
Keywords: CDSA, Cryptoki, CAPI, port

Abstract
The Common Data Security Architecture (CDSA)

is a general security service architecture which has
been standardized by the Open Group. This paper
compares the CDSA CAPI to another well known
low-level CAPI, RSA’s PKCS #11 (Cryptoki).

Both CDSA and Cryptoki are low-level interfaces
which satisfy criteria established by the NSA’s CAPI
Team. However, CDSA provides a security services
infrastructure to several categories of security ser-
vices, and therefore provides more auxiliary services
to manage this more complex architecture. Addition-
ally, Cryptoki provides a more direct interface to
hardware cryptographic tokens. This paper maps calls
in the APIs, describes differences between the two
and how these may be handled, and considers porting
issues.

1 Introduction
What Is a CAPI and Why Is It Useful?

A Cryptographic Application Programmer Inter-
face, or CAPI, is a set of calls which allow an applica-
tion programmer to access cryptographic
functionality. A high-level CAPI allows a program-
mer with little cryptographic knowledge to request an
operation (e.g. encrypt) without requiring the pro-
grammer to supply details on how the operation will
be performed, whereas a low-level CAPI allows a
more cryptographically-aware programmer to specify
cryptographic details (e.g. algorithm and mode) by
passing them as parameters to the CAPI call. The
NSA CAPI Team has established CAPI evaluation
criteria, and recommended a suite of CAPIs [3].

CAPIs are advantageous for several reasons. First,
a correct, readily-available cryptographic library may
be used by any application which conforms to the
CAPI. Second, cryptographic software or hardware
may be modified without changing any application
code. Third, placing cryptographic code in a separate
library decreases the likelihood that application bugs
will illegally access sensitive cryptographic data (e.g.

keys) or cryptographic code.1 Even stronger protec-
tion is provided if the application and cryptographic
code are run by separate processes. The strongest pro-
tection guarantees are provided if the system uses a
secure operating system, as described in “Operating
System Importance” on page 3.

General Introduction: CDSA and Cryptoki
The CSSM API and Cryptoki both define low-level

interfaces to cryptographic functionality; they require
applications to specify cryptographic algorithms and
attributes when requesting a cryptographic operation.
However, these CAPIs have several differences.

First, the CDSA specification defines interfaces to
cryptographic, data storage, certificate, and trust policy
libraries. In contrast, Cryptoki defines only an interface to
cryptographic functionality. Therefore, CDSA is necessar-
ily richer in auxiliary services (like module management),
because more auxiliary services are needed to manage its
more complex architecture.

Second, CDSA’s CSSM API is designed to use either
software or hardware Cryptographic Service Providers

(CSPs)2. However, Cryptoki was originally designed to
directly interface with a hardware cryptographic token
(although it can interface to a software cryptographic mod-
ule as well), and allows the application programmer more
direct interaction with hardware tokens. “API Differences”
on page 7 explores these differences further.

Introduction to CDSA
The CDSA specification was initially defined by Intel

Architecture Labs, and has received the support of many
influential companies including IBM, Netscape, TIS,
Motorola, Sun, and Hewlett-Packard [4]. In October 1997,
the CSSM API was added to the CAPI suite recommended
by the NSA Cross Organizational CAPI Team [3], and
CDSA was recommended for use in the Defense
Advanced Research Projects Agency’s (DARPA’s)
Advanced Information Technology Services Reference
Architecture (AITS RA)[2]. In January 1998, CDSA was
adopted as a commercial standard by the Open Group.

A complete description of the Common Data Security
Architecture (CDSA) is given in [1]. CDSA provides a
layered infrastructure which allows applications to access
security functionality, and allows system administrators to

1.Vulnerabilities still exist if the cryptographic code is in a
separate library. E.g., the CryptokiC_GetFunctionList

call returns function pointers which point directly to mem-
ory in the cryptographic library. The Cryptoki specifica-
tion states that this memory should not be written to, but
modification is possible if the library is writable. [5]
2.“CSP” refers to a cryptographic module implemented by
any vendor and plugged into CDSA. This should not be
confused with Microsoft’s use of “CSP” as a module
which provides cryptographic services for the Microsoft
Cryptographic API package.

A Comparison of CDSA to Cryptoki
Ruth Taylor (rct@epoch.ncsc.mil), National Security Agency

February 16, 1999

“add-in” modules of their choice which implement the
security functionality. The Common Security Services
Manager (CSSM) manages the add-in modules. The
introduction below progresses downward, describing
first the application programmer interfaces (APIs), then
the CSSM, and finally the service provider interfaces.
Figure 1, extracted from [1], shows the CDSA architec-
ture.

The CSSM API Specification [1] defines interfaces
by which application programmers can access Crypto-
graphic Service Provider (CSP) libraries, trust policy

(TP) libraries, certificate libraries (CL), and data storage
libraries (DL). CDSA also defines an optional key
recovery API. Applications can access calls not defined
by the CSSM API, but implemented by a service pro-
vider, via theCSSM_PassThrough mechanism.

The CSSM manages add-in modules. It verifies the
authenticity and integrity of service module sources
before adding them to the CDSA environment, main-
tains a registry of the current add-in modules and their
capabilities, caches user security contexts (which con-
tain parameters to calls and possibly sensitive informa-
tion), and responds to application queries concerning the
availability and functionality of service provider mod-
ules. System administrators install and uninstall the
security service modules using the CSSM Module Man-
agement Functions.

The CSSM includes Cryptographic, Trust Policy,
Certificate, and Data Storage Service Managers, which
map application service request calls to the lower level
service provider calls, thus providing applications with
service. These managers perform built-in security
checks as well. Additional “Elective Module Managers”
can be created to dynamically extend the system by add-
ing new types of services, which are also managed by
the CSSM.

The add-in CSPs, certificate libraries, trust libraries,
data storage libraries, or elective add-in libraries must
conform to the service provider interfaces which are
lower-level than the CSSM API. CDSA’s Service Pro-
vider Interface (SPI) for CSPs is defined in the CSSM

SPI Specification [1]. CSPs can be implemented in hard-
ware or software, and perform cryptographic operations
like encryption, decryption, digital signing, key genera-
tion, random number generation, or computing message
digests for data. CSPs plug into the Cryptographic Ser-
vices Manager. CSPs can optionally support login/
logout capability and privileged operations for CSP
administrators. Because the model for administration
can vary widely among CSPs, any such functions can be
provided as PassThrough functions and are not part of
the normal interface.

Applications using the CSSM API may either pre-
allocate output memory buffers, or request that the CSP
allocate this memory (in application memory-space) for
the application. In the former case, an API call
(CSSM_QuerySize) allows the application to obtain the
necessary size for an output buffer given a particular
function call; the application can then allocate this space
and call the function. In the latter case, when the appli-
cation establishes a session with the CSP (using the API
call CSSM_ModuleAttach), it passes the CSP a table of
basic memory management function pointers, and a
heap pointer for the memory-space of the application.
The CSP will then allocate memory in the application
memory-space, but the application is responsible for
freeing this memory. (The CSSM API includes the calls
CSSM_FreeInfo, CSSM_Freelist, CSSM_Free,
CSSM_GetAPIMemoryFunctions, CSSM_FreeKey,

CSSM_Free*Context 3, and CSSM_FreeMod-

uleInfo for memory deallocation.)

