An Avenue for High Confidence Applications in the 21st Century

Timothy W. Kremann William B. Martin
Frank Seaton Taylor

{timk, bradm, frankt t@sundown.ncsc.mil

National Security Agency
9800 Savage Road Suite 6718
Fort George G. Meade, Maryland 20755-6718
410.854.6917
fax: 410.854.6939

Point of Contact: Timothy W. Kremann

Type: Paper

February 12, 1999

Abstract

Ensuring that an implementation has certain desired properties in the past has meant the incorporation of an
overly expensive and time consuming process. The push to avoid this expense has resulted in the denigration
of costly formal methods. However, formal tools are now beginning to emerge that make cost effective high
confidence developments possible. In addition, techniques for concealing aspects of formal methods within
an application designers/programmers development tools are allowing application engineers to acquire high
confidence in their application’s implementation without becoming proficient at formal methods, making formal
methods eminently practical. Based on these developments and tangible results, the design and implementation
of future high confidence applications is promising.

The vision which will be described in this paper is based on a unifying theory that allows all aspects of
software engineering to be handled within a single formal framework. As motivation, recent successes of the
application of this formal framework will be described. Furthermore, this paper will introduce readers to the
vision and supporting technology by looking at three levels of knowledge capture and reuse: blocks, designs,
and domains.

Moreover, it is our hope that formal methods will be a significanitiattto the software engineer’s toolbox
and become common place for security and safety critical developments. Although the itheas! au this
paper are not necessarily new, they are, however, embodied in a practical and evolutionary implementation.
This paper, therefore, will describe a vision of how this technology could pav&venue for High Confidence
Applications in the 21st Century

1 Introdu ction

Ensuring that an implementation has certain desired propertiesin the past has meant the incorporation of an overly
expendve and time consuming process The push to avoid this expense has resulted in the denigration of costly
formal methods However, formal tools are now beginning to emerge that make cog effedive high confidence
developments possibe. In addition, techniques for conceding aspeds of forma methods within an applicaion
desigrers/progammers development tools are all owing applicaion enginea's to agquire high confidence in their
applicaion’simplementation without beaoming proficient at formal methods making formal methods eminently
pradicd. Based on these developments, and tangible results the design and implementation of future high confi-
dence applicaionsis promising.

The vision which wil | be described in this paper is based on a unifying theory that al ows al aspeds of software
engineaing to be handled within a single formd framework. As motivation, recent successe of the applicaion
of this forma framework will be described. Furthermore, this paper will introduce readers to the vision and
supportirg technology by looking at three level s of knowledge cgpture and reuse: blocks, designs and domains.

Asavehiclefor understanding thisvision, the SPEQWARE! environment and itsevolutionwil | betracel. Formaly,
SPECQWARE isasysem for writing, composirg and refining spedfi caions Thisisanaogousto asembly language
in computer science However, as it iswith assembly language so it is here, building applicaionsin SPECWARE
istedious at best In order to displace this tediousress analogous to high-level languages in computer science
Designware was envisioned. Designware all ows a designer to apply complex combinations of the basic building
blocks which occur repeaedly in various designs in order to develop structures and solutions These structured
developments can then be colleded and used at the next level of knowledge cepture in an environment cdled
Applicaion-ware. At thislevel, Applicaion-waretakes in a problem description and generates a solution using
knowledge and constiints already captured in the sysem. This effedively hides the formal underpinnings Thus
SPECWARE and Designware provide afirm foundation for Applicaion-warefront-ends providingauser friendly
front-end to the design and implementation of problem spedfic high confidence applicaions.

It is our hope that formal methods espedaly those embodied in SPECWARE and its foll ow-on systems, will
be asignificant addition to the software enginea’s toolbax and become common place for seaurity and safety
criticd developments. The ideas in SPECWARE are not necessarily new, they are, however, being embodied in a
pradicd vision. This paper, therefore, will describe avision of how this technology could pave An Avenue for
High Confidence Applicationsin the 214 Century.

