f -p <open file>
<extremely long buffer of characters>

These test cases are syntactically correct usages of
the cp command, combined with anomalous data. If
the anomalous data that is supplied by the data gener-
ation library results in undesirable application failure,
then a weakness in the robustness of the application
has been detected.

5 Experimental analysis

The RIDDLE architectures shown in Figure 1 and
Figure 2 have been implemented in a prototype tool
for experimentation. RIDDLE has been used to test
GNU Win32 software. The GNU software was selected
partially based on the results from the Fuzz analy-
sis [8]. In the Fuzz analysis, the GNU software fared
the best in robustness testing compared to other com-
mercial implementations of similar utilities. Because
GNU tools are written and maintained by world-class
programmers, this software should serve as the base-
line of how robust good software can be. The study,
however, is not comprehensive. Further research will
investigate other software that runs on the NT plat-
form. The GNU software tested are: 1ls, rm, mkdir,
rmdir, tcsh, cat, cp, and chmod.

RIDDLE tests each program using only its known
external interface. For each different test run, RID-
DLE can be customized to use a different number of
iterations, argument lengths, and argument content.
Using the grammar-based input generation, RIDDLE
can also intelligently test the program using anoma-
lous, but syntactically correct, input data.

For each program tested, an input set was gen-
erated. Each input set was then varied along with
the two independent variables (length and content)
in order to get variation with the 3-tuple input set
(parameter-set, length, content). The length variable
was set to seven different values representing the num-
ber of bytes in input: 0, 10, 100, 512, 1024, 4096, and
8192. The content was varied according to: English
alphabet characters, printable ASCII characters, and
the full ASCII character set.

For the eight different programs chosen, a total of
16 parameter sets were created. The independent vari-
ables for each set were varied giving 21 unique test
runs (7 length values * 3 content values) per param-
eter sets. Thus, 336 test runs (21 * 16) were created.
Each test run consisted of a 100 iterations that varied
the random content according to the random genera-
tors. Thus a total of 33,600 different test cases were
run on the software.

After running the experiments, the resulting data
was post-processed by indexing the data according to
various fields such as (application, content) and (appli-
cation, length). The results from the post-processing
were then analyzed to detect any pattern present in
the error codes that resulted from the testing.

Figure 3 shows the taxonomy of failures used for
analyzing the results of the robustness testing. The
classification of failures resulting from the experi-
ment were divided into executions that terminated
and those that did not. Processes that did not termi-
nate were caught by a timeout in RIDDLE and clas-
sified as hung processes. Executions that terminated
were classified as those that terminated abnormally,
and those that terminated normally. Of the latter,
these are further sub-divided into applications that re-
ported an error condition on exit, and those that did
not.

5.1 Summary of results

As stated earlier, the results from the experiments
were analyzed for failure classification. This analysis
consisted of examining and classifying the exit codes
and errors resulting from the application execution.
The purpose of the analysis was to find significant
patterns relating to the appearance of invalid error
conditions.

From the results obtained, 23.41% of the test runs
ended with the applications exiting abnormally with
system error conditions, 1.55% of the applications
hung (the timeout was 15 seconds), and 11.51% of
the applications exited silently with no errors. In the
latter condition, the applications accepted anomalous
input without either crashing or without signaling an
error. From a purely robustness standpoint, this con-
dition may be desirable to permit continued opera-
tion (particularly in applications where high availabil-
ity is essential). However, the lack of an error code
may indicate a latent error condition that may man-
ifest itself otherwise such as in flawed outputs that
are trusted. The rest of the test runs ended with the
applications exiting normally after signaling an error
condition (through the use of exit codes).

Correlating different control variables, the analy-
sis shows a relationship between the length of the in-
put and the abnormal termination of the applications.
The analysis found that as the length of the gener-
ated input parameters increased, the probability of
the application terminating abnormally increased as
well. This effect reached a plateau at length 4096.
Thus, there was not a significant difference between
the results achieved with a 4 kilobyte string and those
with an 8 kilobyte input. On the other hand, none of



Failure C asses

Non-terninating (hung)
processes

Term nating processes

Exited abnormally

Exited normally

Error condition No error condition

inexit code

Figure 3: Taxonomy of failures. This figure shows a taxonomy of failures developed from analyzing the outputs
of the robustness testing of software running on the Windows NT platform. Processes that terminate abnormally
create system error conditions. Processes that exit normally exit either with an error code or fail silently.

the tested applications terminated abnormally when
the parameter length was 0, 10 or 100 bytes.

