
An Operating System Analog to the Perl
Data Tainting Functionality

Dana Madsen1

danammadsen@hotmail.com

Abstract
Several recent Internet security incidents, such as the Melissa and ILOVEYOU virus outbreaks,
demonstrate fundamental shortcomings in the security provided by general purpose operating
systems deployed in the Internet computing environment. These incidents reveal that the security
controls on downloaded software and data are often discretionary, relying on user vigilance and
competence for their effectiveness. This does not provide sufficient protection. To address this
deficiency, we propose extending operating system functionality to support a tainting file system
that associates a level of trustworthiness with each software and data file stored on the computer.
We also propose developing a set of mandatory trustworthiness policies that govern how
trustworthiness is assigned and how files of a given trustworthiness are handled, along with
implementing operating system support for such policies. Our scheme will be developed as an
overlay for existing Unix environments that support loadable kernel modules. No source code
modifications to the operating system will be required. It is anticipated that our approach could
be ported to the Windows 95/98/NT environments or directly integrated into a future operating
system. The tainting file system is motivated by the data tainting functionality in the Perl
programming language and is intended to complement other approaches to computer and
network security, including software wrappers, sandboxing, digital signatures, firewalls, and
intrusion detection systems. It is envisioned to be one element of a network defense in depth
strategy that encompasses all levels of computer and network architecture.

Keywords: Tainting, Integrity, MAC, Mandatory Access Control, Operating System Security,
Virus, Mobile Code

1 Introduction
Several recent incidents demonstrate fundamental shortcomings in the security provided by
general purpose operating systems deployed in the Internet computing environment. For
example, over the past several months, numerous Microsoft Office macro viruses, sent as email
attachments, have propagated due to user ignorance or carelessness. In other cases, malicious

1 The author thanks Dr. Peter Neumann of SRI and the reviewers for their insightful comments on drafts of this
paper. All remaining deficiencies are the sole responsibility of the author.

software has masqueraded as data files (e.g., the recent ``JPEG'' attachment that granted hackers
access to ICQ passwords [12]), or apparently benign software has contained Trojan horses (e.g.,
picture.exe [6]). Several vulnerabilities have been attributed to the execution of mobile code on
Web browsers2, and it may not always be apparent to a user that a Web site contains embedded
mobile code, much less embedded hostile code.

In each of the above cases, security is discretionary, relying on user vigilance and competence. It
is up to the user to scan email attachments for viruses. Users must judge whether downloaded
software, such as a ``cool'' screen saver, is safe. They must do the same when visiting Web sites.
System administrators have limited recourse in these situations.

Relying on discretionary security mechanisms will not maximize security in the Internet
computing environment. Users are downloading software and data far more frequently than ever
before, from a constantly changing and potentially unbounded set of sources with varying
trustworthiness. Hence, there are more opportunities for the introduction of malicious software or
data. Even worse, mobile code, and the macro programming functionality found in office
productivity suites, blur the distinction between software and data. Executable content embedded
in a data file may be invoked without a user's knowledge or consent. The chances for a security
blunder are increasing.

Unfortunately, existing mandatory security mechanisms in mainstream general purpose operating
systems fall short of what is needed. These mechanisms are geared towards protecting users from
each other, on defending against unauthorized access by outsiders, and on restricting use of
administrative functions by regular users.3

General purpose operating systems do not fully protect users from ``foreign'' (i.e., downloaded
from potentially untrustworthy Internet sources) software and data files. These files are stored
under the ownership of the user who downloads them. There is no distinction at the operating
system level between those files and files of known trustworthiness. Foreign software could
potentially execute with the full permissions and identity of the user who downloaded it. Foreign
data could cause applications resident on the user's machine to execute in an undesirable manner.

2 The Tainting Concept
To rectify the above deficiencies, we advocate the development of a tainting file system that
could be overlayed onto existing mainstream operating systems, without requiring source code

2 In October 1999, Karsten Sohr of the University of Marburg in Denmark detected a flaw in the Microsoft Java
Virtual Machine (JVM) implementation that could allow an attacker to illicitly cast objects of one Java type to
another Java type [1]. This weakness could be exploited to compromise, modify, or destroy data on a victim host. In
April 1999, Sohr uncovered a similar vulnerability in JVM implementations from other vendors for several other
operating systems.

