
A Survey of Mobile Code Security Techniques

Instructor
 Dr. Roshan Thomas
 NAI Labs at Network Associates
 8000 Westpark drive, Suite 600
 McLean, VA 22102-3105

Summary
In this tutorial, we survey various approaches to addressing security of mobile code and
agents. Mobile code security issues can be classified into two broad problem areas,
namely the malicious code problem and the malicious host problem. With malicious
code, we are concerned with executing useful mobile code (such as JAVA applets) while
protecting the hosts from malicious ones. On the other hand, with malicious hosts, we are
concerned with the protection of agents against malicious servers. For the malicious code
problem the techniques surveyed include code blocking, authentication, safe interpreters,
fault isolation, code inspection and verification and wrappers. For the malicious host
problem, we look at techniques to detect tampering of agents as well as to preserve
secrecy.

Short bio of speaker
Dr. Roshan Thomas is a Senior Security Engineer at TIS Labs and has over 10 years of
experience as a researcher in the areas of computer security, fault-tolerance, distributed
database management and multilevel-secure object-oriented distributed computing. He is
currently involved in research projects investigating security issues for mobile code as
well as survivability metrics and models for a distributed security services infrastructure.
Dr. Thomas was a Principal Investigator on several DARPA-funded research projects that
developed approaches to modularize functionality of security components such as
firewalls and routers as well as various distributed authorization and access control
models. He has published his research in major security journals and conference
proceedings. Before joining the TIS research team, Dr. Thomas was a Principal
Computer Scientist at Odyssey Research Associates, Inc (ORA).

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

A Survey of Mobile Code Security
Techniques

A Survey of Mobile Code Security
Techniques

Dr.Dr. Roshan Roshan Thomas Thomas
NAI Labs at Network AssociatesNAI Labs at Network Associates

8000 West Park Drive, Suite 6008000 West Park Drive, Suite 600

McLeanMcLean, VA 22102, VA 22102

(703) 356-2225 x 112(703) 356-2225 x 112

roshanroshan__thomasthomas@@nainai.com.com

22nd National Information Systems Security Conference22nd National Information Systems Security Conference
October 18 - 21, 1999October 18 - 21, 1999

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 2

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Outline of PresentationOutline of Presentation

� Defining mobile code

� Scope of mobile code security

� Techniques to prevent malicious code

� Techniques to prevent malicious hosts

� Summary and conclusions

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 3

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

What is Mobile Code?What is Mobile Code?

� Mobile code is a general term used to refer to processes
(executable code) that migrate and execute at remote hosts.

� Types of mobile code include:

– One-hop Agents (weak mobility), e.g. Java applets.
� Sent on demand from a server to a client machine and executed.

� After execution, the agent’s results or agent itself is returned to the agent owner that
sent it.

– Multi-hop Agents (strong mobility)
� Sent out on the network to perform a series of tasks.

� These agents may visit multiple agent platforms and communicate with other agents.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 4

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Structure of an AgentStructure of an Agent

Code Data

Execution
state

AgentAgent

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 5

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Scope of Mobile Code SecurityScope of Mobile Code Security

Mobile code securityMobile code security

Malicious code problemMalicious code problem Malicious host problemMalicious host problem
(executing useful applets
 while protecting systems from
 malicious ones)

(protect agents from malicious
servers)

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Techniques to Prevent Malicious
Code

Techniques to Prevent Malicious
Code

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 7

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Techniques to Prevent Malicious
Code
Techniques to Prevent Malicious
Code

Security against malicious codeSecurity against malicious code

 Code blocking Authentication Safe interpreters Code inspection Code blocking Authentication Safe interpreters Code inspection
 and verification and verification

WrappersWrappers

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 8

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Techniques for Preventing Malicious
Code: Code Blocking
Techniques for Preventing Malicious
Code: Code Blocking

Code blocking approachesCode blocking approaches
� Disabling applications

– E.g. switching off Java in Java-enabled browsers.

– Relies on users complying with security policy.

– Not easy to administer in a large environment.

– Prevents intranet use of mobile code.

� Filtering
– E.g. firewalls to filter out Web pages containing applets.

– Does not rely on user compliance and management can be
centralized.

– Useful functionality at many popular web sites is denied to users.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 9

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Code Blocking using FirewallsCode Blocking using Firewalls

Blocking strategies for JAVABlocking strategies for JAVA [Martin et. al , 1997]
� Rewriting <applet> Tags

– Browser does not receive the <applet> and so no applet is fetched.

– Be careful about parsing strategies.