Introduction to Cryptoki
RSA’s Public Key Cryptography Standard (PKCS)

#11, also known as Cryptoki, is described in the PKCS
#11 Cryptographic Token Interface Standard, Version
2.01 [5]. NSA’s Cross Organizational CAPI Team rec-
ommended Cryptoki to meet the present and future
needs of NSA in October 1997 [3]. Cryptoki is used in
products such as Netscape Navigator. Cryptoki is an
API to cryptography devices, and defines a single inter-
face which applications and cryptomodules must con-
form to. Because it is simpler than CDSA, it does not
incorporate as many auxiliary services to manage its
infrastructure as CDSA.

Cryptoki has its own terminology. A “mechanism” is
a cryptographic algorithm; a “token” is a module which
uses a mechanism to perform cryptographic functions;
and a “slot” is an abstract adaptor which holds a token.
(The Cryptoki specification defines a basic set of mech-
anisms, although a compliant Cryptoki implementation
is not required to support all of these.) A “session” is a
logical connection between an application and a token.

Figure 1: CDSA Architecture

3.CSSM_Free*Context refers to the family of calls
where ‘*’ equalsMAC, Signature, KeyGen ...

Tokens can support one or more sessions. Cryptoki
mechanisms include many newly added official algo-
rithms in NSA’s MISSI suite. Token vendors can also
define their own mechanisms for use with Cryptoki, but
for interoperability, registration with RSA’s PKCS is
preferable. Tokens may define objects (defined below)
and functions as “public”, so that any user may access
them, or “private”, so that only authenticated, logged-in
users may access them.

An application using Cryptoki must perform its own
memory management. After making a Cryptoki call to
determine the required output buffer size, the applica-
tion must allocate this space before calling the function.
Note that this is different from CDSA, which provides
the application with the option of having memory allo-
cated (in the application memory-space) by the crypto-
module.

CSSM API Contexts Vs. Cryptoki Objects
CSSM API contextscontain all the information

needed to perform a cryptographic operation, like con-
text type (e.g. key exchange, signature, or digest), algo-
rithm (e.g. RSA, KEA, or MD5), and applicable
attributes (e.g. key data, initialization vector, algorithm
mode, padding, dates of validity for object, or pass-
phrase). A context handle is passed as a parameter in the
algorithm-independent CSSM CAPI calls. The CSSM
API defines cryptographic algorithm identifiers which
may be implemented by an add-in cryptographic mod-
ule.

Cryptoki objectscontain secret keys, public and pri-
vate keys, application-defined data, or certificates.
Objects are specific to algorithm and function (i.e. Cryp-
toki defines a specific structure for a DES3 secret key
object), and their definitions in the Cryptoki specifica-
tion describe the exact data format and information
needed to represent that object. Attributes indicate
which operation the objects are to be used for (encrypt,
decrypt, sign, verify, wrap, unwrap, or derive). An
object may belong to a token, in which case it may per-
sist from session to session. Or, the object may be cre-
ated for a session, and then destroyed upon closing of
the session.

Cryptoki programmers set a “mechanism” variable
to the algorithm they wish to use (e.g. DES); this vari-
able is then passed as a parameter in the algorithm-inde-
pendent Cryptoki calls. When needed, a mechanism
parameter is used to pass additional data (like an Initial-
ization Vector (IV) for an encryption algorithm).

Cryptoki objects and mechanisms together contain
the same information held by a CDSA context. Both
CSSM API context handles and Cryptoki object handles
are passed as parameters to a cryptographic call in the
CAPI, and specify details about the requested crypto-
graphic operation. Both the CDSA and Cryptoki crypto-

graphic libraries create the context or object, and return
only a handle to the application, so that the application
cannot directly manipulate the object or context.

2 Comments on CDSA and Cryptoki
Operating System Importance

Clearly, it is important to ensure that cryptomodules
and infrastructure components (e.g. CDSA’s CSSM) are
written correctly and securely. For example, it must be
verified that sensitive information is sufficiently pro-
tected (e.g. that private keys are tagged as “always sensi-
tive”, or that CSSM Module Managers do not share state
information which results in confidentiality breaches).
Additionally, an application programmer using CDSA
or Cryptoki must be sufficiently knowledgeable of secu-
rity to use the correct services and configurations to
meet his security requirements.

Even if the above concerns are addressed, a crypto-
graphic system may still be vulnerable if the operating
system upon which it is running is not secure. [6][7] A
trusted operating system can provide user level code
with confidentiality, integrity, authentication, and
assured delivery of the inter-process communication
(IPC), and confidentiality and integrity for memory and
long-term storage. (Though many examples below relate
to CDSA, Cryptoki may use either hardware or software
tokens, and therefore depends on the operating system
in the same manner as CDSA.)

Secure IPC can provide confidentiality and integrity
of data passed via IPC, identification and authentication
(I&A) of the sender and receiver of IPC, and guaranteed
delivery and invocation. Vulnerabilities may result if the
cryptographic library and the application are in separate
address spaces, and the system’s IPC is insecure. For
example, misuse or spoofing of cryptographic compo-
nents can occur; a hardware cryptomodule which
securely creates and stores keys, as well as a software
cryptomodule, may be subject to unauthorized use. Or,
the CSSM or cryptomodule could be spoofed to its
caller, and the application can be spoofed to the CSSM
or cryptomodule.

The possibility of spoofing is reduced with CDSA,
because the CSSM must provide signed manifest cre-
dentials to applications. An application may use these
credentials to authenticate the CSSM using EISL func-
tions. Additionally, if the application itself has a signed
manifest credential, it may use an EISL library to per-
form a self check, and the CSSM may check this appli-
cation. However, there is a trade-off between threat
mitigation (frequency of EISL checks) and performance
costs. In Cryptoki, the legitimacy of a token may be
established by authentication using certificates. How-
ever, if the Cryptoki cryptomodule is in user space, its
code and certificates may be modified, weakening the
confidence in the authentication.

Additionally, data passed via IPC could be subject to
unauthorized interception and modification. For exam-
ple, key data (raw or wrapped), pointers to key data, and
passphrases for key access, may be passed via IPC when
building a CDSA context, or when requesting an opera-
tion. This data could be copied and reused, or modified
by malicious parties. (Both CDSA and Cryptoki allow
keys to be protected from this threat by identifying them
as sensitive or unextractable from the cryptomodule.)
Or, a passphrase controlling cryptomodule access
passed via insecure IPC may be obtained by applica-
tions or other devices monitoring the communication
lines. [5] Plaintext could be intercepted and copied, or
modified; and ciphertext could be modified, so that the
corresponding plaintext cannot be retrieved from it.
Cryptographic operation requests and contexts could be
modified or deleted in route to the CSSM or cryptomod-
ule. And, if the CSSM Module Managers execute in dif-
ferent address spaces, then messages sharing internal
state would be sent via IPC, and these could be eaves-
dropped upon, modified, or deleted.

