
An Avenue for High Confidence Applications in the 21st Century

Timothy W. Kremann William B. Martin
Frank Seaton Taylor

ftimk, bradm, frankt g@sundown.ncsc.mil

National Security Agency
9800 Savage Road Suite 6718

Fort George G. Meade, Maryland 20755-6718
410.854.6917

fax: 410.854.6939

Point of Contact: Timothy W. Kremann

Type: Paper

February 12, 1999

Abstract

Ensuring that an implementation has certain desired properties in the past has meant the incorporation of an
overly expensive and time consuming process. The push to avoid this expense has resulted in the denigration
of costly formal methods. However, formal tools are now beginning to emerge that make cost effective high
confidence developments possible. In addition, techniques for concealing aspects of formal methods within
an application designers/programmers development tools are allowing application engineers to acquire high
confidence in their application’s implementation without becoming proficient at formal methods, making formal
methods eminently practical. Based on these developments and tangible results, the design and implementation
of future high confidence applications is promising.

The vision which will be described in this paper is based on a unifying theory that allows all aspects of
software engineering to be handled within a single formal framework. As motivation, recent successes of the
application of this formal framework will be described. Furthermore, this paper will introduce readers to the
vision and supporting technology by looking at three levels of knowledge capture and reuse: blocks, designs,
and domains.

Moreover, it is our hope that formal methods will be a significant addition to the software engineer’s toolbox
and become common place for security and safety critical developments. Although the ideas outlined in this
paper are not necessarily new, they are, however, embodied in a practical and evolutionary implementation.
This paper, therefore, will describe a vision of how this technology could paveAn Avenue for High Confidence
Applications in the 21st Century.



1 Introdu ction

Ensuringthat an implementation hascertain desired propertiesin thepast hasmeant theincorporationof an overly
expensive and time consuming process. The push to avoid this expense has resulted in the denigration of costly
formal methods. However, formal tools are now beginning to emerge that make cost effective high confidence
developments possible. In addition, techniques for concealing aspects of formal methods within an application
designers/programmers development toolsare allowing application engineers to acquire high confidence in their
application’simplementation without becoming proficient at formal methods, making formal methodseminently
practical. Based on these developments, and tangibleresults, thedesign and implementation of futurehigh confi-
dence applicationsispromising.

The vision which wil l be described in thispaper is based on a unifying theory that allows all aspects of software
engineering to be handled within a single formal framework. As motivation, recent successes of the appli cation
of this formal framework wil l be described. Furthermore, this paper wil l introduce readers to the vision and
supporting technology by looking at three levels of knowledgecapture and reuse: blocks, designs, and domains.

Asavehiclefor understandingthisvision, theSPECWARE1 environment and itsevolutionwil l betraced. Formally,
SPECWARE isasystem for writing,composingand refiningspecifications. Thisisanalogoustoassembly language
in computer science. However, as it is with assembly language so it is here, building applications in SPECWARE

is tedious at best. In order to displace this tediousness, analogous to high-level languages in computer science,
Designware was envisioned. Designware allows a designer to apply complex combinationsof the basic building
blocks which occur repeatedly in various designs in order to develop structures and solutions. These structured
developments can then be collected and used at the next level of knowledge capture in an environment called
Application-ware. At this level, Application-waretakes in a problem description and generates a solution using
knowledgeand constraintsalready captured in thesystem. Thiseffectively hides theformal underpinnings. Thus
SPECWARE and Designwareprovide afirm foundation for Application-warefront-ends, providinga user friendly
front-end to thedesign and implementation of problem specific high confidence applications.

It is our hope that formal methods, especiall y those embodied in SPECWARE and its follow-on systems, will
be asignificant addition to the software engineer’s toolbox and become common place for security and safety
criti cal developments. The ideas in SPECWARE are not necessaril y new, they are, however, being embodied in a
practical vision. This paper, therefore, wil l describe avision of how this technology could pave An Avenue for
High ConfidenceApplicationsin the21st Century.

