
Using B Method to Formalize the Java Card Runtime Security Policy for a
Common Criteria Evaluation

Stéphanie Motré - Corinne Téri

stephanie.motre@gemplus.com- corinne.teri@gemplus.com

Gemplus - Avenue du Pic de Bertagne
13881 Gemenos – France

fax: (3) 442-36-64-04

Type of submission: Paper

Abstract. A smart card is an embedded system that is generally used to supply security
to an information system. Traditionally the application and the OS were developed in a
secure environment by the card issuer. For a few years, open platforms (e.g., Java Card,
MultOS and Smart Card for Windows) have provided new facilities for application
developers. They allow dynamic storage and execution of downloaded executable code. Such
architecture introduces new risks: it offers the possibility to attack the card from an applet by
exploiting some implementation faults. This document provides an overview of a set of
techniques required to obtain Common Criteria (CC) high Evaluation Assurance Levels
(EALs) of a Java Card. It is not dedicated to smart card specialists as it presents the security
stakes of such a technology. We present the motivation for a Java Card evaluation: reach the
same security level for the new open smart card than for traditional embedded platforms. We
introduce the UML and the B method to illustrate the semi-formal and formal models
required for a high level evaluation. The B method has been already used in GEMPLUS to
formally model security mechanisms of the Java Card: bytecode verifier, interpreter and
firewall. These case studies reveal the interest of using the B method to formalize the Java
Card Virtual Machine (JCVM). In a CC evaluation the use of semi-formal and formal
techniques is required to obtain the assurance of a high security level.

Key words: B, Common Criteria (CC), Formal Method (FM), Java Card (JC), Security policy, UML, Visa
Open Platform (VOP).

Using B Method to Formalize the Java Card Runtime Security Policy for a
Common Criteria Evaluation

Abstract. A smart card is an embedded system that is generally used to supply security
to an information system. Traditionally the application and the OS were developed in a
secure environment by the card issuer. For a few years, open platforms (e.g., Java Card,
MultOS and Smart Card for Windows) have provided new facilities for application
developers. They allow dynamic storage and execution of downloaded executable code. Such
architecture introduces new risks: it offers the possibility to attack the card from an applet by
exploiting some implementation faults. This document provides an overview of a set of
techniques required to obtain Common Criteria (CC) high Evaluation Assurance Levels
(EALs) of a Java Card. It is not dedicated to smart card specialists as it presents the security
stakes of such a technology. We present the motivation for a Java Card evaluation: reach the
same security level for the new open smart card than for traditional embedded platforms. We
introduce the UML and the B method to illustrate the semi-formal and formal models
required for a high level evaluation. The B method we have already used to formally model
security mechanisms of the Java Card: bytecode verifier, interpreter and firewall. These case
studies reveal the interest of using the B method to formalize the Java Card Virtual Machine
(JCVM). In a CC evaluation the use of semi-formal and formal techniques is required to
obtain the assurance of a high security level.

Key words: B, Common Criteria (CC), Formal Method (FM), Java Card (JC), Security policy, UML, Visa
Open Platform (VOP).

1 Introduction

A smart card is an embedded system that is generally used to supply security to an information system. Open
smart cards, like the Java Card, introduce new risks: it offers the possibility to attack the card from an applet by
exploiting some implementation faults. Actually, every product and more particularly Smart Cards Integrated
Circuits (IC) with Open Platform should prove their robustness in order to be certified. The Common Criteria
(CC) responds to strict security requirements like French banking requirements presented in the Vocable
project [13]. Thanks to Java Card platform specification assurance, every cardholder can securely load and run
any application on its card.

This document provides a practical overview of a CC high EvaluationAssurance Level (EAL) of a Java
Card. This paper provides a set of techniques to specify a security policy in Common Criteria evaluation for an
EAL4 with informal and semi-formal models as states graph (part 4.1), for an EAL5 with formal model and B
formal language (part 4.2) and for an EAL7 (part 4.3).

In the first section of the paper, we make a brief summary of the Common Criteria evaluation. In the second
section, we present the scope of the Java Card Runtime specifications. Finally, in the third part, we take a
security policy case for EAL4, EAL5 and EAL7.