Finally, applications and supporting infrastructure
components depend upon the OS to prevent unautho-
rized access to data and executables in memory or long
term storage. In CDSA, malicious code or data modifi-
cation can be detected, but not prevented, by EISL
checks. These integrity checks may be performed at any
time (e.g. before each code execution or data access).
However, there is a trade-off between threat mitigation
and performance costs. (More frequent EISL checks
decrease the likelihood that maliciously modified code
will be executed before the modifications are detected.)

CDSA assumes that keys and other sensitive security
context information will be protected either by the CSP
(e.g. if the keys are “never extractable” from the CSP),
or by the application (e.g. if the keys are raw and
extractable from the CSP). However, both applications
and software CSPs run in user space, and rely on the
operating system to protect this data from unauthorized
reading, writing, or execution. Similarly, the software
cryptographic modules could be modified by unautho-
rized parties, and this code could be used before the
changes are detected by the EISL. The keys used to ver-
ify signatures of the EISL or Integrity Verification Ker-
nels (IVKs, which verify the integrity of an individual
software module) could be modified. And, the applica-
tion calls to CDSA could be modified or deleted by
malicious agents.[6]

Comparison Against NSA CAPI Criteria
The NSA CAPI Team established several criteria for

evaluating CAPIs. These include algorithm indepen-
dence (the CAPI allows an application programmer to
specify a wide range of cryptographic algorithms);
application independence (the CAPI offers services
needed by a wide variety of applications); cryptomodule

independence (the CAPI refers to a wide variety of cryp-
tomodules); MISSI support; modularity and auxiliary
services; safe programming and degree of cryptographic
awareness (the CAPI uses consistent naming conven-
tions, minimizes complexity of language features to pre-
vent unintentional programming errors, and minimizes
the amount of cryptographic expertise required of the
application programmer); and security perimeter (the
CAPI controls access to sensitive data, and does not
allow movement of sensitive data beyond the security
perimeter).[3]

Both the CSSM API and Cryptoki were found to be
algorithm independent. Calls in both APIs specify the
type of operation (e.g. encrypt, sign, verify) rather than
the specific algorithm to be used (e.g. DES, RSA), and
both CAPIs allow a system administrator or user to add
software or hardware modules which implement the
desired cryptographic algorithms. [1][3][5]

Similarly, both the CSSM API and Cryptoki were
found to be application independent, because they offer
a low-level interface to cryptographic operations, which
can be used by different applications. Both were found
to be cryptomodule independent; Cryptoki uses the
token concept to abstract the cryptomodule, and CDSA
uses the CSP to abstract the cryptomodule, and contexts
to abstract module-specific data.

The NSA CAPI Team found that both Cryptoki and
CDSA provide sufficient MISSI support. [3] The CSSM
SPI lists over seventy algorithms which may be imple-
mented by add-in cryptographic service providers,
including KEA (MISSI’s Key Exchange Algorithm),
BATON, JUNIPER, and SKIPJACK (all MISSI block
ciphers). In addition, the CSSM API is extensible; any
functionality provided by the module but not in the
CSSM SPI is accessible to applications as a
“PassThrough” function call. [1] Similarly, Cryptoki’s
Version 2.01 defines key objects and mechanisms for
KEA, BATON, JUNIPER, and SKIPJACK (all MISSI
algorithms). Additionally, token vendors using Cryptoki
may define their own mechanisms, but for inter-opera-
bility, registration with PKCS is preferable. [5]

The NSA CAPI Team found that CDSA was modu-
lar and provided sufficient auxiliary services.[3] CDSA
is very modular by design; all cryptographic, trust pol-
icy, data storage, or certificate service modules are
loaded as separate, add-in modules. The CSSM is com-
posed of the Cryptographic, Trust Policy, Data Store, or
Certificate Services Managers. Auxiliary services pro-
vided by the CSSM include dynamic module installa-
tion, attachment, and detachment; maintenance of a
registry of the current modules and their capabilities
(this registry may be queried by applications); module
integrity checks; memory management; cryptographic
context management; key generation; login/logout capa-
bility; password changing capability; callback capabil-

ity; unique ID generation; and a tamperproof counter. A
“callback” function can be defined when attaching a
CSP; this function is executed when a predefined event
occurs. Additionally, the CSSM checks the current
CSSM and CSP versions against the version needed by
applications.

Cryptoki also generally satisfies the modularity and
auxiliary services criteria. [3] Auxiliary services pro-
vided by Cryptoki include login/logout capability, call-
back capability, key generation, and random data
generation. Although Cryptoki does not provide explicit
calls for cryptomodule verification, token authenticity
can be achieved by distributing the token with a built-in,
certified private/public key pair, by which the token can
prove its identity. Users can obtain information on avail-
able mechanisms, objects, and slots. [5]

The NSA CAPI Team found that both CDSA and
Cryptoki required a cryptographically aware program-
mer, but both were rated as requiring fairly “unsafe”
programming. [3] CDSA and Cryptoki both use consis-
tent naming conventions. CDSA precedes all SPI func-
tions with the “CSP_” prefix, and all API functions with
the “CSSM_” prefix. Aside from the prefixes, functions
from the API and SPI with similar functionality have
equivalent names. Cryptoki uses unique prefixes to dis-
tinguish data types, objects, attributes, functions, return
values, and other unique features. Cryptoki objects are
always initialized to default values (which may be mod-
ified at creation time), and always contain a set of
required attributes.

With respect to complexity of language features,
CDSA describes its intended audiences as experienced
security and software architects, advanced program-
mers, and sophisticated users, who are familiar with net-
work operating systems and high-end cryptography, and
familiar with the basic capabilities and features of the
protocols they are considering. CDSA requires
advanced knowledge of the cryptographic algorithms to
be used. Similarly, Cryptoki uses C in an advanced,
object-oriented way, requiring advanced C program-
ming skills. It requires in-depth knowledge of the algo-
rithms used, and of the underlying token. Both require
the programmer to know the correct sequence in which
cryptographic calls should be made. [1][3][5]

The NSA CAPI Team found that both CDSA and
Cryptoki sufficiently enforce the security perimeter. [3]
CDSA provides several features which may enforce the
security perimeter. First, key data generated by the
CSSM_GenerateKey and CSSM_GenerateKeyPair

calls can be wrapped and/or encoded, or a reference to a
key. They may be labeled permanent or modifiable;
extractable or non-extractable from the CSP; and pri-
vate, sensitive or always sensitive.

Second, the CDSA application can only obtain a

context through calls which return a handle to the con-
text. (A context may contain sensitive information like
pointers to key structures, which are in turn obtained
from the CSSM_GenerateKey and
CSSM_GenerateKeyPair calls.) Once the context has
been created, the application can only identify the con-
text and keys through the context handle (which is
passed to the CSSM when requesting cryptographic
operations).

