
Trust Relations in a Digital Signature System Based on
a Smart Card

Jean-Luc Giraud & Ludovic Rousseau

Gemplus, Cryptography & Security Group,
B.P. 100, 13881 Gémenos Cedex, France

Phone: +33 (0)4 42 36 50 22, +33 (0)4 42 36 57 90
Fax: +33 (0)4 42 36 57 92

Jean-Luc.Giraud@gemplus.com
Ludovic.Rousseau@gemplus.com

Abstract

In this paper we present different ways for an attacker to tamper with a
digital signature scheme. The paper focuses on smartcard-based signature
schemes because they offer the best ratio of cost over security. The risks
of compromise or attack for each part of the system used to produce the
signature are assessed and possible solutions for the problems illustrated are
suggested. In fact, the smartcard is often the most secure link in the chain of
trust involved in digital signature systems.

Keywords

trust, security, smartcard, electronic signature

1 Introduction

Online commerce on the Internet is expected to generate considerable profit in the near
future [McC99], [McC00]. People are expected to order goods and services from their
computer instead of going to retail shops. This new type of commerce where the buyer and
the vendor are not physically present at the moment of the transaction creates new ways
of cheating the system. In order to reach the expected volume of transactions, electronic
commerce systems will be developed to replace the current paradigm of a credit card
number over an SSL link.

Electronic commerce transactions are basically an agreement between a customer and
a merchant to exchange goods and money. This amounts to the signing of a “contract”
between the two parties. With the advances of modern cryptology, strong solutions exist
to provide secure signature systems. The entire security of the system will then rely on
the secrecy of a value (called a key) and keeping this key secret is thought to be the main

challenge of this technology. The use of smartcards seems to be an elegant and easy way
to solve this issue, but, as we will see, the secrecy of the key is far from being the only
issue in a digital signature system.

The first section highlights desirable properties of an ideal digital signature system.
We then discuss how they are implemented in real systems and where/how an attacker can
try to subvert the system. Finally, we offer some ideas on how to solve these problems.

2 Ideal digital signature systems

The development of business to business or customer to business electronic commerce
will require a legal framework to specify liability. New legislation is currently under
consideration in Europe and in the United States stating that electronic signatures can be
used as valid proof for an agreement or a transaction.

For these reasons, it is important to consider the available technical means to generate
signatures in order to choose the most reliable ones.

2.1 Properties of a signature

Usually, a signature is expected to be [Sch96]:

� authentic: a valid signature implies that the signer deliberately signed the associ-
ated message,

� unforgeable: only the signer can give a valid signature for the associated message,
� not reusable: the signature of a document can not be used on another document,
� impossible to repudiate: the signer can not deny having signed a document that has

a valid signature.

In addition, one would expect that the signed document is unalterable: the signature
should not be valid if the message is modified.

2.2 Building blocks for a digital signature system

We will now see what we have to put in our digital signature system to fulfil the require-
ments listed in § 2.1.

2.2.1 Providing authenticity

In order to be able to prove that the signer agreed to sign the document, the digital sig-
nature system must be such that it can only be activated by the genuine signer. This

basically means that the system has to authenticate the user prior to any signature com-
putation. There are classically four categories of authentication techniques, which rely
on:

� Something the signer knows (e.g. PIN codes, password...)
� Something the signer is (e.g. biometric characteristics...)
� Something the signer knows how to do (e.g. the way of writing...)
� Something the signer owns (e.g. a hardware token, a smartcard...)

The first solution is the simplest and most widely used one. The second one is prob-
ably more secure but currently relies on rather expensive hardware and is therefore not
adapted to a large-scale system. With the generalisation of touch-pads on PDAs and lap-
tops, the third solution might soon be applicable on a wide scale. Hardware tokens are
considered as part of the signature systems instead of a means to authenticate the signer
in this paper.

The issue of authenticity brings about the problem of the identity of the signer: in a
digital world, there is no obvious way to be sure who signed a document. Even in the
really powerful paradigm of public key cryptography, there is no built-in way of making
sure that a public key you received along with the document belongs to your old friend
Alice or the untrustworthy Eve. A solution to this issue is the use of trusted third party
and more precisely a Certification Authority (CA). The CA can prove in a secure way to
the receiver of the signature the link between the element of proof the signer gives with
his signature (e.g. his public key) and the signer’s identity.