3 For example, authentication mechanisms are intended to prevent logins from unauthorized users. Memory is
protected, so that one process cannot affect memory belonging to another process. A user may restrict access by
other users to his files.

modification to those operating systems. Specifically, we propose that standard file attributes,
such as access permissions4, be augmented with one more attribute that reflects the level of
trustworthiness associated with a file. Foreign software and data could then be marked as being
potentially tainted with malicious content.

It is further proposed that a mandatory trustworthiness policy be supported at the operating
system level. The support mechanisms should be capable of being overlayed onto existing
mainstream operating systems, without requiring source code modifications to those operating
systems. The mandatory trustworthiness policy will specify the level of trustworthiness to be
assigned to each file, based for example on the conditions under which the file was created. In
some cases, the file may have been created from data directly downloaded from an untrustworthy
site on the Internet. Alternatively, it may have been created by an application program based on
another, untrustworthy file used by that application. In both cases, the newly-created files may
not be fully trustworthy. The trustworthiness policy will restrict the handling of files based on
their level of trustworthiness. These restrictions will apply to the execution of downloaded (or
otherwise untrustworthy) binary files and to the use of downloaded (or otherwise untrustworthy)
data by active processes. It is also desirable to have some means for changing the trustworthiness
attribute associated with a file based on conditions outlined in the trustworthiness policy. Support
for the mandatory trustworthiness policy should be flexible, allowing it to be tailored by system
administrators to specific situations.

The tainting file system concept proposed in this paper is intended to protect against the
inattentive or incompetent user who, without malicious intent, introduces malicious content into
a file system. Although our approach provides some protection against deliberately malicious
users or intruders, this is a positive side effect and is not our present focus.

We have attempted to minimize the impact of tainting on pre-existing (non-tainting) operating
system trustworthiness by avoiding source code modifications to the underlying operating
system. Nonetheless, we have introduced two new, situation-dependent issues with potential
relevance to system security.

First, existing applications, migrated to a tainting environment, may not react well to constraints
imposed based on their trustworthiness. This is particularly true for non-robust software that
doesn't always check for errors returned by system calls.

Second, we have introduced new, trust-based ``channels of influence'', which might conceivably
be exploited in specific and limited cases to undermine system security. For example, a process
is affected by the trustworthiness of the files it reads. Hence, that process can be maliciously
constrained by illicitly reducing file trustworthiness. Opportunities for trust-based attacks are
reduced by applying the principle of least privilege when specifying user permissions.

Note that the tainting mechanism itself could become a target for attack. How it is protected
depends on the particular operating system into which it is incorporated. In section 4, we
describe issues related to the protection of our tainting mechanism under Linux.

4 read, write, execute, etc.

At first glance, the functionality provided by a tainting operating system may seem redundant to
existing application-level protection schemes. For example, the Java virtual machine allows
restrictions to be placed on the execution of Java applications. However, a tainting mechanism at
the operating system level provides a unified approach to trustworthiness that covers all
application software and that can be tailored to a specific context. It also provides defense in
depth for the cases where application-level protections fail.

Realistically speaking, the tainting mechanism should be developed in such a way that it can be
added to existing mainstream operating systems, such as Unix and Windows NT, without
requiring source code modifications to those operating systems. This may not be as secure as a
new operating system designed from the ground up with such features. However, it should still
be possible to ``raise the bar'' for the sophistication required in malicious code to damage a
system. Additionally, an overlay on existing operating systems can provide an excellent
prototype environment for future operating system designs.

3 Related Work
Several technologies that partially address some of the technical threats associated with a highly-
connected, Internet computing environment are available either as research prototypes or
commercial products. However, most of these technologies function at the application level, and
all could be strengthened by an operating system that included tainting functionality. Below we
look at the relationship between tainting and the Perl programming language, software wrappers,
sandboxing, digital signatures, firewalls, and intrusion detection systems. We also consider how
tainting relates to other trusted operating system design concepts, most of which are not found in
mainstream operating systems.

The tainting file system extends to the operating system level the data tainting mechanism found
in the Perl programming language [14]. The underlying principle in Perl is that data derived from
outside a program may not be used to affect something else outside the program.

The proposed tainting file system is also an extension of (and is intended to complement) the
Generic Software Wrapper concept developed by Fraser et al [5] at TIS Labs at Network
Associates, Inc. Generic Software Wrappers can provide protected, non-bypassable, kernel-
resident software extensions for augmenting security without requiring modifications to
operating system or application source code. A key advantage of their approach is that distinct
types of security enhancements, tailored to specific system resources and specific users, can be
readily integrated into a unified framework. Augmenting their work with a tainting file system
would provide security tailored to a specific combination of system resources, user
trustworthiness, and data trustworthiness.