2 SuccessStory

The interplay between generalit y and individualit y, deduction and construction, logic and
imagination—this is the profound essence of live mathematics. Generall y speaking, such a devel-
opment wil l start from the concrete ground, then discard ballast by abstraction and rise to the lofty
layers of thin air wherenavigation and observation are easy; after thisflight comes thecrucial test of
landing and reaching specific goals in the newly surveyed low plains of individual realit y. In brief,
theflight into abstract generalit y must start from and return again to theconcrete and specific.

—Richard Courant

Beforeproceeding with theabstract theoretical underpinningswhich support thevision and technology suggested
in the introduction of this paper, it seems both motivational and instructional to begin by discussing a recent

1SPECWARE isa registered trademark of Kestrel Development Corporation.



successrelated to theappli cationof theformal framework to beelaborated in thesectionsthat follow. Specificall y,
Motorola’sdevelopment of a Mathematicall y Analyzed Separation Kernel (MASK) providesavery clear view of
the relevance of the SPECWARE technology in the design and implementation of high confidence applications.
Let’sbegin thisexamination by answering thefollowing questionsbefore highlighting theMASK project:

2.1 What are separation kernels?

Operating system research has concentrated on organizing basic operating system functions into a collection
called a kernel. The kernel presents abstractionsof the fundamental resource management mechanisms to other,
less primitive, service providers. In operating system implementations that attempt to provide a basis for secure
information processing, thekernel software iscarefull y constructed and evaluated. To aid theevaluation process,
thekernel functionsare implemented as relatively small programsthat are independent of one another.

Moreover, a separation kernel is charged with the criti cal task of providing separation among process spaces by
manipulating theprotection features of thesystem. In [6], John Rushby states that a separation kernel creates “an
environment which is indistinguishable from that provided by a physicall y distributed system: it must appear as
if each regime is a separate, isolated machine and information can only flow from one machine to another along
knownexternal communicationslines”. Figure1 providesapictorial view of separation in aphysicall y distributed
system. It highlightsRushby’ssuggested environment of separation given that the boxes and arrows are separate
physical entities, providing aclear view that theonly influence exerted on theprocessing insideonebox isdueto
thewires that connect it to other boxes.

Box 1

Box 2

Box 3

Box 4

Figure 1: Physical Separation

This view becomes somewhat more clouded when the functionality of these boxes and arrows is implemented
inside a single box placed in the context of an operating system and hardware. Figure 2 provides a view of this
context and thepossibiliti esof unintentional informationflow dueto theplatformsubstrate. Thistypeof informa-
tion flow isoften referred to as a covert channel. That is, a mechanism which isused to establish communication
between two entities, where themechanism was not intended to be used for communication.

2.2 Why areseparation kernelsdesirable?

The primary benefit of a separation kernel in criti cal systems is derived from the kernel’s abilit y to confine pro-
cesses, data, and resources in different information domains. In this instance, the separation kernel serves as the



Task 1

Task 2

Task 3

Task 4

Platform Substrate: OS, hardware

Possible flow of
information due

to OS state

Figure 2: SingleBox Implementation—Covert Channel[5]

ultimatesecurity policy enforcement function by constraining all use of the basic information system resources.
This roleof theseparation kernel iscriti cal to thedevelopment of high assurance security products.

Another benefit to criti cal systemsprovided by aseparation kernel architectureisthesimplificationof thesecurity
evaluation. As previously described, a separation kernel explicitl y describes the communication between tasks
which are allowed. With this in mind, the security evaluator need only examine the known communication lines
between thetasks being evaluated, thereby limiting thecostly evaluation of theentiresystem.