� Blocking by hex signatures

– Java class files start with the 4-byte hex signature CA FE BA BE

– Apply in combination with <applet> blocker.

� Blocking by filenames

– E.g. files with names ending in .class

– Need to handle .zip files that encapsulate JAVA class files.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 10

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Techniques for Preventing Malicious
Code: Authentication through Code Signing

Techniques for Preventing Malicious
Code: Authentication through Code Signing
� Based on the assurance obtained when the source of the

code is trusted.

� On receiving mobile code, client verifies that it was signed by
an entity on a trusted list.

� Used in JDK 1.1 and Active X.
– Once signature is verified, code has full privileges.

� Problems
– Trust model is all or nothing (trusted vs. untrusted).

– To scale, we would need some public key infrastructure.

– Limits users - even untrusted code may be useful and benign.

– Code from a trusted source may still be unsafe and thus corrupt the
host.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 11

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Techniques for Preventing Malicious
Code: Safe Interpreters
Techniques for Preventing Malicious
Code: Safe Interpreters
� Instead of using compiled executables, interpret mobile code.

� Interpreter enforces a security policy.

� Each instruction is executed only if it satisfies the security
policy.

� Examples of safe-interpreter systems
– Safe-Tcl and extensions

– Telescript/Odyssey

– Java VM and extensions

Safe-Tcl and Security PoliciesSafe-Tcl and Security Policies

Aliases

Master
Interpreter

Safe
Interpreter

Padded cell
• Untrusted applets are isolated in the safe interpreter.
• Unsafe commands are hidden and cannot be invoked from the safe interpreter.
• Aliases, which are upcalls to the master interpreter, control use of unsafe commands.
• The master interpreter controls and manages aliases.

hidden
commands

Alias safe socket

Alias socket
command Socket command

Opens a socket
only to a pre-
specified
 list of hosts and
ports

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 13

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Safe Interpreters: Safe-Tcl (cont’d)Safe Interpreters: Safe-Tcl (cont’d)

� Security policies in Safe-Tcl
– A security policy consists of the commands available in safe interpreters

using the policy(i.e. the set of aliases)

– When an applet starts execution it requests a specific policy through an
alias for loading policies..

– If the master interpreter decides to permit the policy, it creates the
associated aliases.

– Composition of security policies is not safe and so an applet may use
only a single security policy over its lifetime.
� P1: It is safe for an applet to open network connections outside the firewall as
 as long as the applet cannot communicate with internal hosts.

� P2: It is safe for an applet to read local files as along as there are no other

 external communications.

� P1 and P2 do not compose safely as an applet that has both features can transmit
 local files outside the firewall, violating security.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 14

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Safe Interpreters: JAVA Security ModelSafe Interpreters: JAVA Security Model

� The sandbox security model
– Black and white trust model.

– Local code is trusted and has full access to

system resources.

– Downloaded remote code is restricted.

Valuable resources

remote code

local code

J V M

sandbox

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 15

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

JAVA Sandbox Security Model (cont’d)JAVA Sandbox Security Model (cont’d)

� The sandbox security model is built from
– The Java applet class loader

� Fetches remote applet’s code, enforces namespace separation.

– The byte-code verifier
� Checks byte code conformance to language specifications and applies built-in

theorem prover.

– The security manager
� Mediates all system and dangerous methods that result in accesses to system

resources.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 16

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Extensions to the Sandbox ModelExtensions to the Sandbox Model

� JDK 1.1.x
– Supports digitally signed applets.

– If signature can be verified, a remote applet is treated as local trusted
code.

� JDK 1.2 (now renamed as JDK 2)
– No concept of local trusted code. All code is subject to security

controls.

– Fine-grained domain-based and extensible access control.

– Configurable security policy.

– Extensible access control structure (typed and grouped permissions).

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 17

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

JDK 2 Security ModelJDK 2 Security Model

Valuable resources

J V M

sandbox

Local or remote code (signed or not)

security policy class loader

• Each sandbox may have a different
 set of privileges.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 18

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Security Mechanisms in JDK 2Security Mechanisms in JDK 2

� Identity: Every piece of code has an identity consisting of

– Origin: location of the code as specified in a URL.

– Signature: the public key of the private key used to sign the code.

� Permissions:
– A permission consists of a target which is a file or directory and an

action which is a read, write, execute, delete.

– Permissions are subclassed from the abstract class
java.security.Permission

� Policy: This is a mapping from an identity to a set of permissions.
Example

grant codebase “https://www.xyz.com/users/usr1”, signed by “*”

 {permission java.io.FilePermission “read, write’, “/folder1/tmp/*”;

 permission java.net.SocketPermission “connect”, “*.xyz.com”;}

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 19

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Sandboxes and Protection DomainsSandboxes and Protection Domains
� Classes and objects belong to

protection domains.