2 Product evaluation with the Common Criteria

The CC [1][3] combines the best aspects of existing European (ITSEC), US (TCSEC) and Canadian
(CTCPEC) criteria for the security evaluation ofInformation Technology (IT) systems and products. The CC
documentation [3] introduces requirements for the IT security of a product or system under the distinct
categories offunctional requirements andassurance requirements. Functional requirements define expected
security behavior: they describe security functionalities that could be implemented by the product.Assurance
requirements are a solution to gain confidence that the claimed security measures are effective and correctly
implemented.

The CC defines a set of IT requirements of known validity, which can be used to establish security
requirements for prospective products and systems. TheTarget of Evaluation (TOE) is the part of the product
or system that is subject to evaluation (figure 1). TheSecurity Target (ST) that is used by the evaluators as the
evaluation basis, describes the threats, the security objectives and the requirements (functional and assurance
measures) of a specific identified TOE. TheTOE Security Functions (TSF) are the components that enforce
security in the considered system: theTOE Security Policy (TSP).

Fig.1 CC evaluation target

The expected result of the evaluation process is a confirmation that the TOE satisfies the ST. Confidence in
IT security can be gained through actions that may be taken during the process of development, evaluation and
operation.

The definition of the CC security requirements [1] is based on the threats identification against the IT
environment. The CC defines a set of constructs, which classify these security requirements into related sets
called components:functional components and assurance components. The functional components are
described in the Part 2 of the Common Criteria documentation, which can be compared to a requirement

catalogue. These components are used to express a wide range of security functional requirements within
Protection Profiles (PPs) and STs. They are ordered sets of functional elements; these sets are grouped into
families with common objectives and classes with common intent. A hierarchy may exist between components.
The assurance components are presented in the Part 3 of the CC.

The CC defines a set of definedassurance levelsconstructed using components from the assurance families.
These levels are intended to provide backward compatibility to source criteria and to provide internally
consistent general-purpose assurance packages. To meet specific objectives, an assurance level can be
augmented by one or more additional components.

EALs are constructed from the assurance components. Every assurance family contributes to the assurance
that a TOE meets its security claims. EALs provide a uniformly increasing scale that balances the level of
assurance obtained with the cost and feasibility to acquire this assurance degree. There are seven hierarchically
higher assurance components from the same assurance family, and by the addition of assurance components
from other assurance families. Figure 2 illustrates the evaluation procedure based on the CC documentation.

Fig.2 Common Criteria components architecture

A TOE evaluation [3] is an assessment of an IT product or system against defined criteria. Distinct stages of
evaluation are identified, corresponding to the principal layers of TOE representation:PP, ST, TOE and
Assurance maintenance evaluations.

3 Java Card Runtime Environment

3.1 Security Issues

Security has always been a great concern for smart cards, but the issue is getting more important with multi-
application platforms and post issuance code downloading. The security of a platform is built on the operating
system security, which must provide reliable services. This is of special concern for the cryptographic
primitives that must be safe regarding all the state-of-the-art attacks such as timing attacks, power analysis, etc.
Memory management is also a critical issue and must be safe and robust against card power-loss or memory
failure. The last security issue for such smart cards concerns the application level and information flows
analysis.

3.2 Java Card Operating Systems

3.2.1 The Java Card Architecture

Java Card is defined by the standards as a smart card capable of running Java programs called card applets.
But theJava Card Virtual Machine (JCVM) architecture is not limited to a runtime area: programs must be
compiled, verified, converted, loaded, and linked before expecting to be executed. Figure 3 presents the JCVM
architecture.

The bytecodeverifier is the offensive security process of the JCVM. It performs the static code verifications
required by the JVM specification. Theverifier guarantees the validity of the code being loaded in the card. The
bytecodeconvertertransforms the Java class files, which has been verified and validated, into a form that is
more suitable for smart cards. The JCVMloader is split in two parts: anoff-card loader that sends the file to
the card, and anon-cardpart that installs the classes into the card memory. The conversion and the loading are
not executed consecutively (a lot of time can separate them).