2.3 TheMathematically Analyzed Separation Kernel Project

TheNational Security Agency set out in 1997 to formally construct akernel which wouldregulatecommunication
between processes based on a separation policy, namely a separation kernel. It is to this end that the National
Security Agency in conjunction with Motorola SSTG outlined the development of a separation kernel with the
useof theformal methodology supported by the SPECWARE system.

Theprimary objectiveof theMASK project wasto formally construct aseparation kernel that could beused in the
development of secureembedded systems. In an effort to formally construct such aseparation kernel thefollowing
major tasks were outlined and completed: (1) the development of a security architecture; (2) the development of
an abstract description of a separation kernel; and (3) formal implementation of thisabstract description.

Upon completion of this initial prototype development by Motorola SSTG and NSA, Motorola extended this
initial design, developing an extended separation kernel which is currently being employed in Motorola’sSmart
Card Technology. More recently, Motorola has made additional extensions to this separation kernel which has
been introduced into Motorola’sAdvanced Infosec Machine(AIM).

Moreover, AIM isa high speed, high assurance crypto-modulethat can serve as aplatform for many secure com-
municationsapplications, including Type1 encryption services. MASK, therefore, offerscomplete separation on
board theAIM chip, providing confidence that an operation by oneentity running under thecontrol of AIM can-
not influence another entity running under the control of AIM , unless communication between thetwo entities is
explicitl y allowed in theseparation policy—guaranteeing separation of all data providing for multi-level security
on theAIM chip!



3 Blocks

Solving a problem is similar to building a house. We must collect the right material, but collecting
thematerial isnot enough; a heap of stonesisnot yet ahouse. To construct thehouseor thesolution,
we must put together thepartsand organizethem into a purposeful whole.

—GeorgePolya

SPECWARE, under development at Kestrel Institute in Palo Alto, California, is an environment for the specifi-
cation and formal development of software with its primary objective being the correct development of entire
systems. In the language of Polya, SPECWARE is the mechanism which enables builders to organize building
blocks (specifications) into a purposeful whole. It achieves this goal by incorporating ideas from mathematical
logic which help to integrate several notionsin software engineering. More specificall y SPECWARE provides for
theformal composition of specifications and softwarecomponentsand therefinement of specifications to code.

Within SPECWARE a specification is described in logic and can describe problems, architectures, programs, data
structures, and application domains. In addition SPECWARE provides a composition operator which enables a
user to composespecificationsfromseveral smaller specifications, and to describeexactly how each of thesmaller
specificationsrelates. For example, a specification for arraysof integerscan be constructed using the SPECWARE

tool by composing component specifications for arrays and integers.

Next, softwaredevelopment isaccomplished in SPECWARE by refining onespecification intoanother. Refinement
is a process in which all the elements of one specification are represented in terms of another. For example, if
a specification for li sts is refined into a specification for arrays, every operation on li sts is described in terms of
operationson arrays. In addition, refinement can beapplied to thedevelopment of system architectures, thedesign
of algorithms, and the selection of data structures. Each refinement has an expli cit representation in SPECWARE,
and refinementscan bemanipulated by thesystem. A completerefinement may also beregarded asahistory of the
system design process. The SPECWARE system, with its utili zation of refinement, has capabiliti es for generating
many desirable target implementations. Currently available target implementationsare Lisp and C++.

Hence, the SPECWARE system which provides the aforementioned specification and refinement capabiliti es for
generatingspecific implementationsfromhigh level specifications, alongwith itscompositioncapabilit y, provides
thenecessary mechanisms for constructing a solution froma heap of specifications.

In an effort to improvethereader’sview of thebasic buildingblocksof theSPECWARE system and itsmechanisms
for organizing them into apurposeful whole let’s takea look at a recent effort in thearea of Java security.

Beginning in October of 1997, the National Security Agency initiated a research effort with Kestrel Institute to
exploretheapplication of the SPECWARE technology in thedevelopment of reliableJava applications. Thiseffort
began by addressing the need for a high confidence Java bytecode verifier. Within the Java Virtual Machine
(JVM), thebytecodeverifier performsstatic and dynamic checks. Thestatic checks insurethat theclassdefinition
can be parsed to yield well-formed code. The dynamic checks verify type safety and insure that local variables
and object instancesare initiali zed beforeuse for all possibleexecution pathsof a method.