Third, the CSP is responsible for secure storage of
private keys; theCSSM_CSP_CreateSignatureCon-
text, CSSM_CSP_CreateAsymmetricContext,
and CSSM_CSP_CreateKeyGenContext functions all
require a “passphrase” parameter to unlock private keys,
and theCSSM_CSP_CreateDeriveKeyContext call
requires a passphrase for signature operations. The CSP
may optionally be responsible for storage of other
objects, like certificates. Persistent storage can be imple-
mented using a data storage library module, or be imple-
mented within the CSP. Lastly, the CSSM environment
is protected through module source verification using
certificates, and module code integrity checks using a
signed hash.

Cryptoki provides features which may enforce the
security perimeter as well. First, a token can define pri-
vate objects and functions, which can only be accessed
after an authenticated user login. (A token may also
define public objects and functions, which may be
accessed without login.) Second, additional protection
can be given to private or secret keys by marking them
as “sensitive” or “unextractable”. Sensitive keys must be
wrapped if they are exported from the token, and unex-
tractable keys may not be exported from the token. The
Cryptoki Specification [5] notes that if protected mem-
ory is not available to store sensitive objects, then they
may be encrypted using some derivation of a user’s PIN;
but this PIN may itself be compromised through weak-
nesses in the operating system IPC channels.

3 Mapping the Calls
This mapping considers all calls from the CSSM SPI

and Cryptoki drafts, but only calls from the Core Ser-
vices API and Cryptographic Services API from the
CSSM API. For a complete mapping between calls in
these interfaces, please see [9].

Generally, while CDSA and Cryptoki’s crypto-
graphic operation calls map one-to-one, other types of
calls have one-to-many mappings from CDSA to Cryp-
toki, because the CSSM API is a slightly higher-level
interface than Cryptoki. For example, preparing for a
cryptographic operation in CDSA requires one context
creation call, while preparing for this operation in Cryp-
toki requires several object creation calls. Another
example of a one-to-many CDSA to Cryptoki mapping
is CSSM_GetModuleInfo , described below.

Mapping the CSSM API to the CSSM SPI
The Core Functions and Utility Functions from the

CSSM Core Services API (which initialize the CSSM,
load and verify modules, handle application queries
about add-in modules, and do memory management),
and the Cryptographic Context Operations from the
CSSM CAPI (which create, retrieve, update, and free
security contexts associated with an operation) have no
analogues in the CSSM SPI. However, the CSSM API
calls CSSM_CSP_Create*Context,

CSSM_CSP_DeleteContext, CSSM_ModuleAttach ,
and CSSM_ModuleDetach may cause the CSSM to
generate a call to CSP_EventNotify in the SPI, to
inform a CSP that an event has occurred.

However, the cryptographic calls in the CSSM API
are basically equivalent to those in the CSSM SPI. Sev-
eral of the CSSM API and CSSM SPI cryptographic
calls are available in two forms: either a single call can
perform the operation, or a set of staged calls can be
used. Aside from the API’s “CSSM_” versus the SPI’s
“CSP_” prefix, the cryptographic function names are
equivalent, as are their functional descriptions.

Typically, cryptographic calls in the CSSM SPI are
passed two extra parameters, when compared to the
CSSM API: a handle to the add-in CSP which will be
used to perform “upcalls” to the CSSM for memory
management, and apointer to the cryptographic context
describing the cryptographic operation. (Contexthan-
dlesare required parameters for most API and SPI cryp-
tographic calls.)

A small number of error values returned by the
CSSM SPI and the CSSM API differ. In general, if an
error has the “CSP_” prefix, then it can be returned by
either the CSSM or the CSP, but if the error does not
have “CSP_” prefix, it will only be returned by the
CSSM. For example,CSSM_CSP_STAGED_OPERA-

TION_UNSUPPORTEDmay be returned by the CSSM
API if it finds no pointer to this function, or by a CSP if
the CSSM invokes a CSP function which does not sup-
port the form of staging requested. However,
CSSM_INVALID_CONTEXT_HANDLE will only be
returned by the CSSM, as the CSP does not manage
context handles.

The cryptographic sessions and logon functions
(logging in, logging out, and changing passwords) are
equivalent in the CSSM API and CSSM SPI, and expect
equivalent parameters. The module management func-
tions of the API only roughly correspond to those in the
SPI; the API calls are at a higher level.

The extensibility function of the CSSM API
(CSSM_PassThrough) is mapped to the extensibility
function in the CSSM SPI. Like the cryptographic oper-
ations, the function name is equivalent (with a different
prefix), as is the operational description. But, the SPI

requires two additional parameters: a handle to the add-
in CSP, and a pointer to the cryptographic context.

Mapping the CDSA Calls to Cryptoki.
The CSSM Core Functions map to the Cryptoki

General Purpose Functions because both deal with ini-
tializing, closing, or obtaining information about the
CAPI itself, and not the cryptomodules behind it. Cryp-
toki’s C_GetFunctionList call is mapped to
CSSM_RegisterServices from the CSSM Add-In
Module Interface Function Category, but it is important
to note their differences.C_GetFunctionList allows
an application to obtain a list of function pointers pro-
vided by a Cryptoki library when the library is first
loaded, whereasCSSM_RegisterServices allows a
CSP to make an upcall to the CSSM to register its func-
tion table with the CSSM (but not to provide this func-
tion table to the application). The CDSA application
then uses a module handle to indicate to the CSSM
which function table it should use.CSSM_Verify-

Components has no analog in the Cryptoki API, but
token verification is possible through other methods, as
described in “Handling Unique APIs” on page 10.

The CSSM Utility Functions did not map to Cryp-
toki, because the Cryptoki interface does not incorporate
memory management. (The Cryptoki designers pur-
posely avoided allocating memory on behalf of the
caller.)

The CDSA Cryptographic Context Operations are
mapped to the Cryptoki Object Management Functions,
because both handle parameters to cryptographic calls.
As described above, the CDSA context defines all con-
text information for the current operation (aside from
data), while Cryptoki objects define parts of the security
context. However, since both sets of functions provide
interfaces to functionality which manage the structures
which define cryptographic operations, they are mapped
to each other. For example,CSSM_CSP_Create*Con-

text maps to C_CreateObject; CSSM_GetCon-

textAttribute maps to C_GetAttributeValue

and C_GetObjectSize; and CSSM_FreeContext,

CSSM_DeleteContextAttributes, andCSSM_Del-

eteContext map toC_DestroyObject.[9]

CDSA’s cryptographic calls map to Cryptoki’s cryp-
tographic calls in a straightforward, simple manner;
many calls correspond in name and functionality. The
interfaces to cryptographic functionality defined by the
CSSM API and Cryptoki are very similar; [9] found that
88% of cryptographic calls mapped were either “equiva-
lent” or “roughly equivalent”. Both CDSA and Cryptoki
provide calls to perform cryptographic operations in
either a single call or in several staged calls. Differences
in the cryptographic APIs, as well as methods for imple-
menting calls unique to one API in the other API, are
described in “API Differences” on page 7.