Fig.3 Java Card Virtual Machine

Actually, it is not specified that a package is immediately installed in the card after its conversion. Thus, it
may be possible to corrupt it, intentionally or not, during this transition period. To avoid it, the Visa Open
Platform checks the integrity and authenticates the package before its registration in the card. Actually, the
package contains a signature that identifies its issuer and its contents.

The Java Card Runtime Environment (JCRE) considered in our study is conform to Sun Microsystems
Inc. [6] specification. Its main elements are presented in figure 4.

Fig.4 JCRE structure

This specification provides the basis of the JCVM implementation: the JCRE contains theJava Card
Application Programmer Interface (JCAPI) classes [7] and our own specific extensions, the support services,
and the JCVM. The JCRE also has its particular dynamic security process: thefirewall. This feature is due to a
specific JCVM requirement, the on-card object access policy. Thefirewall creates a secure environment,
controlling every information access between applets. Every object (class instance or array) on the card is
owned by the applet which instantiated it, that is, the applet which was active at the time the object was created.
An applet has full rights to access its objects, but thefirewall still verifies that an applet does not try to illegally
access information. The rules used by thefirewall describe the access policy that is enforced at runtime.

3.2.2 The Java Card specificity

Most of the differences existing between a JVM and the JCVM are due to on-card limited resources. The
Java Card language is a subset of Java: applets written for the Java Card platform are written in the Java
programming language. They are compiled like any Java applet, but they use a subset of the Java language. The
number of enabled programming instructions is reduced to fit the Java Card memory capacities without
penalizing too much Java programming possibilities. The subset is a compromise between on-card resources
and performances. On card, the JVM is not the same as for any Java platform: there are no security manager,

Card
Applet

Card
Applet

Card
Applet

Java Card Runtime Environment

Java Card API

Java Card Virtual Machine

OS and native functions

no dynamic class loading (classes are burnt in memory or loaded within packages), no multiple threading, and
no garbage collector1.

4 Security Policy of Java Card Runtime

4.1 Security policy in EAL4

4.1.1 EAL4 : methodically designed, tested and reviewed

An EAL4 evaluation [1] corresponds to the
highest assurance level that does not require any
formal nor semi-formal modeling. The TOE must be
deeply analyzed in order to provide the description of
the TOE modulesHigh Level and Low-Level
Design (HLD and LLD), and of an implementation
subset. Testing is supported by an independent search
for obvious vulnerabilities. Development controls are
supported by a life-cycle model, tools, and automated
configuration management.

EAL4 is the first level that imposes a description
of the system security policy. The required model is
an informal one. The figure 5 presents the EAL4
level and a part of the required documentation.

Fig.5 EAL4 description

We have chosen to increase the EAL4 level by furnishing a semi-formal model of the Java Card runtime: the
Security Policy Model (SPM) componentADV_SPM.2. The security policy model must correspond to the
functional specification of the TOE. The following subsections present the semi-formal modeling technique
that is used and the dynamic security policy model.

4.1.2 Semi-formal model in UML

UML (Unified Modeling Language) [9] is the standard set by the Object Management Group (OMG) for
object-oriented analysis and design facilities. UML includes model diagrams, their semantics, and an
interchange format between case tools. Within UML, the OCL (Object Constraint Language) [10] is used to
specify constraints like invariants, preconditions, or post-conditions.

UML allows the use of interactions and state machines. A state machine can be used to model the behavior
of an individual object. An interaction is used to model the behavior of a society of objects that work together.
A state machine corresponds to a behavior that specifies the sequences of states an object goes through during
its lifetime. The transitions between two states are relative to event launch. A state machine is used to model
the dynamic aspects of runtime. The state of the system (JCVM at runtime) is a condition or situation that
satisfies some condition, performs some activity, or waits for some event. A state machine is sufficient to model
the policy enforced in a system. Actually, the security policy is not a way to express how things shall be done,
but what shall be done. In this section, the construction of the state machine is presented, from the analysis of
the Java Card security policy to the UML model.