The approach which was followed in the development of thisJava bytecode verifier was to formalize the verifier
as a constraint satisfaction problem on lattices. Therefore, the main work of building SPECWARE specifications
for the verifier centered around the development of the JVM lattice. The JVM lattice describes the information
that the bytecode verifier maintains at each program point. In addition to formalizing the JVM lattice, transfer
functions, class files, constraints, and thesolution to aset of constraintswere formalized.[3]

To provide for a better examination of the building blocks of SPECWARE and its apparatus for manipulating the
same, lets take a closer look at the development of the JVM lattice. The JVM lattice used in the JVM bytecode



development was done in a very structured manner, building upon very rudimentary specifications (such as lists,
stacks, sets, arrays, partial-orders, booleans, etc.) that reside in the SPECWARE library. Utili zing this library
of specifications and SPECWARE’s composition capabiliti es, more complex specifications were built, such as,
primitive-semilattice, reference-semilattice, judgments, assumptions, and assertions.[4] Figure 3 depicts, essen-
tiall y, the structure of the JVM lattice development which was carried out in SPECWARE. This effort illustrates
thepractical use of SPECWARE’s basic building blocksand composition mechanisms in the development of high
confidence applications.

Assertions

Assertion
semilattice

Primitive
semilattice

Reference
semilattice

Base
semilattice

Assumptions

Assumption
semilattice

Judgments

Stack
semilattice

Variable
semilattice

Local
semilattice

Global
semilattice

JVM
semilattice

SPECWARE Library

Figure 3: JVM Lattice Development

4 Designs

To see what is general in what isparticular and what ispermanent in what is transitory is the aim of
scientific thought.

—Alfred North Whitehead

In the previous section, the process of refinement was presented as the process in which all elements of one
specification are represented in terms of another. This view of refinement provides an expressive setting for



applying a library of abstract reusable refinements to a specification. Therefore, the goal of Designware is to
provide the designer with a library of abstract reusable refinements and automated operations to complete his
design. To date, refinements in Designware have centered upon design knowledgefor algorithms, datatypes, and
optimizations. It is the view of the designers at Kestrel Institute that other types of design knowledge can be
captured in a similar fashion. In fact, the next section of this paper wil l outline a view of exploiting domain-
specific design knowledge for a designers domain in general, and specificall y for the planning and scheduling
domain. For now, let’sconcentrate on design knowledgefor algorithmswhich wil l reside within the Designware
environment and explore how it wil l beapplied toward thedesign of high confidence systems.

At the heart of the application of design knowledge is an idea developed in the early 1990’s by Doug Smith of
Kestrel Institute called the classification approach.[7] The classification approach solves the exact problem of
constructing refinements of a requirements specification. The effect of thisclassification approach is to constrain
the design by reducing the set of possible implementations. In an effort to be productive in the application of
design knowledge, Designware must facilit ate the development of organized libraries of abstract and reusable
refinements, including a facilit y for their application by the designer. First, organization within a library of
refinements is necessary, and is traditionall y organized into a taxonomy. This taxonomy provides an ordering of
how refinements increasingly constrain the design. In examining algorithm design knowledge, Kestrel Institute
hasdeveloped an extensive taxonomy. This taxonomy isprovided below in Figure4.[8]

Divide
and

Conquer

Problem
Theory

GS-CSP

Constraint
Satisfaction

Complement
Reduction

Reduction
Structure

Integer
Linear

Programming

Linear
Programming

Network
Flow

Assignment
Problem

Transportation
Problem

Global
Structure

Local
Structure

Problem
Reduction
Generators

Local
Poset

Structure

Local
Monotone

Deflationary

Local
Semilattice
Structure

GS-Horn-CSP

Figure 4: Algorithm Design Taxonomy



Now, with an extensive algorithm design taxonomy, and the foundational idea of classification, a process for in-
crementall y constructing arefinement hierarchy can beachieved. Doug Smith coined this incremental refinement
of therequirementsspecification as ladder construction.[7] Figure5 depictstheladder construction, providingfor
a view of generic ladder design, where DT’s are the hierarchical design specifications, and the S’sare therefined
requirementsspecifications.