CDSA’s Module Management Functions are mapped
to Cryptoki’s Slot and Token Management Functions
and Cryptoki’s Session Management Functions, because
CDSA’s CSP is roughly equivalent to the combination
of Cryptoki’s slot and token. Although CDSA’s
CSSM_ModuleInstall and Cryptoki’sC_InitToken

both perform off-line administrative initializations
needed prior to using the token in a runtime environ-
ment, they were not mapped to each other because they
perform different set-up services due to the different
runtime environments of CDSA and Cryptoki.
CSSM_ModuleAttach is mapped toC_OpenSession ,
because both establish a connection between the appli-
cation and the cryptographic module before a crypto-
graphic request is made. Similarly,CSSM_Module-

Detach is mapped toC_CloseSession , because both
close a session between the application and the crypto-
graphic module.

CSSM_ModuleInstall is not mapped to
C_InitToken, because the former simply registers the
module in the CSSM registry, whereas the latter initial-
izes a token by destroying all temporary objects (perma-
nent objects like keys built into the token will not be
destroyed), and disabling normal user access until their
PIN is set. (However,AddInAuthenticate from the
Add-In Module Interface Function Category of the SPI,
which is invoked by the CSSM after a module is loaded
and authenticates the CSSM to an add-in service mod-
ule, is mapped to Cryptoki’sC_InitToken .) Similarly,
CSSM_ModuleUninstall is not mapped toC_Close-

Session , because the former simply removes the mod-
ule from the CSSM registry, while the latter closes a ses-
sion, automatically destroys all temporary objects, and
optionally ejects the token. (A Cryptoki application can-
not specify whether the token will be ejected; the driver
writer chooses if the token will be ejected.)

The CSSM API’sCSSM_GetModuleInfo maps to
the CSSM SPI’sCSP_GetCapabilities and to sev-
eral Cryptoki functions (C_GetSessionInfo ,
C_GetSlotInfo , C_GetTokenInfo , C_GetMech-

anismInfo , C_GetMechanismList , C_GetSlot-

List, and C_GetInfo) becauseCSSM_GetModule-

Info returns in one call information which Cryptoki
returns in several separate calls. The CDSA functions
CSSM_GetHandleUsage , CSSM_GetGUIDUsage,

CSSM_GetModuleGUIDFromHandle, andCSSM_Get-

SubserviceUIDFromHandle are examples of utilities
specific to the CDSA architecture, which are not present
in the Cryptoki interface.

CDSA’s Logon Functions are mapped to Cryptoki’s
logon calls from the Session Management Function Cat-
egory. Both CDSA and Cryptoki have sessions and
optional authenticated login sequences. However, in
CDSA the CSP may set up its own model for CSP

administration, and no calls are defined for this. In
Cryptoki, tokens may optionally define private objects
and functions which require an authenticated login, and
before a normal user can login, a security officer (SO)
must initialize tokens and set a user’s PIN. Thus, CDSA
has no analog for C_InitPIN , but CSSM-

_CSP_ChangeLoginPassword maps toC_SetPIN.

CDSA defines theCSSM_PassThrough extensibil-
ity function. While no extensibility functions are explic-
itly defined in Cryptoki, calls may be added to the
Cryptoki interface. (Cryptoki does not have a complex
infrastructure, and thus does not require a call to allow
functionality to “pass through” the infrastructure.)

Both CDSA and Cryptoki provide “callback func-
tions”. Callback functions allow the application devel-
oper to pass a function pointer to the
CSSM_ModuleAttach and C_OpenSession function,
respectively. The callback function is called by the CSP
or token when particular events occur. At first glance a
callback function seems similar to the CSSM SPI’s
CSP_EventNotify ; both notify system components
that a particular event has occurred. However, a callback
function passes a message from the cryptomodule to the
application (up from the cryptomodule), while
CSP_EventNotify passes a message from the CSSM
to the cryptomodule (down to the cryptomodule).

4 API Differences
As discussed above, CDSA and Cryptoki provide

many similar calls to cryptographic functionality. (See
[9] for a complete mapping.) However, recall the two
major differences between CDSA and Cryptoki. First,
CDSA defines application interfaces to several different
security services, whereas Cryptoki was designed as an
interface to (solely) cryptographic functionality. Thus,
CDSA necessarily includes more auxiliary services,
because more services are needed to manage its more
complex architecture. Second, CDSA’s CSSM API is
designed to use either software or hardware CSPs,
whereas Cryptoki was originally designed to provide a
direct interface to hardware cryptographic tokens
(although it can handle software tokens as well). Thus,
the Cryptoki interface allows the application program-
mer to interact more directly with hardware crypto-
graphic modules. For example, if a Cryptoki token has a
protected authentication path, the Cryptoki interface
may optionally allow the user to interface this path for

authentication.4 This section further explores the differ-
ences between the APIs.

Cryptographic Calls
Generally, CDSA and Cryptoki provide similar calls

to cryptographic functionality.Tables 1 and 2 list the
cryptographic calls unique to the CSSM API and Cryp-
toki, respectively. Note, the unique cryptographic calls

do not interface to significant cryptographic functional-
ity, and some may be implemented through other means.
The interfaces to cryptographic functionality defined by
the CSSM API and Cryptoki are very similar; the full
set of mappings found that 88% of cryptographic calls
mapped were either “equivalent” or “roughly equiva-
lent”[9].

Another difference between the CSSM API and
Cryptoki interfaces is the set-up required for crypto-
graphic calls. Cryptoki always requires a one-step cryp-
tographic call to be preceeded byC_*Init , because the
C_*Init call specifies algorithm, mode, and attributes
to the token. CDSA, on the other hand, does not require
a one-step cryptographic call to be preceeded by an ini-
tialization call. The algorithm, mode, and attributes are
held in the context, which is passed to the CSP for all

(one-step or staged) cryptographic requests. (Prior to
making a cryptographic call, both CDSA and Cryptoki
require calls to the interface for context or object cre-
ation. Cryptoki typically requires parameters (e.g.
mechanisms) to be set as well.

It is important to note that cryptographic modules
are not required to implement all functionality defined
by these APIs, and both interfaces are potentially exten-
sible.

Parameters to Cryptographic Calls
Another way in which CDSA differs from Cryptoki

is the method by which application programmers spec-
ify the parameters for cryptographic operations (e.g. the
algorithm, mode, and keys). In CDSA, the only informa-
tion passed to CSSM API cryptographic calls, aside
from the cryptographic context, is the data to be oper-
ated on (e.g. plaintext or encrypted data, a signature, or
a MAC). Operations on CDSA contexts (creating, modi-
fying, retrieving, or deleting a context) are performed by
making calls to the CSSM API. For example, an appli-
cation programmer must create a separate context (using
the CSSM_CSP_Create*Context call) for each type
of operation (e.g. signature or symmetric encryption).
To change any part of a context, the programmer needs
to set values in theCSSMContextAttribute structure,
and then callCSSM_UpdateContextAttributes to
update individual attributes.