� Permissions are granted to domains.

� An execution domain may span
several domains.

� The permission of a thread is the
intersection of the permissions of all
domains traversed (there are
exceptions to this).

� A new thread inherits the security
context of its parent.

App-1

System Domain

Net I/O File I/O awt

App-2 App-3

s

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 20

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Safe Interpreters: Sandboxing with
Quarantine
Safe Interpreters: Sandboxing with
Quarantine

internet

App Router

Browser

FirewallCage (quarantine)

Hostile
applet

Proxy
applet

I/O

xxyy

Java embedded
HTML page

Modified
HTML page

• Internet applets are rerouted to a secure quarantine machine.
• Commercial solution offered by Digitivity (www.digitivity.com)
• A research prototype was built independently at AT&T Labs research.

Browser Bridge

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 21

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Techniques for Preventing Malicious
Code: Code Inspection
Techniques for Preventing Malicious
Code: Code Inspection
� These approaches intercept and inspect mobile code such as JAVA

applets and Active X controls.

� Commercial solutions offered by
– Finjan’s SurfingGate 4

– Network Associates WebScanX (folded into Virus Scan and Net Shield)

– Trend Micro, Security7

� Typical features provided include:
– Content inspection / byte-code scanning against known list of malicious

code.

– Validation of certificates and hash values.

– Blocking of unwanted web sites..

– In addition to HTTP, we can also monitor FTP traffic, email attachments, and
compressed files for mobile code.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 22

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Techniques for Preventing Malicious
Code: Wrappers
Techniques for Preventing Malicious
Code: Wrappers

Server/gateway-side filtering followed by client-side wrappingServer/gateway-side filtering followed by client-side wrapping.
� Trend Micro (www.antivirus.com)

– Step 1: Proxy server does checks of certificates and hashes against block lists.

– If applet passes step 1, then it is wrapped with enforcement code and a security policy
and subsequently monitored by the client machine.

� Security7 (www.security7.com)
– SafeGate: Server-side inspection engine.

– SafeAgent: Local applications and resources are allocated into a special security zone
by an administrator and kept isolated from downloaded code.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 23

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Techniques for Preventing Malicious Code:
Code Verification with Proof-carrying Code
Techniques for Preventing Malicious Code:
Code Verification with Proof-carrying Code

� With Proof-carrying code (PCC), a host can determine if it is safe to execute
a program from an untrusted source.

� Host decides upon a safety policy which is then codified in the Edinburgh
Logical framework (LF).

� Applet author has to generate a proof that the code confirms to the safety
policy (certification).

� Code consumer validates the proof and executes the code if it passes
(validation).

� Issues:
– PCC sacrifices platform-independence for performance.

– What program properties are expressible in LF logic is still an open research
problem.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 24

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Techniques to Prevent Malicious
Hosts

Techniques to Prevent Malicious
Hosts

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 25

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Threats by Malicious HostsThreats by Malicious Hosts

� Leaking of code, data, control flow.

� Manipulation of code, data, control flow.

� Incorrect execution of code.

� Masquerading of the host.

� Denial of execution.

� Leaking and manipulation of the interaction with other agents.

� Returning wrong results of system calls issued by the agent.

� Tampering of agent itineraries.

Fritz Hohl. A model of attacks of malicious hosts against mobile agents,
4th Workshop on Mobile Object Systems (MOS ’98).

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 26

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Techniques to Prevent Malicious
Hosts
Techniques to Prevent Malicious
Hosts

Security against malicious hostsSecurity against malicious hosts

Tamper detection Tamper detection
and managementand management

Preserving secrecyPreserving secrecy

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 27

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Tamper Detection and Management
Approaches
Tamper Detection and Management
Approaches
Tamper detection techniques include:
� Execution tracing [Vigna]

� Partial Result Authentication Codes [Yee]

� Detection objects [Meadows]

� Protective assertions [Kassab and Voas]

Tamper management techniques include:
� Send agents only to trusted hosts.

� Multi-hop trust models.

� Tamper proofing with time-limited blackbox protection through code
obfuscation and mess-up algorithms.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 28

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Detecting Tampering: Execution
Tracing
Detecting Tampering: Execution
Tracing

Use execution traces to verify program execution [Vigna].