Sandboxing, which provides a constrained execution environment for untrustworthy software, is
closely related to the tainting file system concept. It is found in several commercial products,
including the Java virtual machine, SurfinShield Corporate 4.5 Desktop Security Software [9],
and eSafe Protect Desktop 2.1 from Aladdin Knowledge Systems [13]. However, these products
provide application-level sandboxing functionality. As Loscocco et al [8] point out, they cannot
protect themselves against tampering by other applications and instead rely on the local file
system for this protection. In contrast, the tainting file system resides at the operating system
level.

Note that tainting and application-level sandboxing are not mutually exclusive. For example,
tainting could provide another layer of protection for cases where application-layer mechanisms
fail (such as the recent JVM security vulnerabilities uncovered by Sohr [1]). Ideally, tainting and
application-level sandboxing would both be elements of an overall defense in depth strategy that
addresses security at all architectural levels of a computing environment.

A complementary technique to sandboxing is the use of digital signatures to establish the
trustworthiness of downloaded mobile code. Digital signatures could be integrated into the
tainting file system, perhaps as one criterion for establishing levels of file trustworthiness.

Some might argue that firewalls can (or should) protect against untrustworthy executable files.
However, firewalls are not fully effective in filtering out malicious mobile code at this time. The
tainting file system can contain the effects of malicious code passing through a firewall. By
hardening the operating systems of hosts behind a firewall against attack, tainting contributes to
an overall network defense in depth strategy.

In any case, Linger et al [7] point out that in the long term, firewalls may become an increasingly
inadequate protection mechanism due to a long term shift in computing paradigms. They suggest
that in the future, most computing resources will be resident on unbounded network
infrastructures, controlled by a multitude of service providers, and combined according to
dynamic architectures. It will therefore be more difficult to isolate resources and establish
security perimeters for deployment of firewalls. A tainting file system is well-suited to this
environment, since it is in part motivated by the trend described by Linger et al.

Tainting functionality could supplement role-based access control (RBAC) schemes. In RBAC
implementations, access decisions are based on the roles that individual users have in an
organization. Associated with each role is a set of allowable operations. The definition of an
operation can capture complex, security-relevant details or constraints that cannot be realized by
a simple mode of access [11].

A principle RBAC objective is protecting the integrity of information by constraining who can
perform which functions on which information, under which conditions [3]. Consequently, roles
in an RBAC environment may be trusted to varying degrees. It might be worthwhile to ensure
that only trustworthy data are accessed under some trusted roles. It could also be useful to
consider less trustworthy the data created or modified under less trusted roles. In some cases, the
level of trust accorded to the binding of a role to an individual might be dynamically varied. For
example, it could change based on the trustworthiness of data or remote hosts accessed by the
individual while in that role. All the preceding mechanisms require some means of tracking the
trustworthiness of data, which our tainting concept provides.

Functionality developed to implement a tainting file system could also be adapted to support a
military security policy as formalized in the Bell-La Padula Confidentiality Model. For example,
a classification attribute might be added to files, and mandatory security policies that restrict the
handling of files based on classification could be developed. However, tainting and classification
are distinct concepts.

The tainting file system is in part intended to preserve the integrity of data on a system from
modification caused (directly or indirectly) by untrustworthy software and data. For example, it

could be used to realize integrity properties outlined in the Biba Integrity Model. However,
tainting functionality provides security as well as integrity protection. For example, it can be
used to prevent an untrustworthy software application from sending data over a network to
remote computers.

The LOMAC software package, developed by Fraser [4], provides low water-mark mandatory
access control, one of the integrity policies defined by Biba [10]. LOMAC closely resembles our
tainting concept. LOMAC assigns integrity levels to objects (files and other entities represented
by inodes) and to subjects (processes); two levels are defined in the existing implementation. The
primary function of LOMAC is to ensure that (possibly viral) data does not flow from low-
integrity objects to high-integrity objects. Secondarily, it ensures that (possibly compromised or
malicious) subjects do not interfere with higher-level subjects. LOMAC is implemented for the
Linux environment, using loadable kernel modules to preserve compatibility with existing Linux
distributions.