DTi

DTi+1

DTi+2

DTi+3

Si

Si+1

Si+2

Si+3

Figure 5: Ladder Construction

To solidify these thoughts, let us examine an exemplary problem where incremental construction of a refinement
hierarchy isutili zed in thedevelopment of an algorithm. The problem is that of placing k queenson achessboard
so that no queen can capture another, the well-known Queens problem. Moreover, this ladder construction de-
velopment wil l providea broader view of theapplication of design knowledgethan merely algorithm knowledge.
Thisexample wil l incorporatethe application of datatypeand optimization knowledge, as well.

Observing the aforementioned ladder construction strategy, a depiction of the Queens specification refinement is
presented in the graphical progression outlined in Figure 6. Figure 6(a) depicts the classification of the Queens
problem in the form of a global-search solution. Global search is the process of repeatedly extracting, splitting,
and eliminating sets of candidate solutionsuntil no sets remain to be split. (Binary search and backtracking are
well known examples of global search.) Additionall y, the bottom rung of the ladder in Figure 6(a) shows the
additionof constraintsto thedesign theory. Thisadditional information comes in theform of derived filterswhich
have theeffect of removing infeasiblesolutionsfrom thesearch space.

Next, Figure 6(b) shows the conditioning of the constructed queens global-search algorithm. The conditioning
operation, in effect, prepares the specification for an optimization design choice called finite differencing. In
this case the act of conditioning amounts to the grouping of expressions. This section of the ladder transforms
the queens global-search algorithm constructed in the last step of Figure 6(a) into a form presentable for finite
differencing.



General
Problem

Specification

Global
Search

Specification

Global
Search

with Filters
Specification

Global Search
with Filters and
Conditioning
Specification

Queens
Problem

Specification

Queens as
Global
Search

Specification

Queens as
Global Search

with Filters
Specification

Queens
Conditioned
Specification

G.S. with Filters,
Conditioning, and
Finite Differencing

Specification

Queens
with Finite

Differencing
Specification

(a)
Algorithm

Design

(b)
Datatype
Design

(c)
Optimization

Design

Figure 6: Queens Ladder Construction

Finall y, in Figure6(c) therefinement of theconditioned global-search algorithm for theQueens problem iscom-
pleted with the application of finitedifferencing. Finitedifferencing is an optimization technique in which recur-
ring expensive calculationsare replaced by inexpensive incremental equivalents.

Although the example provided above is exemplary in nature it does have a more practical basis. The Queens
problemisthefocusof an ongoinghigh performancecomputing research initiative. Theobjectiveof thisinitiative
isto demonstrate theuseof theclassification approach in thedesign of solutionsfor high performance computing
benchmarks. This technology, which provides automated support for the formal derivation of programs, will
exploretherapid and extensiveexploration of thedesign spaceof alternativesolutionsand problem variants. This
initiative wil l be driven by developing and applying this classification technology to selected problems from a
set of high performance computing benchmarks and the Baskett Benchmark.[1] The problems which have been
chosen wil l follow two classesof algorithms, backtracking and sorting. Taskswil l includebacktracking (Queens),
integer sorting, and theBaskett Benchmark.

The intent of this effort is to demonstrate “ local robustness” in the sense that the classification technology can
support thegenerationof avariety of implementationsfor each of thebenchmark problemsand can handlevariants
of each benchmark problem.