In contrast, parameters to Cryptoki cryptographic
initialization calls include not only the appropriate
object for the mechanism chosen, but also a session han-
dle, a mechanism pointer, and material to be operated on
(e.g. plaintext data, a signature, or a MAC). An applica-
tion programmer using Cryptoki must set values in a
mechanism. A session handle is returned from the API
whenC_OpenSession is called. But, similar to CDSA,
Cryptoki requires the programmer to use the Cryptoki
API to manipulate objects; the programmer creates
objects using theC_CreateObject call, and modifies
objects by calling theC_SetAttributeValue call.
Cryptoki calls also exist for retrieving a Cryptoki object,
getting attributes of a Cryptoki object, or deleting a
Cryptoki object.

CDSA’s more packaged context could prevent unin-
tentional errors by less experienced programmers, but
could also cause performance degradation when using
the API as a result of the greater interaction with the
CDSA system required. Furthermore, Cryptoki’s inter-
face allows the more experienced programmer to “mix
and match” objects and mechanisms, rather than requir-
ing the programmer to call the API to reformat these as
a context when they are to be used in the same crypto-
graphic request.

4.Although CDSA does not directly interface to hard-
ware devices, login using a protected authentication
path may be implemented as follows:
1. Call CSSM_GetModuleInfo to determine whether

the token supports a protected authentication path.
2. If so, prompt the user to use the token’s

authentication device.
3. CallCSP_Login with a NULL password.
4. Upon receiving a NULL login password, the CSP

should retrieve the password entered in step 2 from
the token’s authentication device. This method was
adapted from the PKCS #11 specification and used
by Intel’s PKCS #11 CSPs. (See “Porting Between
the CAPIs” on page 10.)

Table 1: Cryptographic Functionality Unique to
Cryptoki

• C_DigestKey: continues a multi-part digesting
operation by digesting a key

• C_**Update , where ** equalsDigestEncrypt,

DecryptDigest, SignEncrypt, or
DecryptVerify . These are the “Dual-Function
Cryptographic Functions”, which perform two
cryptographic operations simultaneously by one call,
to avoid unnecessary passing data back and forth to
and from a token.

Table 2: Cryptographic Functionality Unique to the
CSSM API

• CSSM_ObtainPrivateKeyFromPublicKey : given
a public key, returns a reference to a private key. An
alternate implementation method for Cryptoki
implementations is described in Table 6: Alternate
Implementations for CDSA Calls.

• CSSM_GenerateAlgorithmParams : generates
parameters for a context.

Auxiliary Functionality
A third way in which CDSA and Cryptoki can be

compared is the auxiliary functionality offered. Tables 3
and 4 list the auxiliary functionality unique to Cryptoki
and the CSSM API, respectively. Unlike the APIs to
cryptographic functionality, many calls to auxiliary
functionality are unique to one API, and cannot be
implemented in the other API. This results from the dif-
ferent architectures of CDSA and Cryptoki; much of the
auxiliary functionality provided by CDSA, like memory

Table 3: Auxiliary Functionality Unique to Cryptoki

• C_GetFunctionStatus : A legacy function which
usually returnsCKR_FUNCTION_NOT_PARALLEL

• C_CancelFunction : A legacy function which
usually returnsCKR_FUNCTION_NOT_PARALLEL.

• C_CopyObject : Given an object handle and a session
handle, this function creates a new object which is a
copy of a given object.

• C_Finalize : Applications should call when finished
with Cryptoki library. As of 11/12/98, a proposal to
the Open Group suggested adding the
CSSM_Terminate call to the CSSM API.
CSSM_Terminate would shutdown CSSM services
for the calling application, cleaning up the CSSM
state associated with the application, and storing
persistent application state. If accepted, this call
would map to Cryptoki’sC_Finalize , because if the
CSSM is running in-process (rather than running as a
server to many applications), a call to
CSSM_Terminate would clean-up and exit the
CSSM itself.

• C_InitToken, which initializes a token by
destroying objects and denying access to normal users
until their PIN is set. CDSA’sAddInAuthenticate

call verifies the integrity and identity of applications
when application verification is required, but it does
not erase objects on the token as part of the
initialization, because CDSA does not handle token
administration.

• C_InitPIN : initializes a normal user’s PIN, which
may be entered through the Cryptoki library or
manually on a PINpad on the token.

• C_WaitForSlotEvent: waits for a slot event, such
as token insertion or removal, to occur. CDSA
provides callback functions for this purpose, which
are invoked in the case of token insertion or removal.

• C_GetOperationState and
C_SetOperationState : respectively save the
information necessary to restart a cryptographic
operation already underway, and restore the operation.

• C_CloseAllSessions: closes all sessions an
application has with a token, automatically destroys
all objects, and optionally ejects the token.

Table 4: Auxiliary Functionality Unique to CSSM API

• CSSM_GetInfo , which returns version information
for all CSSM instances installed or registered on the
local system to the application.C_GetInfo maps to
CSSM_GetModuleInfo , in the CSSM Module
Management Function Category, because
C_GetInfo returns cryptomodule-specific
information.

• CSSM_RetrieveCounter , which returns the value
of a tamperproof clock.

• CSSM_VerifyDevice , which causes a
cryptographic module to do self-verification and
integrity testing.

• CSP_EventNotify , allows the CSSM to notify the
CSP of an important event. (Included in the CSSM
SPI only.)

• CSSM_Load, which loads the specified CSSM
instance.

• CSSM_ModuleInstall and
CSSM_ModuleUninstall, which (respectively)
register or delete modules from the CSSM Registry.
CDSA provides a registry of the modules available to
the application programmer, but Cryptoki does not.

• CSSM_RequestCSSMExemption , which allows an
application to request exemption from a standard
built-in check performed by a CSSM component.

• CSSM_FreeInfo, CSSM_Freelist,CSSM_Free,
CSSM_GetAPIMemoryFunctions,CSSM_FreeKey
, and CSSM_FreeModuleInfo , the CSSM memory
management functions. The designers of Cryptoki
deliberately avoided adding calls which allocated
memory on behalf of the user, and thus Cryptoki has
no memory management calls.

• CSSM_VerifyComponents, which authenticates
CSSM components and verifies their integrity.
Although Cryptoki tokens may be authenticated
using certificates and challenge response, Cryptoki
does not provide integrity checking.

• CSSM_GetHandleUsage , and
CSSM_GetGUIDUsage, which return a bitmask
describing services provided by the module specified
by a given handle or GUID (respectively).

• CSSM_GetModuleGUIDFromHandle and
CSSM_GetSubserviceUIDFromHandle , which
return the module GUID or subservice unique ID
(respectively) of the module identified by a given
handle.

• CSSM_SetModuleInfo , which sets information
describing a module.