CodeCode

White statement

Black statement

Modifies program state only through internal variables

Modifies program state using information obtained
 through external environment

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 29

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Detecting Tampering: Execution Tracing
(cont’d)
Detecting Tampering: Execution Tracing
(cont’d)

� A trace Tc of the execution of a program C is composed of a
sequence of pairs:

< n, s >
where n is unique id for a statement ;

s is a signature ;

- for black statements it contains the new values of internal

 variables after statement execution;

- for white statements, it is empty.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 30

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Execution Tracing: Protocol DetailsExecution Tracing: Protocol Details
�� AA: Agent owner, BB: Agent platform, CC: Mobile agent code

�� AA’ : maybe the same as A or otherwise be a trusted digital notary

When C terminates
� B sends a signed message to A’ containing a checksum of the program final state

S1 and checksum of the trace Tc and a unique id iA.

m1: B --> A’: B, Bs (H(S1), H(Tc), iA)
� B sends a signed message to A containing the program final state S1, and iA.

m2: B --> A: B, Bs (Ap(S1), iA)

� If A suspects that B cheated while executing C then
– A can ask B to produce the trace and A’ to produce the receipt messages.

– A verifies the obtained trace with the value of H(Tc)

– A replicates the execution of C following Tc.

– The validation process should produce the final state S1; otherwise B cheated
by modifying the code or some program variables.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 31

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Detecting Tampering:
Partial Result Authentication Codes
Detecting Tampering:
Partial Result Authentication Codes

k1k1

k1, k2, …, knk1, k2, …, kn

Server 1 Server 2 Server n

 Solution proposed by Yee
• An agent is sent out with a set of secret keys, k1, k2, ...kn
• At server i, the agent uses ki to sign the result of its
 execution and producing a PRAC.
• Erase ki from agent state before moving to the next server.
•• So what does this give us? So what does this give us?

Agent

k2k2 knkn

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 32

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

PRACs and Perfect Forward IntegrityPRACs and Perfect Forward Integrity
� A malicious server cannot forge the partial results from previous hops.

� PRACs allow an agent’s owner (who has the keys k1, k2, …, kn) to
cryptographically verify each partial result contained in a returning agent.

� These messages guarantee perfect forward integrity:
– If a mobile agent visits a sequence of servers S = s1, …, sn, and the first malicious

server is sc, then none of the partial results generated at servers si, i < c, can be
forged.

� Yee also proposes various optimizations and variations
– Use an initial key k1 and generate ki+1 from ki using a one-way function.

– Publicly verifiable PRACs.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 33

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Detecting Tampering: Detection
Objects
Detecting Tampering: Detection
Objects

Meadows suggests the use of detection objects
� Dummy data items or attributes as part of agent’s state.

� Agents and host systems are unaware of these objects.

� If the detection objects have not been modified, then one can have
reasonable confidence that legitimate data has not been corrupted.

� Issues:
– Detection objects are application-specific.

– Detection objects must be plausible enough to fool host systems and yet not
adversely affect the agent’s computation/query results.
� This may require query modification.

– Answers to queries must still contain the detection objects so as to detect
tampering.

– Detection objects themselves may need to be updated frequently to avoid
exposing them through the comparision of the results of several queries.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 34

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Detecting Tampering: Use of Protective
Assertions
Detecting Tampering: Use of Protective
Assertions

Java Agent
Source Code

Assertions
Selected

Oracle

Instrumented
Java Agent

with Assertions

Dispatch
Agent

Bytecode

Fault
Injection

Assertion
Editor

Source
Code
Parser

Compile

Process for Embedding Protective Assertions [Kassab and Voas]

• Use assertions to reveal owner-specified agent state snapshots and increase agent
 observability.
• Assertions harden the agents by dynamically ensuring that the agent’s state remains
 acceptable.
• If assertions are bypassed by the host system, then the lack of information returning to
 the agent owner may indicate malicious activity.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 35

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Tamper Management:
The Jumping Beans Multi-hop Trust Model
Tamper Management:
The Jumping Beans Multi-hop Trust Model

Host 1

Host 2

Can’t open file “X” Can’t open socket 123.45.67.89

Can’t open file “X”

Can’t open
socket

123.45.67.89

Can’t open
any socket

• Jumping beans (www.jumpingbeans.com) is a framework for mobilizing Java applications.
• Every host has an agency which is assigned a level of trust through an ACL.
• Worst case assumption, i.e. each host can be malicious.
• On each hop, a mobile application’s ACL prior to the hop is merged with the ACL of the
 receiving agency in such a way that the security privileges decrease or remain the same.