2 Success Story

The interplay between generality and individuality, deduction and construction, logic and
imagination—thisis the profourd essence of live mathematics. Generaly spe&ing, such a devel-
opment will start from the concrete ground then discard ball ast by abstradion and rise to the lofty
layers of thin air where navigation and observation are easy; dfter thisflight comes the crucial test of
landing and reading spedfic goals in the newly surveyed low plains of individual redity. In brief,
the flight into abstrad generdity must start from and return again to the concrete and spedfic.

—Richard Courant

Before procealing with the abstrad theoreticd underpinningswhich suppot the vision and technology suggested
in the introduction of this paper, it seems both motivational and instructiona to begin by discussirg a recent

1specwaREisaregstered trademak of Kedrel Developmen Corporation.

succes rel ated to the appli cation of the formd framework to be elaborated in the sedionsthat foll ow. Spedfically,
Motorola'sdevelopment of a Mathemaicdly Analyzed Separation Kernel (MASK) provides avery clea view of
the relevance of the SPECWARE tedhnology in the design and implementation of high confidence applications.
Let’s begin this examination by answering the foll owing questions before highlightingthe MASK projed:

2.1 What are separation kernels?

Operating sysem reseach has concentrated on organizing basic operating sysem functions into a colledion
cdled akernel. The kernel presents abstradions of the fundamental resouice management mechanisms to other,
less primitive, service providers. In operating system implementations that attempt to provide a basis for seaure
information processing the kernel softwareis carefully constricted and evaluated. To aid the evaluation process,
the kernel functionsare implemented as relatively small programs that are independent of one another.

Moreove, a separation kernel is charged with the criticd task of providing separation among proces spaces by
manipulating the protedion feaures of the system In [6], John Rushby statesthat a separation kernel creaes “an
environment which is indistinguistable from that provided by a physicdly distributed sysem: it mugt appea as
if eat regime is a separate, isolated madine and information can only flow from one madine to another along
known external communicationslines’. Figure 1 provides apictorial view of separation in aphyskdly distributed
sysem. It highlights Rushbys suggested environment of separation given that the boxes and arrows are separate
physicd entities, providing aclea view that the only influence exerted on the processng inside one box isdueto
thewiresthat conred it to other boxes.

Box 1

/
\

Box 2

Box 3

Box 4

Figure 1. Phystd Separation

This view beames somewhat more clouded when the functionality of these boxes and arrows is implemented
inside a single box placed in the context of an operating system and hardware. Figure 2 provides a view of this
context and the possbiliti esof unintentional information flow due to the platform substrate. Thistype of informa-
tion flow is often referred to as a covert channel. That is, a medanism which is used to establish communicaion
between two entities, where the mechanism was not intended to be used for communication.

2.2 Why are separation kernels desirable?

The primary benefit of a separation kernel in criticd systemsis derived from the kernel’s ability to confine pro-
cesses, data, and resources in different information domains. In thisinstance the separation kernel serves as the

\ Possible flow of

‘ Task 2 information due
/ 7 to OS state
/ .
Task 3 \ / -
\ / ’
\\
N \ / Task 4
N \
N /
\ 7/ =

[Platform Substrate: OS, hardware]

Figure 2: Single Box Implementation—Covert Channel[5]

ultimate seaurity policy enforcement function by constraining all use of the basic information system resources.
Thisrole of the separation kernel is criticd to the development of high assuence seaurity prodicts.

Another benefit to criti cd sysems provided by a separation kernel architedure isthe simplifi cation of the seaurity
evaluation. As previoudly described, a separation kernel explicitly describes the communicaion between tasks
which are all owed. With thisin mind, the seaurity evaluator need only examine the known communicdion lines
between the tasks being evaluated, thereby li miting the costly evaluation of the entire system.