The distinction between the tainting file system and LOMAC is one of emphasis and
implementation. The tainting file system emphasizes the vulnerability of the inattentive or
incompetent user in the highly-connected and unbounded Internet computing environment.
LOMAC emphasizes the threat of malicious users, compromised root daemons, and viruses. The
tainting file system is first concerned with restricting actions taken using the identity and
permissions of a user that are based on untrustworthy data. LOMAC is first concerned with
strict-sense integrity, preventing the flow of data from low-integrity objects to high-integrity
objects. The tainting file system enforces a low water-mark policy for subjects and objects. As
an object is manipulated by various subjects, its trustworthiness can fall, and subjects reading
from that object encounter increasing restrictions on their activities. Whether and how these
restrictions are lifted is situation and policy dependent. However, as explained in section 4, a
``sticky bit'' associated with each object can be used to selectively enforce a low water-mark
policy for subjects only. LOMAC enforces a low water-mark policy for subjects only, meaning
that object integrity never decreases. Finally, we have devoted significant attention to defining
the role of a tainting file system in a network defense in depth strategy and in defining
trustworthiness levels and mandatory security policies which are well suited to the unbounded
computing environment described by Linger et al [7].

Application-level isolation, as discussed by Fayad et al [2], bears superficial resemblance to our
operating system level tainting file system. In both cases, data are categorized (according to
integrity in Fayad et al; according to trustworthiness in the tainting file system). Additionally,
entities accessing data (users in Fayad et al; processes in the tainting file system) are classified
according to trustworthiness.5

However, Fayad et al focus on isolating untrustworthiness, while we allow more dynamic
interaction between varying levels of trustworthiness. Fundamental to the approach of Fayad et
al is a requirement that high integrity be maintained for certain data. Hence, such data are copied
when accessed by a suspicious user, and those copies are discarded if that user is later shown to

5 Note that in the tainting file system, trustworthiness is primarily associated with files and processes, rather than
users.

be untrustworthy. In the tainting file system, there is no hard requirement for maintaining a high
level of file trustworthiness. Rather, the emphasis is on tracking how file trustworthiness
changes. Hence, there is no need to copy files when they are accessed by an untrustworthy
process.6

In general, an analog to the tainting file system could be implemented above the operating
system level, either in a high level language (as in Perl) or an application-specific context (e.g., a
database). However, the integrity of the tainting mechanism would then be reliant on an
untrustworthy underlying file system. This is the same weakness noted above and by Loscocco et
al [8] in connection with sandboxing. Alternatively, our tainting concept might be augmented
with some of the ideas proposed by Fayad et al.

Finally, note that the tainting functionality is a form of dynamic labeling, where the
trustworthiness label of a file changes over time based on conditions surrounding file creation or
modification. One of the earliest dynamic labeling schemes was found in the ADEPT-50
processor developed by Weissman [15], though ADEPT-50 labels reflected object classification.

4 A Baseline Tainting File System Design
We present an initial design for adding a tainting file system to Linux, based on loadable kernel
modules. We also outline an example tainting-based security policy oriented towards the Internet
computing environment. In general, a system administrators should be able to tailor the policies
they use to their specific situations.

Files are assigned a level of trustworthiness based on the conditions under which they are created
and/or modified. We succinctly characterize these conditions by assigning a level of
trustworthiness to each executing process. The trustworthiness of a process is used to set or
update the trustworthiness of all files created or modified by that process. The trustworthiness of
a process is initially established based on the trustworthiness of the binary files from which that
process executes. It is dynamically affected by the data sources from which the process reads,
including files, network connections, and interprocess communication (IPC) mechanisms. Figure
1 illustrates our approach.

The execution of active processes is constrained based on their trustworthiness. Which actions
and system resources are denied depends on the particular trustworthiness policy in use.

Our approach to tracking trustworthiness and constraining active processes is based on
intercepting certain system calls. The set of intercepted system calls can be grouped into three
classes, based on whether the system calls affect file or process trustworthiness or constrain an
active process. Taken together, the set of intercepted system calls in each class effectively wrap
each active process in the system, as illustrated in figure 2.

6 However, as explained in section, our ``sticky bit' provides optional support for maintaining a specific degree of
file trustworthiness.

Figure 1: Conditions affecting file trustworthiness.

Figure 2: Tainting is implemented by effectively wrapping all active processes.