2.2.2 Unforgeable signatures

With modern cryptography, providing unforgeable signatures in an ideal (e.g. mathemat-
ical) signature system is not a problem anymore. This issue has been studied for a long
time and a great breakthrough happened in 1976 with the discovery of public key cryptog-
raphy [DH76]. Public key cryptography is probably the most elegant solution available.
After the work of Diffie and Hellman, many public key cryptosystems have been devised
and the most popular is RSA which was invented in 1978 [RSA78]. With this algorithm,
provided that the signer’s private key remains secret, there is no way to forge his signature.

2.2.3 Not reusable signatures

A signature computed on one document should not be of any use to produce a valid
signature of another document. With RSA, if an attacker is givenS1, the signature of
documentM1 andS2, the signature of documentM2, he can easily generate the valid
signature for documentM1 � M2 by just computingS1 � S2. To protect the system
from such an attack, padding schemes have to be applied and the padded message is

signed. In real implementations, a hash function is also be involved to reduce the amount
of information to sign: instead of signing the whole message, the system only signs the
output of the hash function which is a “fingerprint” of the original text.

2.2.4 Non repudiation

With a public key cryptosystem repudiation is not possible in an ideal signature system
provided that:

� the signer authentication mechanism can not be by-passed,
� there is no way to subvert the CA,
� the signer’s private key can not be compromised.

If the first point is true, then a signer won’t be able to claim that he did not authenti-
cate for this signature computation. If the second one is true, then nobody can generate
fake certificates and pretend to be someone else. If the signer’s private key can not be
compromised, no attacker would be able to compute a valid signature. There is then no
way for signature to be computed without the agreement of the signer.

2.2.5 Non-modifiable message

Incorporating a modern hash function protects the signature system from undetected post-
signature modification of the message.

3 Real digital signature systems

Real systems attempting to match the properties of the ideal schemes described in § 2
usually include the following entities:

� a signer (or card-holder)
� a verifier (retailer)
� a smartcard (or another type of secure token)
� a smartcard reader
� a Personal Computer (PC) which in turn includes:

– an Operating System (OS)

� a serial or USB port driver
� a smartcard driver
� a cryptographic library

– one or more applications (Mail User Agent, Web browser...)

� a Public Key Infrastructure (PKI)

– one or more Certification Authority

For a typical Internet electronic commerce transaction, the signer is the customer at
his home, the smartcard and its reader are his own and so is the PC. He manages the OS
on his own. The verifier is the retailer and the entity managing the PKI could be a bank.

For purchases in a store, the signer has his own card but the reader and the PC belongs
to the verifier (and might actually be a payment terminal). The PKI manager would also
be a bank.

The following section lists the system elements needed to realise the properties given
in § 2 and identifies theiressential trust relationships. Potential attacks are given in the
subsequent section.

3.1 Providing authenticity

As stated in § 2.2.1, this property requires two functionalities:

� Signer authentication
� Identity verification

The signer is authenticated with some secret information: a PIN code, some biometric
information or his way of writing his signature. In classical systems, terminals get the
signer’s authenticator (i.e. secret information) from a central server and compare it with
the one that has just been entered. To prevent any eavesdropping, the central server might
cipher the authenticator with a key specific to each terminal. One major drawback is that
this kind of system does not scale very well: in very large applications (ATM...) any
entity willing to authenticate the signer has to fetch the value from the central site which
requires time-consuming communication. Smartcards offer a much more elegant solution:
the signer holds a tamper-proof device capable of authenticating him before allowing any
signature computation.

On most systems, the signer’s secret is processed by at least the reader, the keyboard
and the computer.

The signer’s computer is used to display the message to sign. The signer agrees to
sign according to what he reads on the screen.

The trust relationships are as follows:

� the signer trusts the smartcard to be tamper-resistant enough to safely store his au-
thenticator. He also trusts the reader and sometimes the computer to not memorise
his secret,

� the signer trusts that the smartcard does not allow any signature computation with-
out prior authentication,

� the signer trusts that the document he reads on his computer and agrees to sign is
really what is given to the smartcard.