2.3 TheMathematically Analyzed Separation Kernel Project

The National Seaurity Agency set out in 1997 to formall y constrict akernel which would regulate communication
between processes based on a separation policy, namely a separation kernel. It is to this end that the National
Seaurity Agency in conjunction with Motorola SSTG outlined the development of a separation kernel with the
use of the formal methodolog suppored by the SPECWARE sydem.

The primary objedive of theMASK projed wasto formally constrict a separation kernel that could beused in the
development of seaure embedded sysems. In an effort toformall y constrict such aseparation kernel thefoll owing
major tasks were outlined and completed: (1) the development of a seaurity architedure; (2) the development of
an abstrad description of a separation kernel; and (3) forma implementation of this abstrad description.

Upon completion of this initial prototype development by Motorola SSTG and NSA, Motorola extended this
initial design, developing an extended separation kerndl which is currently being employed in Motorola's Smart
Card Technology. More recantly, Motorola has made additiona extensiors to this separation kernel which has
been introduced into Motorola's Advanced Infosec Madine (AIM).

Moreover, AlM is a high speed, high assuance crypto-modulethat can serve as aplatform for many seaure com-
munications applications including Type 1 encryption services. MASK, therefore, offers complete separation on
board the AIM chip, providing confidence that an operation by one entity running under the contrd of AIM can-
not influence another entity running under the contrd of AIM, unless communicaion between the two entitiesis
explicitly all owed in the separation policy—guarantedng separation of all data providing for multi-levd seaurity
on the AIM chip!

3 Blocks

Solving a problemis similar to building a house. We mug colled the right material, but colleding
the material isnot enough ahea of storesisnot yet ahous. To constrict the hous or the solution,
we mug put together the parts and organize them into a purpogful whole.

—George Polya

SPECWARE, under development at Kestrel Ingtitute in Palo Alto, California, is an environment for the spedfi-
caion and forma development of software with its primary objedive being the corred development of entire
sysems. In the language of Polya, SPECWARE is the mechanism which enables builders to organize building
blocks (spedficdions) into a purpogful whole. It achieves this goal by incorporting idess from mathematicd
logic which help to integrate several notiorsin software engineaing. More spedficdly SPECWARE provides for
theformal composition of spedficaions and software components and the refinement of spedficaionsto code.

Within SPECWARE a spedfication is descibed in logic and can descibe problems architedures programs data
structures, and application domains. In addition SPECWARE provides a composition operator which enables a
usea to compose spedfications from several smdl er spedfications, and to descibe exadly how ead of thesmal er
spedficationsrelates. For example, a spedficaion for arrays of integers can be constricted using the SPECWARE
todl by composirg comporent spedficaions for arrays and integers.

Next, software devel opment isacompli shed in SPECWARE by refining one spedfi caion into another. Refinement
isa proces in which dl the elements of one spedfication are represated in terms of another. For exanyple, if
a spedficaion for listsis refined into a spedfication for arrays, every operation on lists is described in terms of
operationson arrays. In addition, refinement can be applied to the development of sysem architedures, thedesign
of algorithms and the sdedion of data structures Ead refinement has an expli cit representation in SPECWARE,
and refinements can be manipulated by the sysem. A completerefinement may aso be regarded as ahistoty of the
sydem desgn process The SPECWARE system, with its utili zation of refinement, has capabiliti es for generating
many desirable target implementations Currently avail able target implementations are Lisp and C++.

Hence the SPECWARE system which provides the aforementioned spedficaion and refinement cgpabiliti es for
generating spedfic implementationsfrom highlevel spedficaions, alongwith itscompasition cgpability, provides
the necessary medhanisms for constructing a solution from a heap of spedfications

In an effort toimprove thereader’ s view of the basi ¢ building blocks of the SPECWARE system and its medanisms
for organizing them into a purposdul whole let’stake alook a areceant effort in the area of Java seaurity.