5 Domains

The wholeof science isnothing more than a refinement of everyday thinking.

—Albert Einstein

The essence of providing tools that everyday thinkers can use is to provide a tool which communicates with
them in their language. Furthermore, every mature discipline of science and engineering has developed precise
notationsthat facilit atethecommunication of essential conceptsbetween experts. These notations, which include
control diagrams and processflow charts, are concise, unambiguous, and may beeffectively reviewed by experts.
As such, they represent the most likely source of high qualit y, authoritative specifications in complex systems.
Domain-specific languages(DSLs) arecomputer languagesdesignedto captureand extend thispowerful, essential
communication pattern of experts.

Therefore, since thepractitioner in aproblem domain isan expert in hisdomain languagea tool that understands
thesamelanguagebecomesextremely useful. Inaddition, theknowledgecaptured throughdomainanalysis, using
toolssuch as SPECWARE and Designware, which requireboth domain experts and knowledgeengineers, is made
available to thedomain practitioner in histerms, thereby hiding thecomplex formal methodsunderpinning of the
tools.

Thefact that formal methodsarehidden isessential in making thesetoolsuseful in practice. Many timesaformal
description of aproblem in an esoteric languagehasbeen useful for understanding theproblem but provided little
to theactual developers. Many practitionersrefuseto look at formulathat contain abackward “E” (9) or an upside
down “A” (8). Even though the formalization may have cleared up some ambiguities in the requirements, many
insights that the formal methods specifier obtained are not in a form that the practitioner can use. This can be
changed by expressing theresults in theterms of thepractitioner.

Additionall y, domain knowledge, once captured, enables the building of solutions to problems in domains using
famili ar terms. The knowledge of how to build solutions from problem descriptions is developed during the
analysis of that domain, accomplished by complex and cumbersome formal analysis. However, this analysis,
oncedonecan bereused acrossproblemswithin that domain. Hence thiscomplex work can beput into areusable
and automated form, reducing theneed for thepractitioner to understand thisanalysis.

Automation works because the difficult domain analysis provides the basis for an appli cation generator, and is
not redone by the practitioner. The input to the domain analysis includes the expertise of domain practitioners
and the generic knowledge of computer science and systems engineering. The output of the domain analysis is
an application generator. The application generator is then available to the practitioner who inputsaspects of his
particular problem in termsof thedomain and theoutput is, then, an application that wil l generatesolutionsto his
problem. Expressed another way, the application generator is the embodiment of the knowledge of the problem
domain and supporting knowledge and is reused across applications. The application output of the generator is
an application that produces a solution to a specific problem within the domain. With this narrative in mind, a
working example developed by Kestrel Institute, called Planware[2], wil l be discussed to further illustrate this
approach.

The problem domain for Planware is planning and scheduling. The domain language is in terms of resources,
tasks, reservationsand their attributes. In thisinstance, userssimply choosethetypeof resourcesfrom ataxonomy
of resource types. Users are then presented with a spreadsheet where they can select constraintson the tasks and
resources. Each of thefieldsisrestricted to appropriatevalues. Without theuser reali zing it, Planwareconstructsa
formal specification from thespreadsheet. Thisdomain-specific specification of theusersproblemis then used by
Planwareas thestart of an ladder construction as seen in theprevioussection, all without further user input. The
output is a domain specific scheduler that when given a set of scheduling requests wil l output a valid schedule.



This may seem mundane, however the domain analysis embodied allows Planware to generate schedulers that
produce solutions where previous schedulers have failed, and more impressively, generates schedulers that are
orders of magnitude faster. The spreadsheet in Figure 72 provides a view of the typical constraint choices to be
made by theuser after having selected ’transportation resource’ from thetaxonomy.