Tainting additionally requires several kernel memory resident data structures. A File State Table
tracks the trustworthiness of each open file and which processes are reading or writing which
files. A Process State Table tracks the trustworthiness of active processes and which files are
being accessed by each process. Entries in the file and process state tables have a ``sticky bit''
field. When the sticky bit is set, any action that would lower the trustworthiness of the
corresponding file or process is denied. Finally, the Process Trust Profile specifies how
execution of processes at each level of trustworthiness is constrained.

File trustworthiness is a persistent file quality, in the same manner as the more conventional
read, write, and execute permission attributes. Somehow the trustworthiness attribute must be
overlayed onto the existing file system. This might be done by adding a fixed-size header field to
each file or by storing the attributes in a single, well-guarded data file. The best option has not
yet been determined.

Our example trustworthiness policy defines four levels of trustworthiness that are applied to both
files and executing processes, as illustrated in figure 3. When a process executing at
trustworthiness level x creates or modifies a file, then the maximum trustworthiness of that file is
x. When a binary file of trustworthiness level y is executed, the corresponding process is initially
placed at trustworthiness level y. Both file and process trustworthiness may change over time

based on system conditions, according to a low water-mark policy for subjects and objects [10].
We also associate trustworthiness with connections to remote hosts.

Figure 3: Trustworthiness levels for files, processes, and network connections.

Certain security restrictions are enforced based on file and process trustworthiness. A completely
untrustworthy file should never by read by any executing process, nor should it be executed.
Untrustworthy or partially trustworthy files do not execute with, or cannot be used to cause
effects with, the full permissions and identity of any user. Trustworthy files are created by user-
owned processes that do not read from network connections. Such files can act or cause actions
with the full permissions and identity of the user to whom they belong. Process restrictions are
analogous, except that completely untrustworthy processes are halted immediately, and
trustworthy processes do not read data from any type of network connection.

We do not fully trust processes that read from network connections, nor do we fully trust data
derived from network connections. Network connections (either TCP or UDP) are assigned a
level of trustworthiness identical to trustworthiness of the remote host. Untrustworthy network
connections should not be allowed. If a remote host becomes untrustworthy, then all existing
network connections to that host are immediately considered untrustworthy. The set of
untrustworthy and trustworthy remote hosts is explicitly specified by the system administrator.
By default, hosts not on those lists are considered partially trustworthy.

Our trustworthiness policy enforces several additional, specific constraints on active processes,
based on the trustworthiness of those processes, as described below:

Trustworthy Process: Any file created by a trustworthy process will, by default, have its
world permissions cleared, though this can be explicitly overridden.

Partially Trustworthy Process: A partially trustworthy process has never interacted with a
partially trustworthy or untrustworthy remote host, even indirectly via IPC or reading from a
file created by virtue of a past interaction. Therefore, the chances that this process will cause
unauthorized or unacceptable damage to data on the local system are small. On this basis we
define the following three constraints: (i) We allow the process to have the same access to
any file or directory stored on a user account that ``world'' would have. By default, any file or
directory created by a partially trustworthy process will have a mode of 0777, though a
partially trustworthy process could certainly specify more restrictive permissions. However, a
partially trustworthy process cannot undo any stricter permissions that it might set. (ii) The
chances that the process will maliciously exfiltrate sensitive data to a remote host are also
small. We do not allow data to be written by a partially trustworthy process to an

untrustworthy remote host. We allow unconstrained writing of data to partially trustworthy
and trustworthy remote hosts. (iii) A partially trustworthy process should not have suid
capability.

Untrustworthy Process: There is some potential that an untrustworthy process will cause
unauthorized damage to the local system or exfiltrate data from the local system to a remote
host. However, there is still some value in having it execute in a ``read-only'' mode.
Therefore, an untrustworthy process should not be able to create, delete, write, or change the
permissions of any file whatsoever. An untrustworthy process should not be able to write
data to an open network connection. Additionally, it should not be able to use suid
functionality.

Completely Untrustworthy Process: No constraints are applied because the process is
automatically and immediately halted when it becomes completely untrustworthy.

Figure 4 shows an example scenario for the tainting design and the trustworthiness policy
defined in this section. The left side of the figure is a list of actions taken by two processes P1
and P2 that affect a file F. The right side of the figure shows the resulting trustworthiness of
those entities, with lighter shades representing lower levels.

In general, system administrators should be able to specify the trustworthiness policies used. For
instance, the example policy described in this section may be too stringent for some
environments. Certain public information accessed over the network may actually be
trustworthy. There might be a need to access files imported from legacy systems or stored on
remotely-mounted file systems that do not support tainting.