• CSSM_ListModules , which lists all currently
registered service provider modules in selected
categories.

and module management, is necessary to support its
more complex infrastructure. (See“General Introduc-
tion: CDSA and Cryptoki” on page 1 for a discussion on
the different memory management interfaces provided
by CDSA and Cryptoki.)While both CDSA and Cryp-
toki provide optional login/logout capabilities, CDSA
allows CSPs to set up their own model for CSP adminis-
tration, while Cryptoki simply requires that tokens be
initialized by the security officer and requires that users
login with a PIN before accessing private objects stored
on the token.

As noted earlier, Cryptoki optionally allows a user to

interface more directly with a hardware token. or exam-
ple, if Cryptoki had a protected authentication path, the
C_InitToken , C_Login , C_InitPIN , and C_SetPIN

calls may optionally interface with a PINPad on the
token, or another protected authentication path, on a
token-specific basis. (While theC_CloseAllSessions

call optionally allows a token to be ejected after closing
all sessions with it, an application cannot specify
whether the token is ejected; this is determined by the
token driver code.)

Handling Unique APIs
Tables 5 and 6 describe some methods for imple-

menting functionality unique to one API, when using
the other API. These methods may be useful when port-
ing an application from one API to the other, or when
building adaptation layers between the CAPIs.

5 Porting Between the CAPIs
What steps would be involved when porting an

application from one CAPI to the other? The differences
discussed in Section “API Differences” on page 7 must
be addressed. Necessary code modifications would
include converting function names and parameter lists,
for those calls that map directly, and using different call
sequences when needed. For example, the CSSM must
be loaded and initialized, but a Cryptoki library can only
be initialized. Similarly, different function call
sequences would be needed when calling cryptographic
functions; Cryptoki requiresC_*Init calls to proceed
any cryptographic call, but the CSSM API only requires
the CSSM_*Init to be called for multi-staged crypto-
graphic calls.

Other porting issues are memory management, CSP
verification, and direct hardware interfaces. An applica-
tion using CDSA may use the CSSM’s memory man-
agement functions or perform its own memory
management, but an application using Cryptoki must
perform its own memory management. When using
CDSA, cryptomodule verification and built-in security
checks are performed by the CSSM or via the CSSM
API interface, but when using Cryptoki, these must be
implemented independently of the Cryptoki API. When

porting an application from Cryptoki to CDSA, the
direct hardware interfaces available in Cryptoki (e.g.
waiting for token removal, or login through a protected
authentication path on the token) would need to be
implemented in CDSA through other methods or
accessed as aCSSM_PassThrough function.

An alternative to porting an application is to build an
adaptation layer which maps calls from one API to calls
in the other API, as shown by Figures 2 and 3. Figure 2

shows an adaptation layer which maps a Cryptoki

Table 5: Alternate Implementations for Cryptoki Calls

• C_SignRecover: Signs data in one operation, where
the data can be recovered from the signature.
C_SignRecover encrypts data with a private key, and
this can be accomplished in CDSA by calling
CSSM_EncryptData with a private key.

• Similarly, C_VerifyRecover verifies a signature in
one operation, where the data is recovered from the
signature.C_VerifyRecover decrypts data with a
public key, and this can be accomplished in CDSA by

calling CSSM_DecryptData with a public key.a

• C_SeedRandom: Mixes additional seed material into
the token’s random number generator. An application
using CDSA may provide a seed for random number
generation (either by providing a seed value, or by
passing a callback function which generates a seed) to
CSSM_CSP_Create-RandomGenContext . This
function builds the context passed to
CSSM_GenerateRandom.

• C_CloseAllSessions: Closes all sessions between
an application and token, destroying all session
objects. CDSA has no function closes all sessions for
one application. However, when a call to
CSSM_ModuleDetach closes the last session an
application has with a module, all transient objects

associated with this application should be removed.b

• C_InitPIN : Initializes a normal user’s PIN, which
may be entered through the Cryptoki library or
manually on a PINpad on the token. CDSA allows
this, like other security administration tasks, to be
defined as a PassThrough function.

a. The method described to adapt Cryptoki’s
C_SignRecover andC_VerifyRecover to the
CDSA interface was implemented in Intel’s Cryptoki
adaptation layer (see “Porting Between the CAPIs”
on page 10).

b. Additionally, if theCSSM_Terminate call is
added to CDSA, then this call would perform
CSSM_ModuleDetach several times, closing all
sessions with the calling application, and removing
all transient objects for this application. Thus
CSSM_Terminate would map to Cryptoki’s
C_CloseAllSessions .

library to the CSSM SPI; Figure 3 shows an adaptation
layer built above CDSA which allows a Cryptoki-com-
pliant application to use CDSA-compliant cryptomod-
ules. Intel has publicly announced their development of
an adaptation layer above a Cryptoki library to make it
accessible via the CSSM SPI (the approach shown in
Figure 2). This work was demonstrated by Intel’s Mat-
thew Wood at the PKCS#11 and PKCS#15 Workshop
on October8-10, 1998.

Both approaches allow an application which con-
forms to one interface to use cryptographic libraries
which conform to both interfaces. The approach in Fig-
ure 2 supports cryptographic token developers, allowing
them to continue building Cryptoki-compliant tokens;
and CSSM vendors, allowing them to use Cryptoki-
compliant tokens as cryptomodules. This approach is
intuitively preferable for two reasons: first, Cryptoki’s
direct hardware interfaces make it a lower-level inter-
face than the CSSM API. Second, because Cryptoki
interfaces solely to cryptographic functionality, and
CDSA interfaces to several security services, adapting
Cryptoki-compliant cryptographic modules to the
CSSM SPI fits into the CDSA model. (However,
attempting to extend the Cryptoki interface to provide
CDSA’s non-cryptographic security services is entirely
outside the scope of Cryptoki. Cryptoki-compliant
applications which require CDSA’s trust policy, data
storage, certificate, or optional libraries should be ported
to CDSA.) The approach in Figure 3 benefits application
developers with legacy Cryptoki-compliant code, which
do not require security services beyond cryptographic
services, and application developers who prefer the
Cryptoki programming style.

Table 6: Alternate Implementations for CDSA Calls

• CSSM_VerifyComponents: Verifies all CSSM
components, checking for tampering. Cryptoki
tokens may be authenticated if it is distributed with a
built-in certificate; the application can verify the
certificate and then challenge the token to sign a
time-varying message with its secret key. However,
Cryptoki doesNOT perform integrity checks on
tokens.

• CSSM_QuerySize: Returns sizes of output data
blocks for selected cryptographic operations. The
output size (in bytes) of Cryptoki functions which
return output from a cryptographic mechanism can
be obtained by calling the cryptographic function,
and passing a NULL pointer to the output buffer.

• CSSM_QueryKeySizeInBits : Returns actual and
effective size of a cryptographic key in bits. The size
of Cryptoki key objects may be obtained by calling
C_GetObjectSize.

• CSSM_ObtainPrivateKeyFromPublicKey : given
a public key, returns a reference to a private key. An
application using Cryptoki could associate a value
related to the public key with the private key, and use
this value to search for the private key when
necessary.