Parameter Lower Bound Exact Value Upper Bound

Start Time Task.release Finish - Duration Task.pick-up

Resource-type Multi-choicemenu
Sum of task

req’d resources
Instantaneous

demand
min-cap Sum of task demands max-cap

Duration 0
Finish - Start,

Dist(orig, dest)/speed

Finish Time Task.ead Start + Duration Task.due-date

Max-capacity r.r-type.max-cap

Separation 0 r.r-type.separation

Origin Task.poe

Speed r.type.speed

Figure 7: Transportation ResourceSpreadsheet for Constraining Reservations

Planware wil l use this input and its domain knowledge to produce a scheduler. Al l of the knowledge about
schedulers isautomaticall y used in generating that schedule, a great example of reuse.

The significance of this development environment is that a complex formal process and a treasury of domain
knowledge was used to produce Planware. This domain specific knowledge is reusable across most scheduler
problem domains. Moreover, thebeauty of Planware is that thepractitioner did not have to learn formal methods
to use thistool.

Planware is not the only example of domain specific languages that have achieved success within academe and
industry. However, it is the view of the writers that the abilit y to formalize problem domains using the same
underlying methodology of knowledge capture and reuse that is presented in the SPECWARE and Designware
technology, wil l allow for easier reuseof generic knowledgeacross domains.

Finall y, effortsarecurrently underway to develop ataxonomy of abstract and reusablespecificationsfor thedesign
and implementation of cryptographic service providers (CSP). The hope is to formalize theCSP domain through
formal knowledgecapture, and then to providean expressive domain specific interface to theCSP implementor.

2This spreadsheet iscourtesy of Kestrel Institute.



6 Conclusions

It is clear that there are certain applicationswhere failure is simply too costly and investment in formalization at
the outset is mandated. Indeed, the technologies presented here create the greatest benefit if they are used at the
very earliest stages of design. The successes herein and their requisite rigorousanalyses of problem domains are
indicativeof thetrack we should follow.

Moreover, it isreasonabletoexpect that thecost and intellect requiredto usethesetoolswil l decreasedramaticall y,
while the size and complexity of future systems wil l steadily increase. The combination of these forces will
eventuall y lead to outgrowths of the ideas in this paper being integrated into the development process, making
designers unaware that their tools rely upon advanced mathematical underpinnings. Furthermore, designers will
come to depend heavil y on toolsdescended from theonesmentioned herein.

References

[1] Michael Beeler, Beyond theBaskett benchmark, Computer ArchitectureNews (1984).

[2] Lee Blaine, Limei Gilham, Junbo Liu, DouglasR. Smith, and Stephen Westfold, Planware—domain-specific
synthesis of high-performance schedulers, Proceedings of the Thirteenth Automated Sortware Engineering
Conference(Los Alamitos, CA), IEEE Computer Society Press, October 1998, pp. 270–280.

[3] A. Coglio,A. Goldberg, and Z. Qian, Toward aprovably-correct implementationof theJVM bytecodeverifier,
Tech. Report KES.U.98.5, Kestrel Institute, August 1998.

[4] Kestrel Institute, SPECWARE specification of theJVM bytecodeverifier, August 1998, Contract MDA904-98-
C-B448.

[5] Motorola Space and Systems Technology Group, Mask top level specifications, November 1996, Contract
MDA904-96-C-089.

[6] J. M. Rushby, Design and verification of secure systems, Proceedingsof theEighth Symposium on Operating
SystemsPrinciples, vol. 15, December 1981.

[7] D. R. Smith, Classification approach to design, Tech. Report KES.U.93.4, Kestrel Institute, Palo Alto, Cali-
fornia, 1993.

[8] , Mechanizing the development of software, Calculational System Design: Proceedings of the Inter-
national Summer School Marktoberdorf (Amsterdam) (Ed. M. Broy, ed.), ASI, NATO, IOSPress, 1999.


	An Avenue for High Confidence Applications in the 21st Century
	Introduction
	Success Story
	Blocks
	Designs
	Domains
	Conclusions
	References

	Table of Contents