Recall that the tainting mechanism itself may be targeted by an adversary. In our prototype Linux
implementation, there are two minimal requirements for protecting the tainting mechanism:
secure the loadable kernel modules used to implement tainting and defend the file
trustworthiness attributes. The security of both depends on the security of access to root-level
privileges. In the first case, anyone who gains root access can disable tainting functionality or
replace it with his own Trojanized modules. In the second case, the attributes will be stored in
the file system, since they are persistent, and by definition root has access to the entire file
system. Use of smart cards might alleviate both situations by better differentiating between
authorized and unauthorized root users. For the present, we duck this issue by noting that tainting
provides additional protection for an inattentive or incompetent user and is not specifically
intended to defend against malicious users.

Figure 4: Example scenario for the trustworthiness policy defined in this section.

5 Conclusion
We have proposed the idea of a tainting file system to address deficiencies in general purpose
operating systems deployed in the highly-connected, Internet computing environment. This
scheme adds a new file attribute that denotes the level of trustworthiness of a file. It can be
applied to compiled or interpreted software files or to data files. The scheme also includes a
mandatory trustworthiness policy. This policy associates a level of trustworthiness with all files
based on the conditions under which they were created or modified. It enforces limitations based
on the assigned level of trustworthiness, including limitations on executable files and limitations
on programs accessing data files of a given trustworthiness. Finally, it controls changing the
level of trustworthiness associated with a given file.

The tainting file system concept complements other approaches to computer and network
security, including software wrappers, sandboxing, digital signatures, firewalls, and intrusion
detection systems. It is envisioned to be one element of a network defense in depth strategy that
encompasses all layers of computer and network architecture.

We have expanded the tainting file system concept into a baseline design. Realistically speaking,
the baseline design should be implemented in such a way that it can be added to existing
mainstream operating systems, such as Unix and Windows NT, without requiring source code
modifications to those operating systems. We have suggested an approach for doing so in the
Unix environment, though actual implementation is still underway. It should also be possible to
develop an implementation for the Windows 95/98/NT environment.

Several design issues remain to be considered. One is compatibility of tainting with existing
applications. The basic tainting concept presented here might be generalized in several ways. For
example, the number of trustworthiness levels need not be four. File trustworthiness might be
established based on other criteria besides the trustworthiness of all processes modifying that

file. Trustworthiness of processes might be set based on a combination of current actions and
past history.

References
[1] Dirk Balfanz and Edward Felten. Secure internet programming news.
http://www.cs.princeton.edu/sip/history, October 1995.

[2] Amgad Fayad, Sushil Jajodia, and Catherine McCollum. Application-level isolation using
data inconsistency detection. In Proceedings of the 15th Annual Computer Security Applications
Conference, 1999.

[3] David Ferraiolo and Richard Kuhn. Role-based access control. In Proceedings of 15th
National Computer Security Conference, 1992.

[4] Timothy Fraser. Lomac - low water-mark mandatory access control. Technical Report 0766,
NAI Labs, 1999.

[5] Timothy Fraser, Lee Badger, and Mark Feldman. Hardening cots software with generic
software wrappers. IEEE Security and Privacy, 1999.

[6] Data Fellows Inc. http://www.datafellows.com.

[7] R. C. Linger, N. R. Mead, and H. F. Lipson. Requirements definition for survivable network
systems. http://www.cert.org.

[8] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Taylor, S. Jeff
Turner, and John F. Farrel. The inevitability of failure: The flawed assumption of security in
modern computing envronments. http://www.jya.com (from NISSC98).

[9] Finjan Software Ltd. Surfinshield corporate 4.5 desktop security software: Technical
whitepaper. http://www.finjan.com, 1999.

[10] Terry Mayfield, J. Eric Roskos, Stephen R. Welke, and John M. Boone. Integrity in
automated information systems. Technical Report 79-91, National Computer Security Center,
1991.

[11] NIST. An introduction to role based access control. NIST CSL Bulletin,
http://hissa.ncsl.nist.gov/rbac.

[12] SecurityPortal.com. http://www.securityportal.com, September 1999.

[13] Aladdin Knowledge Systems. http://www.esafe.com.

[14] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl. O'Rielly and
Associates, Inc., 2nd edition, 1996.

[15] Clark Weissman. Security controls in the adept-50 time sharing system. In Proceedings of
the 1969 AFIPS Fall Joint Computer Conference, 1969.

	Table of Contents
	Presentation