Beginning in October of 1997, the Nationa Seaurity Agency initiated a reseach effort with Kestrel Institute to
explorethe application of the SPECWARE technology in the development of reli able Java applicaions Thiseffort
began by addressirg the neal for a high confidence Java bytecde verifier. Within the Java Virtua Madine
(JVM), the bytecode verifier performs static and dynamic chedks. The static cheds insure that the class definition
can be parsed to yield well-formed code. The dynamic chedks verify type safety and insure that locd variables
and objed instances are initi ali zed before use for al possble exeaution paths of a method.

The approadch which was foll owed in the development of this Java bytecode verifier was to formali ze the verifier
as a constraint satisfadion problem on lattices. Therefore, the main work of building SPECWARE spedfications
for the verifier centered arourd the development of the VM lattice The VM lattice describes the information
that the bytemde verifier mantains at ead program point. In addition to formalizing the VM lattice transfer
functions class fil es, constiaints, and the solutionto a set of constrintswere formali zed.[3]

To provide for a better examination of the building blocks of SPECWARE and its apparatus for manipulating the
same, lets take a closer look at the development of the VM lattice The VM lattice used in the VM byteade

development was dore in avery structured manner, building upan very rudimentary spedfi caions (such as lists,
stadks, sets, arrays, partia-orders, booleans etc.) that reside in the SPECWARE library. Utili zing this library
of spedfications and SPECWARE’s compasition cgpabiliti es, more complex spedfications were built, such as,
primitive-semil attice reference-semil attice, judgments assunptions and assertions[4] Figure 3 depicts, esen-
tialy, the structure of the VM lattice development which was caried out in SPECWARE. This effort illu strates
the pradicd use of SPECWARE's basic building blocks and compaosition medhanisms in the development of high

confidence applicéions.
SPECWARELibrary

Primitive Reference
o o Judgments
semilattice semilattice
Bgse. Assertions Assumptions
semilattice
Stack Variable Assertion Assumption
semilattice semilattice semilattice semilattice
Local Global
semilattice semilattice
JVM
semilattice

Figure 3: JVM Lattice Development

4 Designs

To see what is genera in what is particular and what is permanent in what is transitory isthe aim of
scientific thought.

—AIlfred North Whitehead

In the previous sedion, the process of refinement was presented as the process in which al eements of one
spedfication are represented in terms of another. This view of refinement provides an expressve setting for

applying a library of abstrad reusable refinements to a spedfication. Therefore, the goa of Dedgnware is to
provide the designer with a library of abstrad reusable refinements and automated operations to complete his
design To date, refinements in Designware have centered upan design knowledge for agorithms, datatypes, and
optimizations. It is the view of the designers at Kestrel Ingtitute that other types of design knowledge can be
captured in a similar fashion. In fad, the next sedion of this paper will outline a view of exploiting domain-
spedfic design knowledge for a designers domain in general, and spedficdly for the planning and scheduling
domain. For now, let’s concentrate on design knowledge for algorithmswhich wil | reside within the Designware
environment and explore how it will be applied toward the design of high confidence sysems.

At the heat of the applicaion of design knowledge is an idea developed in the ealy 1990s by Doug Smith of
Kestrd Ingtitute cdled the classification approach.[7] The classfication approach solves the exad problem of
constricting refinements of a requirements spedfication. The effed of this classification approac isto constiain
the design by reducing the set of possibe implementations In an effort to be prodictive in the applicaion of
design knowledge, Designware must fadlit ate the development of organized libraries of abstradt and reusable
refinements, including a fadlity for their application by the designer. First, organization within a library of
refinements is necessary, and is traditionally organized into a taxonamy. This taxonamy provides an ordering of
how refinements increasingly constrain the design. In examining algorithm design knowledge, Kestrel Ingtitute
has developed an extengve taxonamy. Thistaxonamy is provided below in Figure 4.[8]

Problem
/ e
Constraint Global Local Reduction
Satisfaction Structure Structure Structure
Integer Linear Local Divide Problem Complement
Linear . GS-CSP Poset and Reduction pen
Programming Reduction

Programming Structure Conquer Generators

N/ / N\

Local Local

Nﬁf\gxrk Monotone Semilattice
Deflationary Structure
Transportation GS-Hormn-CSP
Problem
Assignment
Problem

Figure 4: Algorithm Design Taxonamy

Now, with an extensve algorithm design taxonamy, and the foundetional idea of classification, a process for in-
crementall y constructing arefinement hierarchy can be achieved. Doug Smith coined thisincremental refinement
of the requirements spedficaion as ladder construction.[7] Figure 5 depictstheladder constriction, providing for
aview of generic ladder dedgn, where DT's are the hierarchicd dedgn spedfications, and the S's are the refined

requirements spedficaions.