• CSSM_DigestDataClone: Clones a given staged
message digest context with its attributes and
intermediate result. This call may be implemented in
Cryptoki using the following steps: (1) Clone the
state of a staged digest operation using
C_GetOperationState; (2) Create a new
session; (3) Set the state of the new session using
C_SetOperationState.

• CSSM_GenerateMac, CSSM_GenerateMac
{Init, Update, Final}, CSSM_VerifyMac,
and CSSM_VerifyMac { Init, Update, Final }:
The single and multi-staged MAC generation and
verification functions. Cryptoki’s signature
operations (using a symmetric key) are equivalent to
CDSA’s MAC calls.

• CSSM_RetrieveUniqueId: Returns a unique
identifier to uniquely identify a cryptographic device.
Cryptoki’s C_GetTokenInfo returns a pointer to a
CK_TOKEN_INFOstructure, which contains the serial
number of the token. This number is analogous to
CDSA’s unique identifier for cryptographic devices.

• CSSM_PassThrough : Given an operation ID and
parameters, executes any type of operation exported
by a CSP. In Cryptoki, new calls may be added (at
the expense of interoperability provided by CAPIs).
Cryptoki token vendors can also define their own
mechanisms, but for interoperability, registration
with PKCS is preferable.

Note: Information in Tables 5 and 6 was received from
correspondences with D. Ecklund and M. Wood at Intel.

 CSSM
 Cryptoki adaptation
 layer

 Cryptoki library

 Cryptoki driver

 Token

 Cryptoki

Figure 2: CDSA with a Cryptoki adaptation layer

 CSSM API

 CSSM SPI

 API

 application

Figure 3: Cryptoki with a mapper to CDSA

Any CSSM-compliant crypto-
module. This module may
comply with another API
(e.g. Cryptoki), but use an
adaptation layer.

 Cryptoki API

CSSM SPI
 CSSM API

application
 Cryptoki to CSSM Mapper

 CSSM

Note: Figures 2 and 3 were received from corres-
pondences with D. Ecklund and M. Wood at Intel.

6 Conclusion
CDSA and Cryptoki are both low-level crypto-

graphic APIs which allow application programmers to
specify algorithms, modes, and attributes when request-
ing a cryptographic operation. Both have been recom-
mended by the NSA Cross Organizational CAPI Team.
Although CDSA is a fairly new architecture, it has been
recommended by DARPA, has been accepted as a com-
mercial standard by the Open Group, and has gained the
recent support of several influential companies.

To generally compare the CSSM API calls to Cryp-
toki’s API calls, the functionality accessed by each call
in CSSM API and Cryptoki was compared, and calls
were rated as equivalent, roughly equivalent, or not
equivalent. (A roughly equivalent rating was given when
functionality was “Implemented differently”, or when
due to the difference in architecture the calls had slightly
different purposes. For example, CDSA’s
CSSM_CSP_Create*Context was rated roughly
equivalent to Cryptoki’s C_CreateObject .) With
respect to cryptographic calls alone, 65% of crypto-
graphic calls were equivalent, and 23% were roughly
equivalent, and only 13% of the cryptographic calls had
no analogue in the other API. When this rating was
applied toall CSSM API and Cryptoki calls mapped,
33% of the calls were rated as equivalent, 25% were
rated as roughly equivalent, and 41% did not have an
analogue the other API. [9] It is important to note that
service providers are not required to provide all func-
tionality accessible through the API calls, and both
CDSA and Cryptoki interfaces are extensible (at the
expense of interoperability).

The latter set of percentages (which show the simi-
larity betweenall of the calls mapped) reflect the fact
that the CDSA has a much more comprehensive security
infrastructure, and therefore provides more auxiliary
services to manage this infrastructure. While Cryptoki is
simply a CAPI, CDSA also defines APIs to certificate,
data storage, and trust policy modules managed by the
CSSM. Auxiliary services provided by CDSA (and not
Cryptoki) include: CSSM self-checking, add-in module
registration, user security context caching, and high
level CSSM memory management. Both CDSA and
Cryptoki provide some protection for sensitive objects
like keys. However, when protecting security critical
data or executables above the operating system, the
security of the operating system must be considered
when assessing the security of the overall system, as dis-
cussed in [6][7] and “Operating System Importance” on
page 3.

Of the two APIs, CDSA may be preferred because of
the additional service interfaces and auxiliary services it
provides. For example, the trust, certificate, and data
storage libraries could provide the security services

needed in a networked environment with data sharing.
These capabilities provide greater functionality for
present work and future expansions. However, Cryptoki
incorporates more capability to directly interface to
hardware cryptographic tokens. The choice between the
CAPIs may be further influenced by licensing, cost, cur-
rent software and systems, or performance issues.

Future work could include studying sequences of
calls involved in making specific cryptographic
requests.

7 Acknowledgments
Denise Ecklund and Matt Wood from Intel (who led

Intel’s work on the PKCS #11 adaptation layer for
CDSA) provided significant input on the API mappings,
and on implementation methods when API calls did not
directly correspond. Amy Reiss, Neal Ziring, Bill Kutz,
and Steve Smalley of the National Security Agency also
provided valuable input and review of this document.

8 References
[1] Open Group CDSA Specifications c707, ISBN 1-

85912-194-2, 2 December 1997.
http://www.opengroup.org/pubs/catalog/c707.htm

[2] Security Architecture for the AITS Reference
Architecture, Draft Revision 0.62. DARPA, June
1997.

[3] Security Service API: Cryptographic API
Recommendation, Updated and Abridged Edition.
NSA Cross Organizational CAPI Team, NSA.
October 1997.MILCOM 97.

[4] “New Security Standard from the Open Group
Brings the Realization of High-Value E-Commerce
for Everyone a Step Further”. Open Group Press
Release,January6,1998.
http://www.opengroup.org/press/6jan98.htm

[5] PKCS #11: Cryptographic Token Interface
Standard, An RSA Laboratories Technical Note,
Version 2.01. December 22, 1997.

[6] “The Inevitability of Failure: The Flawed
Assumption of Security in Modern Computing
Environments.” P. Loscocco et al, National Security
Agency. November 1997.Proceedings of the 21st
National Information Systems Security Conference.

[7] “Codes, Keys and Conflicts: Issues in U.S. Crypto
Policy.” Report of a Special Panel of the ACM U.S.
Public Policy Committee (USACM), June 1994.

[8] “Secure Computing Threats and Safeguards”. Rita
C. Summers. McGraw-Hill, 1997.

[9] “A Comparison of CDSA to Cryptoki”. Ruth
Taylor, National Security Agency. February 1999.
R23 Technote #R23-TECH-001-99.

	A Comparison of CDSA to Cryptoki
	Introduction
	Comments on CDSA and Cryptoki
	Mapping the Calls
	API Differences
	Porting Between the CAPIs
	Conclusion
	Acknowledgments
	References

	Table of Contents