Once the signer is authenticated, the cryptographic mechanisms involved in the signa-
ture process can be activated. In a standard system, they include a public-key algorithm, a
padding scheme and a hash function. In order to link the public key in use with the iden-
tity of the signer, a Certification Authority (CA) is required. The CA signs a certificate
with his private key, binding the signer’s identity and public key. The signer’s certificate is
stored on the smartcard. The public key of the CA is supposed to be known by all parties
in the system.

Here the trust assumption is that the CA’s private key can not be used by anybody but
the CA itself.

3.2 Unforgeable signatures

As mentioned in § 2.2.2, the main issue here is to keep the private key of the signer secret.
Private keys are usually too long for the signer to remember, so a first solution is to keep it
ciphered on the hard-drive/floppy-disk of the computer. The deciphering key should only
be known by the signer. At any rate, the private key of the signer is deciphered at some
point on the computer and the level of security of standard OSs is far from being sufficient
to prevent attempts to read it unciphered in the computer memory. A much safer solution
is to use a smartcard to store the private keyand compute the signature. The system is
more secure and flexible since the signer always has his card with him.

In the smartcard-based system, the signer trusts that the smartcard can securely store
his private key, otherwise, he would not use it.

3.3 Not reusable signatures

Even in a real system, using a strong hash function (SHA-1...) and padding schemes is
sufficient to block any attempt to reuse a signature.

3.4 Non repudiation

The parts of the system involved in non repudiation are similar to those used in § 3.1,
but the trust relationships are dual: the signature verifier trusts that the system and its
sub-parts only allow the legitimate signer to sign a document. In case of repudiation, the
verifier would be able to prove the signature is genuine.

Here, the trust assumptions are:

� the signature verifier trusts that the smartcard is tamper-resistant enough so that it
can’t reveal the signer’s authenticator,

� the verifier trusts the system (smartcard excluded) to not memorise the signer’s
authenticator,

� the verifier trusts that the smartcard does not allow any signature computation with-
out prior authentication of the signer,

� the verifier trusts that the document the signer read on his computer and agreed to
sign is really what was given to the smartcard.

3.5 Non-modifiable message

This property is obtained by using a strong hash function. It should be implemented in
the smartcard, but, in most existing systems, it is performed in the computer.

4 Attacks on real digital signature systems

This section shows how the fundamental properties of signatures can be violated in a real
digital signature system. The way each trust assumption can be broken is analysed.

All entities in the system have different interests and might use all possible means to
cheat it:

� signers might revoke their cards and then sign orders right afterwards, hoping that
the delay in the transaction process would enable them to validate the transaction
before denying having ever done it

� verifiers (retailers) might try to get a document signed without the signer being
aware of it or even better, they might try to get the secret key of their customer to
place unwanted orders

� outsiders might attack the CA’s private key in order to create valid certificates and
use them in the system

� CAs might want to deny having received a revocation order if they have interest in
it

� ...

4.1 Attacks on authenticity

4.1.1 Revealing the signer’s authenticator

There are mainly two ways of getting the value of the signer’s authenticator:

� breaking the smartcard
� capturing it on its path from the keyboard to the card

Attacks on the card The signer’s authenticator is usually a static value stored in the
card. Possible attacks usually are:

� brute force attack:
challenging the card with all possible values until the right one is found. This would
be particularly efficient on a PIN code. Fortunately, smartcards use a ratification
counter to limit the number of sequential incorrect presentations. This attack is
therefore inefficient.

� power analysis [Koc98], [KJJ99]:
these attacks are not efficient on static verifications. Further more, they usually
need the averaging of many power consumption waveforms and the ratification
mechanism prevents the attacker from getting enough.

� invasive attacks [AK96], [KK99]:
an attacker with access to the proper hardware and a good knowledge of VLSI
design could eventually retrieve the value of the authenticator. The time required
to implement this attack probably would be more than sufficient for the signer to
realise his card had been stolen. He would therefore revoke his certificate before
the attacker could use the obtained information.

Eavesdropping A much easier way to get the value of the signer’s authenticator is
to eavesdrop on the communication channel between the input device used by the signer
(e.g. the keyboard) and his smartcard. For instance, for a PIN code verification, the signer
types his PIN on the keyboard, the PC’s Operating System gets the key codes and transmits
them to the smartcard reader which finally sends it to the card.