The aim of the Java Card dynamic security policy is to assure that Java objects are correctly accessed. The
security mechanism that performs this verification is thefirewall. It acts at runtime when the bytecode
interpreterrequires an access check before the current instruction execution. The rules applied by the Java Card
appletfirewall are exposed in theJCVM section 5 [5] and in theJCRE section 6[6]. In the Muse [8] Security
Target (ST) this information is included in requirements associated to theSF_FIREWALL security function

1 The garbage collecting is not a standard feature, but is implemented in some of the Gemplus Java Cards.

(TOE Security Function part) description:FDP_ACC.2/JavaObject component (TOE Security Functional
Requirements part), andFAU_SAA.1.2/Soft(lines 3, 4, and 6).

This set of rules is necessary but not sufficient to guarantee the respect of the dynamic security policy. The
three following rules must be also considered:

• FDP_ACF.1.1/JavaObject, andFDP_ACF.1.2/JavaObject:“any access to an object or to the property
of an object must be verified”,

• FDP_ACF.1.3/JavaObject:“no rule can be included to explicitly grant an access permission”,
• FDP_ACF.1.4/JavaObject:“no rule can be included to explicitly refuse an access”.

These rules reveal a strong relation between theinterpreterand thefirewall: the interpretercannot decide of
the legality or the validity of an access without thefirewall.

4.1.3 State Diagram

A bytecode execution can be represented as exchanges between the bytecodeinterpreter, the Java stack and
the firewall. The interpreterhas to get the parameters of the current instruction from the stack (if any). The
verifier guarantees the correct issue of this first step, and no system exception shall be thrown. If the instruction
execution requires access verification, then theinterpreterasks thefirewall for it. An exception shall be thrown
if the access is not authorized (SecurityException). If no error occurs during the execution preparation phase,
the interpretercan execute the code. The following figure illustrates the instruction execution mechanism.

Fig.6 Bytecode execution phases

An analysis of the description of runtime reveals the different states of the JCRE. The definition of those
different possible states is the following:

• State 0: initial state that corresponds to an applet selection expectation.
• State 1: beginning of an instruction execution.
• State 2: the instruction requires an object access verification
• State 3: the JCRE can execute the code.
• State 4: an exception has been thrown and shall be treated.
• State 5: final state: end of a JCRE execution phase.

These states underline the execution mechanism. The UML state diagram specifying the runtime security
policy also defines the state transitions and some eventually associated constraints (conditions).

The transitions between the different states are the following:
• Get_Parameters [(a/no)_reference_parameter, (ok/error)]: the instruction required parameters must

be on the stack. A reference may be one of the parameters.
• Firewall_checks [(ok/exception_throw)]: the firewall checks that the object reference parameter is

accessible in the current context. If the access isillegal, then the JCRE throws a security exception.
• Bytecode_execution [(next_bytecode/end), (ok/error)]: execution of the current instruction. The final

state is reached if the current bytecode is the last one. An exception shall be thrown if the execution
fails.

• Exception_catch [(ok /error)]: the exception treatment is the only transition that quits the exception
state. It assures that it is not possible to run an instruction that has thrown an exception. If the JCRE
detects a catch zone corresponding to the thrown exception, execution continues in the secure zone
found. In the other case, runtime ends.

Fig.7 State diagram of the runtime policy

The state diagram of the figure 7 describes the rules and characteristics of the Java Card runtime policy. The
correspondence between the informal functional specification and the semi-formal policy model shall be
informal. It shall contain the explicit relations between the model and each property exposed in the
specification. The use of a semi-formal model in an EAL4 evaluation is not required but recommended: it is a
good reflection base for the EAL5 and higher evaluations. The next section is dedicated to the requirements of
an EAL5 evaluation for the security policy.

4.2 Security policy in EAL5

4.2.1 EAL5 : semiformally designed and tested

An EAL5 evaluation [1] provides an analysis
that includes all the implementation.Assurance is
achieved by a formal model, a semiformal
presentation of the functional specification and of
the HLD, and a semiformal demonstration of
correspondence. The search for vulnerabilities must
ensure resistance to penetration attackers with a
moderate attack potential. Covert channel analysis
and modular design are also required.