Figure5: Ladder Constriction

To solidify these thoughtslet us examine an exemplary problem where incremental constriction of a refinement
hierarchy is utilized in the development of an algorithm. The problemisthat of pladng k queens on a chesshoard
so that no queen can capture another, the well-known Queens problem. Moreover, this ladder constriction de-
velopment wil | provide a broader view of the applicaion of design knowledge than merely agorithm knowledge.
This example will incorporate the applicaion of datatype and optimizaion knowledge, as well.

Obsrving the aforementioned ladder constriction strategy, a depiction of the Queens spedficaion refinement is
presented in the graphicd progresson outlined in Figure 6. Figure 6(a) depicts the clasdfication of the Queens
problem in the form of a global-seach solution. Global seach isthe process of repededly extrading, splitting,
and eliminating sets of candidate solutions until no sets remain to be split. (Binary search and badtradking are
well known examples of global seach.) Additionaly, the bottom rung of the ladder in Figure 6(a) shows the
addition of constraintsto the design theory. Thisadditional information comesin the form of derived filterswhich
have the effed of remaving infeasbl e solutions from the seach space.

Next, Figure 6(b) shows the conditioning of the constricted queens global-search agorithm. The conditioning
operation, in effed, prepares the spedfication for an optimizaion desgn choice cdled finite differencing. In
this case the ad of conditioning amounts to the groupirg of expressions This sedion of the ladder transforms
the queens global-seach agorithm constricted in the last step of Figure 6(a) into a form presentable for finite
differencing.

General N e Queens
Problem >« Problem
Specification , N Specification
— i m = . ,’'_Qu_e'er?s'ag'_
Global . . @)
Global /
Search Algorithm
Specification :) Search Design
R4 N Specification
© 7 Global T\ ., " Queensas
Search y > z Global Search
with Filters . . with Filters
Specification 7 N Specification
" Global Search '\ , T
with Filters and ’ : Queens (0)
e Conditioned Datatype
Conditioning :) Specification Design
Specification 7/ N P 9
" G.S. with Filters, ;7 'Queens” ©
Conditioning, and y 3 z with Finite T
e Optimization
Finite Differencing | . Differencing Desian
Specification / N, Specification 9

Figure 6: Queans Ladder Constriction

Finaly, in Figure 6(c) the refinement of the conditiored global-seach algorithm for the Queens problem is com-
pleted with the application of finite differencing. Finite differencing is an optimization technique in which reaur-
ring expensive cdculations are replacel by inexpensive incremental equivalents.

Although the example provided above is exemplary in nature it does have a more pradicd basis The Queens
problemisthefocus of an ongoirg high performance computing reseach initi ative. The objedive of thisiniti ative
isto demonstiate the use of the classification approacd in the design of solutiorsfor high performance computing
benchmarks. This technology, which provides automated suppot for the formal derivation of programs, will

exploretherapid and extensve exploration of the design space of adternative solutiorsand problem variants This
initiative will be driven by developing and applying this clasgficaion technology to seleded problems from a
set of high performance computing benchmarks and the Baskett Benchmark.[1] The problems which have been
chosen will foll ow two classes of agorithms, backtrading and sorting. Tasks wil l include badtradking (Queens),
integer sorting and the Baskett Benchmark.

The intent of this effort is to demonstiate “locd robustress’ in the sense that the classificaion technology can
suppotthegeneration of avariety of implementationsfor eat of the benchmark problenmsand can handlevariants
of ead benchmark problem.