Tampering with the keyboard or the smartcard reader is a type of attack that can
happen at a retail shop where a malicious shop owner can modify his terminal to capture
the PIN code of all his customers. An accomplice can then steal the card and use it. This
scenario is rather dangerous for the shop owner because the credit card system has a back-
end consolidation system which can often detect that an unusual number of stolen cards
were used in this particular shop before they were robbed.

For transactions over the Internet, where the signer is in a trusted environment (his
own keyboard and smartcard reader), the PC’s OS is clearly the weakest point in the
chain. It usually is poorly designed and when it is not, security mechanisms are disabled
by default to provide maximum user friendliness. Many viruses and Trojan horses can be
uploaded to the PC through e-mail, web-browsers... The GemPC420 [Gem99] smartcard
reader can thwart this attack: it is connected between the keyboard and the PC and when
a PIN code verification is requested, the keyboard input is captured by the reader. The OS
never has access to the PIN code value. A LED allows the signer to see when the reader
is in capture mode.

4.1.2 Signing without authentication

In order to minimise interaction with the signer, the authenticator is only requested by the
card once after power-on. From then on, the signature primitive can be used as often as
necessary. When the card is used on an untrusted terminal, after the signer has been au-
thenticated, the terminal can request the signature of many documents without the signer’s
consent. The notion of untrusted terminal extends to the signer’s own computer as seen in
§ 4.1.1.

A prudent protocol would require the signer’s authentication prior to each signature
computation request.

4.1.3 Document modification

The document the signer agreed to sign can be modified before it is sent to the card. So
the terminal or the PC has to be trusted. Tampering with the terminal requires expertise
and it is possible to build tamper-evident terminals.

In a PC, the Operating System is responsible for communications between the ap-
plication and the smartcard reader. Modifying the OS’s functionalities is a very powerful
way to subvert the signature system. One way of doing is to modify the software packages
that a signer might download from the Internet to be able to modify the behaviour of the
OS. Solutions like using Gnu Privacy Guard [Gnu99] in the Debian GNU/Linux system
to sign packages exist [Col99].

Another type of attack is to install a Trojan horse on a PC which can be really straight-
forward [CER98b], [CER98a].

Significant advances of the security of PC OSs appear essential to achieve strong
levels of security for digital signatures. Global solutions can be an integrity checker at the
kernel level as in [Igl99] or enhanced security mechanisms in [Mic99].

4.1.4 Attacking the PKI

The final attack on authenticity is when the signer pretends to be somebody he is not.
In order to do this he has to forge a false certificate with another person’s identity and a
public-key/private-key pair he knows. To perform this, he needs to know the private key
of the Certification Authority which seems highly difficult in a well-designed PKI.

4.2 Forging signatures

In a good public key cryptosystem (RSA with proper key size...), you need the signer’s
private key in order to be able to forge his signature. In our system, it is stored in the
smartcard. As in § 4.1.1, the secret material can be retrieved by:

� power analysis [Koc98], [KJJ99]:
this class of attack, and DPA in particular, are really efficient. Nevertheless, smart-
card manufacturers have improved their cards to thwart these attacks or at least
make them much more difficult. An important drawback of power analysis is that
the attacker has to have access to the physical token to conduct the attack. This
would probably be noticed by the signer.

� invasive attacks [AK96], [KK99]:
an expert with access to the expensive hardware required for this attack would most
likely be able to get the value of the secret key. Once again, the signer would prob-
ably realise that his card was stolen before the attacker can use the secret material
he retrieved.

4.3 Signature repudiation

Non-repudiation is probably the most difficult property to have in a real signature sys-
tem. Applicable attacks are those listed in § 4.1. But the defending side is in a much
less favourable position because it is in the signer’s interest to reveal his secret material.
A possible solution is to warn the signer that any signature given before a repudiation
of his card will be considered as valid. This way of working is already applied in many
countries implementing smartcard-based payment schemes. The signer then has a clear
disadvantage: the party in charge of revocation could pretend to have never got the repu-
diation order or at least to have received it later than the signer claims. Systems where the
verifier and the Certification Authority are one entity could be particularly unfair towards
the signer. Therefore, in a fair system, the CA should always be a Trusted Third Party.