An EAL5 level permits a developer to gain
maximum assurance from security engineering based
on rigorous commercial development practices.
EAL5 is a high assurance, based on a rigorous
development approach, but that does not incur
unreasonable costs for specialized security
engineering techniques.

Fig.8 EAL5 description

At this CC level, a formal model of the TSP shall be provided (ADV_SPM.3). The developer shall also
demonstrate or prove the correspondence between the TSP and the functional specification. The correspondence
must establish the following items:

• the SF are consistent and complete, with respect to the model,
• the model contains the rules and characteristics of all policies of the TSP that can be modeled,
• the model is consistent and complete

4.2.2 Short presentation of the B method

The B method [11] can be used in order to specify, design and code critical software systems [4]. The
method covers the entire software life cycle: from the specification to the executable code. This formal method
is based on the propositional calculus, the first order predicate, the set theory, and the inference rules. A
refinement process is used to obtain the implementation of a B specification. A refinement is a way to
reformulate machines data and operations owing to more concrete information (machines expansion). The
global correctness of the software system is involved by the verification of mathematical proofs. Each
refinement level must be internally correct and must be correct toward its abstraction.

B models are independent entities that represent independent processes. A model can include several
machines linked together using theINCLUDES clauses. The architecture of a model depends on the case study
modularity. As an example the JCVM can be separated in five modules: thedispatcher, the interpreter, the
firewall, the Java stack, the exception manager and the memory. B architecture is based on the object instance
theory: a machine that includes another machine cannot be included by this last one. The architecture of the
JCVM could be the following.

Fig.9 Architecture of the JCVM B machines

A B machine is a way to describe the interface of a module. It contains:
• the objects managed by the module: variables definition and typing,
• the entry points of the module: operations header,
• the internal evolution of objects (machine variables): operations body,
• the dependencies of the module: included, imported or sees machines,
• the properties fulfilled by the module: invariant,
• the initial state of the module: initialization

4.2.3 Security Policy Formal Model

The EAL5 level requires the formal modeling of the TOE policy [2]. The policy of a system is the set of rules
that have to be always fulfilled. It is specified and exposed in the INVARIANT clause of a B machine. The
properties contained in this clause must be respected after the initialization of the machine variables and after
each operation call. A model cannot be proved if this condition is not true. The proof process is a mean to
check the global coherence of the mathematical model associated to each B machine. The B tool [12] generates
the proof obligations (POs) of the specification according to the mathematical model. A theorem prover is
provided to discharge automatically the POs and an interactive theorem prover allows the user to intervene in
the proof, when it becomes too complex for the automatic prover.

The B model of the dynamic security policy should not contain any operation: it is a set of predicates to be
verified. The formal model required by an EAL5 evaluation should not specify how things are done but what is
done.

Dispatcher

Firewall

Objects

Java Stack

Exception

Interpreter
includes

sees

Fig.10The different clauses of a B machine

Thus, the machines of the policy model only contain:
• the definition of a set of variables (concrete or abstract),
• the initialization of those variables,
• the invariant to be fulfilled by the variables
The dynamic security policy is the set of functional requirements exposed in a CC document (SPM). They

are enlightened by analyzing the SFs and mechanisms that “act” at runtime. Then, the Java Card bytecode
interpreter, the appletfirewall, the exception manager and thedispatcherhave to be considered.

The formal model of the Java Card runtime policy is hardly based on the semi-formal model. The idea is to
describe exactly what shall happen. Thus, the formal model contains a single machine that mathematically
describes all the possible paths in the runtime graph. In the formal model, the different states of the graph must
be associated to concrete data of the system. The considered system can be separated into two entities: the
bytecodeinterpreterand the appletfirewall. The interpreterprocesses the current bytecode and eventually calls
the firewall if the execution requires an access authorization to be delivered. An analysis of the checks
performed by thefirewall, in order to decide whether an object access is legal or not, reveals the information
required for those checks. This analysis is based on the 6th section of the JCRE [6]. Thefirewall requires the
following information:

• the runtime current context,
• some attributes of the accessed object (its context, its type, its shared property if it is an interface object,

its public or global properties),
In the semiformal model, theinterpreteractions are separated in two parts: parameters obtaining from the

stack and the bytecode execution itself. These two actions are respectively associated to theJava stackand the
interpreter. System state characteristics are identified by B machine variables. The sets which name is written
in capitals are defined in a context machine.CONTEXTSand MEMORYrepresent correct package and reference
attributes (16 bits long).BYTECODESis the set of supported instructions.STATUSis a means to describe the state
of the different virtual machine components.