5 Domains

The whole of science is nothing more than arefinement of everyday thinking.
—Albert Einstein

The esence of providing tools that everyday thinkers can use is to provide a tod which communicates with
them in their language. Furthermore, every mature discipline of science and engineaing has developed predse
notationsthat fadlit atethe communicaion of essntial concepts between experts. These notations, which include
contrd diagrams and process flow charts, are concise, unambiguous and may be effedively reviewed by experts.
As such, they represent the most lik ely source of high quality, authoritative spedficaions in complex systems.
Domain-spedficlanguages (DSLs) are computer languages designed to capture and extend thispowerful, esential
communicaion pattern of experts.

Therefore, since the praditioner in aproblem domain is an expert in hisdomain language atod that understands
the samelanguage beaomes extremely useful. In addition, the knowledge cgptured throudh domain analysis, using
tools such as SPEcwARE and Designware, which require both domain experts and knowledge engineds, is made
avail able to the domain praditioner in histerms, thereby hiding the complex formal methods underpinning of the
tools.

Thefad that forma methods are hidden isessentia in making these tools useful in pradice Many times aforma
description of aproblem in an esoteric language has been useful for understanding the problem but provided little
totheadual developers. Many praditionersrefuseto look at formulathat contain abadkward “E” (3) or an upside
down “A” (¥). Even thouch the formalization may have cleaed up some ambiguities in the requirements, many
insights that the forma methods spedfier obtained are not in a form that the praditioner can use. This can be
changed by expressng the results in the terms of the praditioner.

Additionally, domain knowledge, once captured, enables the building of solutiorsto problemsin domains using
familiar terms. The knowledge of how to build solutions from problem descriptions is developed during the
analysis of that doman, acomplished by complex and cumbersome formd anaysis. However, this anaysis,
once dore can be reused aaoss problemswithin that domain. Hence this complex work can be put into areussble
and automated form, reducing the need for the praditioner to understand thisanalysis.

Automaion works becaise the difficult doman analysis provides the bags for an applicaion generator, and is
not redore by the praditioner. The input to the domain analysis includes the expertise of domain praditioners
and the generic knowledge of computer science and sysems engineaing. The output of the domain anaysis is
an applicaion generator. The applicaion generator is then avail able to the praditioner who inputs aspeds of his
particular problemin terms of the domain and the output is, then, an application that wil | generate solutiorsto his
problem. Expressed another way, the application generator is the embodiment of the knowledge of the problem
domain and supportirg knowledge and is reused acoss applicaions The applicaion outpu of the generator is
an application that produces a solution to a spedfic problem within the domain. With this narrative in mind, a
working example developed by Kestrel Institute, cdled Planware[2], will be discussed to further illu strate this
approad.

The problem domain for Planware is planning and scheduling. The domain language is in terms of resouices,
tasks reservationsand their attributes. In thisinstance, users simply choos thetype of resources from ataxonomy
of reurce types Uses are then presated with a spreadshed where they can sded constraints on the taks and
resources. Each of thefiddsisrestricted to approprite values. Without the user redizing it, Planware constrictsa
formd spedfication from the spreadshed. Thisdoman-spedfic spedfication of the use's problemisthen used by
Planware as the start of an ladder constriction as seen in the previous sedion, all without further user input The
outpu is a domain spedfic scheduler that when given a set of scheduling requests will outpu a valid schedule.

This may seem mundane, however the domain analysis embodied al ows Planware to generate schedulers that
prodice solutiors where previous schedulers have fail ed, and more impressvely, generates schedulers that are
orders of magnitude faster. The spreadshed in Figure 72 provides a view of the typica constiint choices to be
made by the user after having seleded 'transporttion resource from the taxonamy.