4.4 Post signature message modification

The issue of potential message modification after signature has been extensively studied
in the field of cryptography. Very good solutions are available with modern hash functions
and padding schemes. For instance, a system using SHA-1 and PCKS#1-V2 with RSA
would not allow modification of a signed message without invalidating the signature.

5 Conclusion

Current transactions on the Internet use a credit card number over an SSL link. The fraud
rate of this system is much higher than for normal credit card transactions and honest
customers might be distressed to see their credit card numbers used by malicious third
parties. New solutions will have to be developed to protect the customer, the retailer and
the bank. Smartcard-based systems seem to offer an excellent ratio of security over price

and security over flexibility. As illustrated in this paper, the trust relationships are com-
plicated and natural assumptions might not hold. For instance, the signer’s PC can’t be
trusted, even though it is physically protected: logical attacks might prove much more
profitable to a malicious person wanting to get an arbitrary document signed. There has
been a lot of work on the tamper-resistance of smartcard and lots of publicity on recently
discovered attacks, but the smartcard is far from being the weakest link in a signature
system at the moment. Furthermore, chip and smartcard manufacturers continuously im-
prove the security level of their products. Electronic commerce is probably one of the
greatest security challenges ever since all transactions are conducted without the signer
actually seeing the verifier. Even if solutions to most of these issues exist already, there is
still some work to do to build very strong systems. Enhancing the security performances
of standard Operating Systems seems to be the blocking point for the moment, but the
new generation already has promising features.

References

[AK96] Ross Anderson and Markus Kuhn. Tamper Resistance — a Cautionary Note. In
Second USENIX Workshop on Electronic Commerce Proceedings, pages 1–11.
USENIX Press, 1996.

[CER98a] CERT. VN-98.06: Microsoft Internet Explorer JScript Vulnerability.http:
//www.cert.org/vul_notes/VN-98.06.ms_jscript.html , Au-
gust 1998.

[CER98b] CERT. VN-98.07: Back Orifice. http://www.cert.org/vul_
notes/VN-98.07.backorifice.html , October 1998.

[Col99] Ben Collins. Experimental dpkg available.http://www.debian.org/
Lists-Archives/debian-devel-9910/msg02053.html , October
1999.

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.IEEE
Transactions on Information Theory, 22(6):644–654, November 1976.

[Gem99] Gemplus. GemPC420. http://www.gemplus.com/products/
hardware/gcr420.htm , 1999.

[Gnu99] GnuPG team. The GNU Privacy Guard.http://www.gnupg.org/ , 1999.

[Igl99] Pietro Iglio. TrustedBox: a Kernel-Level Integrity Checker. InFifteenth Annual
Computer Security Applications Conference, pages 189–198, Phoenix, Arizona,
USA, December 1999.

[KJJ99] Paul Kocher, Joshua Jaff, and Benjamin Jun. Differential power analysis: Leak-
ing secrets. InAdvances in Cryptology – CRYPTO’99 Proceedings. Springer-
Verlag, 1999. To appear.

[KK99] Oliver Kömmerling and Markus G. Kuhn. Design principles for tamper-resistant
smart card processors. InUSENIX Workshop on Smart Card Technology, pages
9–20. USENIX Press, May 1999.

[Koc98] P. Kocher. Differential Power Analysis. Technical report, CRI, 1998.http:
//www.cryptography.com/dpa/ .

[McC99] Tom McCall. Gartnergroup’s dataquest says business-to-consumer e-
commerce to become a $380 billion industry by 2003.http://gartner5.
gartnerweb.com/dq/static/about/press/pr-b9957.html ,
1999.

[McC00] Tom McCall. Gartnergroup forecasts worldwide business-to-business
e-commerce to reach $7.29 trillion in 2004. http://gartner5.
gartnerweb.com/dq/static/about/press/pr-b200006.html ,
2000.

[Mic99] Microsoft. Windows 2000 Reliability and Availability Improve-
ments. http://www.microsoft.com/windows2000/library/
howitworks/management/relavail.asp , 1999.

[RSA78] Ron L. Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtaining
Digital Signatures and Public Key Cryptosystems.Communications of the ACM,
21(2):120–126, February 1978.

[Sch96] Bruce Schneier.Applied Cryptography. John Wiley & Sons, Inc., 2nd edition,
1996.

	Table of Contents