A similar, though not identical, trend was noticed
in regards to the content of the generated parame-
ters. None of the applications terminated abnormally
when the generated inputs consisted of only the al-
phabet (a-z, A-Z). The abnormal terminations were
divided almost equally between parameters generated
using only printable ASCII, and those using the full
character set, with the printable ASCII strings get-
ting a slightly higher (though not significant) rate of
abnormal terminations.

6 Conclusions

This paper describes an environment and approach
to testing Windows NT software for robustness to un-
expected, anomalous input. The importance of ro-
bustness testing was established by prior research on
Unix-based systems using Fuzz and Ballista testing
environments. To our knowledge, RIDDLE is the first
research tool to be applied outside of the operating
system vendor to testing the robustness of NT sys-
tems.

The grammar-based input generation component
gives RIDDLE the unique capability to generate intel-
ligent (i.e., syntactically correct) input that is anoma-
lous just the same. This capability gives the ability
to black-box test software in a manner that can stress
test and exercise its functions more fully than ran-
dom black-box testing techniques. The objective of
this research is to develop a robustness testing envi-
ronment for Windows N'T systems to identify potential
robustness gaps in software that runs on Windows NT
systems.

To date, RIDDLE has been applied to the GNU
Win 32 utilities. A taxonomy of failures was developed
that allowed classification of the failure conditions that
resulted from the robustness testing. The analysis
showed that nearly one-quarter of the test runs ended
with abnormal terminations with system error con-
ditions. The conclusions that can be drawn from this
result are that even this well-maintained software writ-
ten by software experts around the world is not han-
dling anomalous inputs completely robustly. Another
significant result from the analysis showed that the ap-
plications fared worse when the input length increased



up to 4 kilobytes in length.

Future research will involve exploring robustness
gaps to determine the potential to be exploited into
security intrusions. In addition, more analysis us-
ing the grammar-based input generation component,
more analysis of other NT software including network
servers, Windows graphical interfaces, operating sys-
tem functions, dynamically linked libraries, and COM
components. Further development in RIDDLE will
develop a menu-driven interface for RIDDLE for en-
abling easy set-up of experiments for testing NT soft-
ware.

References
[1] Edupage Editors. Air force thinks push-pull tech-
nology too risky. RISKS Digest, 19(57), January
25 1998.

[2] D. Farmer and E.H. Spafford. The cops secu-
rity checker system. In USENIX Conference Pro-
ceedings, pages 165-170, Anaheim, CA, Summer
1990.

[3] D. Farmer and W. Venema. Improving the secu-
rity of your site by breaking into it. Available by
ftp from ftp://ftp.win.tue.nl/pub/security
/admin-guide-to-cracking.101.Z, 1993.

[4] Louis Freeh. Domestic law enforcement and
electronic civil defense. In Proceedings of the
5th Info WarCon, September 1996. Presentation,
September 6.

[5] C. Klaus. Internet security scanner. Available by
ftp from ftp://ftp.iss.net/pub/iss, 1995.

[6] P. Koopman, J. Sung, C. Dingman, D. Siewiorek,
and T. Marz. Comparing operating systems using
robustness benchmarks.

[7] B.P. Miller, L. Fredrikson, and B. So. An em-
pirical study of the reliability of UNIX utilities.
Communications of the ACM, 33(12):32-44, De-
cember 1990.

[8] B.P. Miller, D. Koski, C.P. Lee, V. Maganty,
R. Murthy, A. Natarajan, and J. Steidl. Fuzz re-
visted: A re-examination of the reliability of UNIX
utilities and services. Technical report, University
of Wisconsin, Computer Sciences Dept, Novem-
ber 1995.

[9] D.R. Safford, D.L. Schales, and D.K. Hess. The
TAMU security package: An ongoing response to
Internet intruders in an academic environment.

[10]

In Proceedings of the Fourth Useniz UNIX Secu-
rity Symposium, pages 91-118, Santa Clara, CA,
October 1993.

Gen. John J. Sheehan. A commander-in-chief’s
view of rear-area, home-front vulnerabilities and
support options. In Proceedings of the Fifth
InfoWarCon, September 1996. Presentation,
September 5.



	An Approach for Analyzing the Robustness of Windows NT Software
	1 Introduction
	2 Prior art
	3 Analyzing the robustness of Windows NT software
	4 Grammar-based robustness testing
	5 Experimental analysis
	6 Conclusions
	References

	Table of Contents