MACHINE
RuntimePolicy

VARIABLES
StateNb,
CurrentContext,
CurrentBytecode,
InterpStatus,
FirewallStatus,
StackStatus,
ObjectRef

SETS
STATES = { initial_state,

execution_beginning,
object_reference,
execution_authorisation,
exception_throw,
final_state}

INVARIANT
/* variables typing */

CurrentContext: CONTEXTS
& CurrentBytecode: BYTECODES
& InterpStatus: STATUS
& FirewallStatus: STATUS
& StackStatus: STATUS
& ObjectRef: MEMORY
& StateNb : STATES

/* states description */
& ((StateNb = initial_state)

=> (CurrentContext = OMEGA
& CurrentBytecode = aucun
& InterpStatus = 0
& FirewallStatus = 0
& StackStatus = 0
& ObjectRef = OMEGA))

/*transitions restrictions */
& ((StateNb = exectution_authorisation & CurrentBytecode = autre)

<=> (previous_state = execution_begining
& StackStatus = 0
& CurrentBytecode = autre))

& ((StateNb = execution_authorisation & CurrentBytecode /= autre)
<=> (previous_state = object_reference

& FirewallStatus = 0))

The RuntimePolicymachine defines the different JCRE status and the constraints applied to the states
transitions. The operation clause may be used in order to specify the transitions’ code. This is not required in an
EAL5 evaluation: the relations between the security functions (SF) and the policy (policy enforcement) are not
required in a formal way. It is introduced in the next sub-section dedicated to the EAL7 evaluation.

4.3 Security policy in EAL7

4.3.1 EAL7 : formally verified design and tested

In an EAL7 evaluation [1], the formal model is
supplemented by a formal description of the functional
specification and high level design, showing the
correspondence. Evidence of developer “white box”
testing and complete independent confirmations of
developer test results are required. Complexity of the
design must be minimized.

The EAL7 level represents a meaningful increase in
assurance from EAL6 by requiring more
comprehensive analysis using formal representations,
formal correspondence, and comprehensive testing. In
an EAL7 evaluation, an important part of the work has
to be done in a formal style. The TSP design provides
the formal definition of the policy to be fulfilled by the
TOE model. TheFunctional Security Policy (FSP)
component imposes the establishment of a model of
each SF.

Fig.11EAL7 description
This model shall define and describe all the function interfaces (mechanisms and environment). The high-

level design is a refinement of the whole functional specification in a modular way. Thus, the set of the
modular TSF models can represent a convenient base for the high level formal model. The same remark can be
expressed about the low-level formal model that shall also be furnished. The HLD, LLD and FSP formal model
must be consistent, and justify that it is an accurate and complete instantiation of the TOE requirements. The
proof or the formal demonstration of the model, according to the security formal properties justifies this point.
The Representation CoRrespondence(RCR) between two formal descriptions shall be formal. This
demonstration is automatically expressed by the proof process. The correspondence between the LLD and HLD
shall be semiformal. This semiformal correspondence is based on the identification of a total bijection between
the concrete data of both formal and semiformal models. The bijection reveals a similar evolution of all the data
and states of the TSF.

4.3.2 Requirements for the security policy formal model

The formal model of the security policy is the same for either EAL5 or EAL7 evaluations. The EAL7
requires a demonstration that the SFs enforce the security policy. This is realized by the proof of the formal
model containing both the policy and the functions. The SFs must be formally specified and designed (high
level design). The HLD formal model is obtained by refinement of the SF specification, which is an abstraction
of the functions description.