Host 2 Host 3

Agency

Can’t open
file “X”

Agency Agency

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 36

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Tamper-proofing: Time-limited Blackbox
Protection through Code Obfuscation/Mess-up
Tamper-proofing: Time-limited Blackbox
Protection through Code Obfuscation/Mess-up

Expire in
133305 ms

Input

Output

Time-limited Black box property

An agent is a time-limited blackbox if
1. for a certain known time interval
2. code and data of the agent specification
 cannot be leaked or modified
An attack after the protection interval
 3. has no effect

Basic idea proposed by Hohl:
• Generate an executable agent from an agent specification so that it is not
 vulnerable to leakage and manipulation attacks.
• Such an agent has the following blackbox property.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 37

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Time-limited Blackbox Protection ApproachTime-limited Blackbox Protection Approach

Conversion
mechanism

Agent specification Executable
blackbox agent

parameters

• Don’t allow the attacker to build a mental model of the agent in advance.
 - Create a new form of the agent dynamically at start of the protection interval.

• Make the process by which the attacker builds the mental model time consumimg.
 (we assume a lower bound on this time can be determined and is large enough for
 applications)
 - Use conversion algorithms based on code obfuscating and mess-up techniques, E.g:s

• Hide the type of a statement by dynamically creating it at runtime.
• Hide the location of a statement through dynamic code creation or by burying
 the statement in other statements.
• Hide the type, value and location of data elements.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 38

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Preserving Secrecy: Encrypted
Functions
Preserving Secrecy: Encrypted
Functions

� There is widespread belief that a host which executes a given program has
full control over its execution, unless we use a trusted haven.

� For example [Chess]:

“It is impossible to prevent agent tampering unless trusted (and tamper
resistant) hardware is available. Without such hardware, a malicious
host can always modify/manipulate the agent …”

� Sanders and Tschudin Challenge these assumptions

– Can a mobile agent conceal the program it wants to have executed?

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 39

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Computing with Encrypted FunctionsComputing with Encrypted Functions

� What is the problem?
Alice (agent owner) has an algorithm to compute a function f. Bob (host) has an input x
and is willing to compute f(x) for her, but Alice wants Bob to learn nothing substantial
about f. Also, Bob should not need to interact with Alice during the computation of f(x).

� Protocol for “Non-interactive Computing with Encrypted Functions”
(E is some encryption function)

(1) The owner of the agent encrypts f.

(2) The owner creates a program P(E(f)) which implements E(f)

 and puts it in the agent.

(3) The agent goes to the remote host, where it computes P(E(f))(x) and

 return home to the owner.

(4) The owner decrypts P(E(f))(x) and obtains f(x).

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 40

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Ongoing Research with Encrypted
Functions
Ongoing Research with Encrypted
Functions

� Sander and Tschudin consider

– representing the function f as a polynomial

– showing certain classes of homomorphic encryption schemes would
enable the protocol.
� Why homomorphic schemes?

– The encrypted program PE constructed from a plain text program E has to be
executable and therefore ordinary data encrpytion techniques cannot be applied.
Also P and PE have to be compatible with each other.

– Mathematical analogue are algebraic structures where the compatible
transformations are homomorphisms, i.e

h(x + y) = h(x) + h(y)

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 41

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Criteria for Evaluating Mobile Code
Solutions
Criteria for Evaluating Mobile Code
Solutions
� Placement (server or client) and form of enforcement (centralized or

distributed).

� Ease and scalability of security administration.

� Performance considerations.

� Expressive power/richness of of security policy.

� Ease of integration with existing applications/products.

� Degree of transparency (user awareness, compliance, intervention etc.) of
the security solution to the user and the ability to customize this.

� Ability to coordinate with, as well as give/accept feedback to/from other
security products (some degree of active security).

� Ability to adapt and learn based on history.

� Ability to audit operations.

� Platform independence.

W
h

o
’s

 w
at

ch
in

g
 y

o
u

r
n

et
w

o
rk

Slide 42

The Security Research Division of Network
Associates, Inc.

N A I L A B SN A I L A B S

Summary and ConclusionsSummary and Conclusions

� Increased interest in mobile code technology.

� Security remains a major impediment.

� Considerable progress in solving the malicious code problem.

� Research in solving the malicious host problem is still in its infancy.

� Ecommerce will be a major driver of technology.

� Industrial prototypes and solutions are emerging
– IBM Aglets infrastructure.

– Jumping Beans from Ad Astra Engineering.

– Evolution of JAVA-based computing.

	A Survey of Mobile Code Security Techniques
	Slides
	Table of Contents