Parameter Lower Bound Exact Value Upper Bound
Start Time Tak.release Finish - Duration Task pick-up
Resourcetype Multi-choice menu S,Lm of task
req'd resources
Instantaneous min-cap Sum of tak demands max-cap
demand
, Finish- Start,
Duration 0 Dist(orig, dest)/sped
Finish Time Tak.ead Start + Duration Task.due-date
Max-capadty r.r-type.max-cap
Separation 0 r.r-type.s@aration
Origin Task poe
Speed rtype.speel

Figure 7: Transporttion Resouice Sprealsted for Consteining Reservations

Planware will use this input and its domain knowledge to prodiwce ascheduler. All of the knowledge about
schedulersis automaticdly used in generating that schedule, a grea example of reuse.

The significance of this development environment is that a complex forma process and a treasuty of domain
knowledge was used to prodwce Planware. This domain spedfic knowledge is reusable acoss mog scheduler
problem domains. Moreover, the beauty of Planware is that the praditioner did not have to learn formal methods
to use thistool.

Planware is not the only example of domain spedfic languages that have achieved succes within acaleme and
industry. However, it is the view of the writers that the ability to formali ze problem domains using the same
underlying methodology of knowledge capture and reuse that is presented in the SPECWARE and Desgnware
technology, will allow for easier reuse of generic knowledge acoss domains.

Finally, effortsare currently underway to develop ataxonamy of abstraa and reusable spedficaionsfor thedesign
and implementation of cryptographic service providers (CSP) The hope isto formali ze the CSP domain through
formd knowledge capture, and then to provide an expressive domain spedfic interface to the CSP implementor.

2This spreadsheetis courtesy of Kestrel Institute.

6 Conclusions

Itisclea that there are certain applications where failureis smply too costly and investment in formalization at
the outset is mandated. Inded, the technologies presented here crede the greaest benefit if they are used at the
very ealiest stages of design The successes herein and their requisite rigorous analyses of problem domains are
indicaive of the tradk we shout foll ow.

Moreover, itisreasonableto exped that the cost and intell ed required to usethese toolswil | dearease dramaticdly,
while the size and complexity of future systems will steaily incresse. The combination of these forces will
eventudly leal to outgrowths of the ideas in this paper being integrated into the development process making
designers unaware that their toolsrely upaon advanced mathematicd underpinnings Furthermore, desigrers will
come to depend heavily on tools descended from the ones mentioned herein.

References

[1] Michad Beder, Beyond the Basket benchmark, Computer Architecure News (1984).

[2] LeeBlaine, Limei Gilham, Junio Liu, Douglas R. Smith, and Stephen Westfold, Planware—domain-spdfic
synthesis of high-performance schedulers, Procealings of the Thirteenth Automaed Sortware Engineeing
Conference (Los Alamitos, CA), IEEE Computer Scciety Press October 1998 pp. 270-280.

[3] A.Coglio, A. Goldberg, and Z. Qian, Toward aprovably-corred implementation of the JVM bytecode verifier,
Tedh. Report KES.U.98.5, Kestrdl Institute, Augug 1998.

[4] Kestrd Ingtitute, SPECWARE spedfication of the JVM bytemde veiifier, Augud 1998 Contrad MDA904-98-
C-B448.

[5] Motorola Space and Sysems Technology Group Mask top levd spedfications, November 1996 Contrad
MDA904-96-C-089.

[6] J. M. Rushly, Desgn and verification of sewre sygems Proceadings of the Eighth Sympaosium on Operating
Systernrs Principles vol. 15, Decenfoer 1981.

[7]1 D. R. Smith, Classiftation approach to design, Tech. Report KES.U.93.4, Kestrel Institute, Palo Alto, Cali-
fornia, 1993.

[8] , Mechanizirg the devdopment of softwae, Calculationa System Dedgn: Procealings of the Inter-

nationa Summer Schod Marktoberdorf (Amsterdam) (Ed. M. Broy, ed.), ASI, NATO, IOS Press 1999.

	An Avenue for High Confidence Applications in the 21st Century
	Introduction
	Success Story
	Blocks
	Designs
	Domains
	Conclusions
	References

	Table of Contents