The refinement must retain the concrete variables defined in the abstraction. The SF formal models are not
expected to expressed any other system property than variables typing (buffer size, data length…). The
properties of the mechanism they specify must be inherited from their corresponding security policy model.
This is realized using a machine inclusion. It means that an instance of the included machine is associated to
the machine. The inclusion link between the SF and the policy they might enforce is not sufficient to
demonstrate the correspondence. Actually, each variable of the security policy model must be associated with
the variables of the security policy model. Further more, the operations of the SF must be exactly the transitions
exposed in the policy state diagram and the evolution of the state number must be considered in each operation.

Fig.12Security Policy enforcement verification

The proof process assures that:
• the machine inclusion link is correct,
• the machines are independently consistent,
• the operations describe correct paths in the diagram, according to the security policy,
• the high-level design corresponds to the specification

The correspondence proof required by the RCR component is based on the inclusion of the security policy
model (entire model or only the concerned modules) in the machines. The figure 12 presents the inclusion
mechanism.

5 Conclusions

The CC is a very useful framework for stating security requirements because they use a common assurance
framework that has been universally accepted. The CC permits to construct security requirements in order to
produce high quality documents. The standard documents are easily comprehensible and usable by any IT
professional. The strong security assurance for the CC high levels is achieved with the SPM component that
must be written in an informal (ADV_SPM.1), semi-formal (ADV_SPM.2) or formal (ADV_SPM.3) way.

Through this document we provide a methodology to evaluate a product and to obtain the assurance of a
high security level owing to formal methods. Moreover, we propose an analysis of the different modeling
techniques required in the SPM components. The case study that we have analyzed is the JCRE security policy
model case. We show that it is important to base any formal modeling phase on a semiformal analysis, which is
also based on an analysis of the informal specification. The security policy model is not a complex one. It only
contains a set of predicates to be fulfilled by the TOE. Thus, the formal machines are reduced in anINVARIANT

B clause. The construction of such a model requires a deep understanding of the TOE functional requirements.
The formal model of the TSFs is a means to describe the security mechanisms represented by the requirements.
Their integration in the security policy model requires that the two models have the same format: variable
names, state numbers, or machine architecture. Thus, it may be necessary to reconstruct the entire EAL4
semiformal policy model for an EAL7 evaluation. Actually, if the security functions have not been sufficiently
analyzed and if the policy representation is not close enough from reality, then the model shall be changed. The
proof mechanism is also very important in the assurance procedure. It reveals the quality, the consistency and
the refinement correspondence of the models. It is used to show the correspondence between the different
formal representations of the security functions and policy. The proof analysis and the proving phases must be
respected.

6 References

[1] Common Criteria for Information Technology Security Evaluation Criteria, Version 2.1, August 1999.
[2] Common Evaluation Methodology for Information Technology Security, Version 1.0, August 1999.
[3] Web siteshttp://www.niap.nist.govandhttp://www.scssi.gouv.fr.
[4] “Formal model and implementation of the Java Card Dynamic Security Policy”, Stéphanie Motré,

Gemplus Research Lab’, AFADL’2000, Grenoble, France, January 2000
[5] Java Card 2.1 Virtual Machine (JCVM) specification, Final revision 1.1 June 7, 1999. Published by

Sun Microsystems.
[6] Java Card 2.1 Runtime Environment (JCRE) specification, Final revision 1.1 June 7, 1999. Published

by Sun Microsystems.
[7] Java Card 2.1 Application Programmer Interface (JCAPI) specification, Final revision 1.1 June 7,

1999. Published by Sun Microsystems.*
[8] The Security Target of Muse project.
[9] Grady Booch, Jame Rumbaugh and Ivar Jacobson, “The Unified Modelling Language”, Addison

Wesley edition, October 1998
[10] Jos Warmer and Annek Kleppe, “The Object Constraint Language”, Addison Wesley edition, October

1998
[11] The BBook, Assigning programs to meanings, J-R Abrial, Cambridge University Press, first published

1996
[12] “B tool User guidelines”, Steria Méditerannée, December1996
[13] Vocable Project, “The new millenium already has its card”, Carte Bleue Visa, November 16th 1999

	Table of Contents

