
A Query Facility for Common Intrusion Detection Framework

Peng Ning, X. Sean Wang, Sushil Jajodia

Center for Secure Information Systems
George Mason University, Fairfax, VA 22030, USA

Voice: (703)993-f1629, 1662, 1653g, Fax: (703)993-1638
fpning, xywang, jajodiag@gmu.edu

Abstract

It is essential for intrusion detection systems to share
information in order to discover attacks involving
multiple sites. Common Intrusion Detection Framework
(CIDF) is an important step towards enabling di�erent
intrusion detection and response (IDR) components to
interoperate with each other. Although CIDF provides
an infrastructure and language support that allows an
IDR component to understand the information sent by
another component, it does not contain a facility for a
component to request speci�c information from other
components. The lack of such a facility may result in a
waste of processing time, storage capacity and network
bandwidth. This paper proposes an extension to
the Common Intrusion Speci�cation Language (CISL),
the language adopted by CIDF, to model requests
among CIDF components. The extension is simple
and consistent with the original CISL. Each request
for information is described as a pattern for relevant
information and an optional format speci�cation for the
responding message. The use of pattern in modeling
requests not only provides a way to represent queries,
but also leads to a potential reuse of signature-based
intrusion detection software.

1 Introduction

Sharing information among intrusion detection sys-
tems is important, especially for the purpose of
detecting coordinated intrusions or intrusions dis-
tributed across a set of hosts and network elements
[2, 5, 9]. Common Intrusion Detection Framework
(CIDF) is the result of an on-going work that aims
at enabling di�erent intrusion detection and re-
sponse (IDR) components to interoperate and share
information [1, 4, 5, 11, 13]. The CIDF working
group was formed as a collaboration among DARPA
funded IDR projects.

Although CIDF provides an infrastructure and
language support that allows an IDR component to
understand the information that is sent by a remote

IDR component, it does not contain a facility for
an IDR component to request speci�c information
from another component. The lack of such a
facility may result in ine�cient communication
between IDR components. Indeed, if the sending
IDR component sends all its information to the
receiving component, the receiving component may
be overwhelmed by information, most of which
it does not want. Not only the sending and
the receiving components may have to process
unnecessary messages, but the network bandwidth
may also be wasted. On the other hand, if the
sending IDR component does not send all the
information, the receiving components may miss
some important messages. We believe that a more
e�cient approach is to have IDR components send
information to communicating partners only when
the particular information is requested.

For example, suppose the IDR system monitor-
ing host A discovers a suspicious user who remotely
logged in from host B, and it wants to trace the ori-
gin of the user. Instead of letting this IDR system
get all the login events from host B and �gure out
from which host the suspicious user logged into B,
a more e�cient way is to let it request the informa-
tion from the IDR system for host B, which then
�nds out and returns the result. (This process may
continue when the IDR system for A learns that the
suspicious user actually logged into B from another
host, say C.)

In this paper, we propose an extension to the
common intrusion speci�cation language (CISL),
the language adopted by CIDF. The extension
allows IDR components to specify requests for
particular information from other IDR components.

The extension describes requests for particular
information in terms of patterns. A pattern
speci�es the characteristics of the information in
which the requesting IDR component is interested.



Based on S-expressions, the language construct
adopted by CISL, patterns are described using
\wild-card terms" that stand for SIDs (semantic
identi�ers) or data values, and conditions that
these wild-card terms must satisfy. Basically, each
pattern gives a set of S-expressions that match the
pattern. Together with the semantics assigned by
CIDF to the \words" in CISL, patterns allow CIDF
components to precisely express requests.

A component that receives a request is expected
to �nd the information that matches the pattern,
instantiate the wild-cards in the pattern according
to the information, and return the resulting message
composed from the instantiation. Optionally, the
requesting component may specify the format for
the responding message.

Note that the extension proposed in this paper
is independent of the message transmission model,
which can be either a push or a pull model.
Indeed, the extended CISL not only enables an IDR
component to send queries to other components,
but also allows it to set up traps at remote systems.

A formal approach has been developed for gen-
eral IDR systems to specify requests [10]. In this
paper, we focus on CIDF and propose a language
extension speci�cally for CISL. Many concepts in-
troduced here are based on the formal model of
[10]. An architecture for detecting coordinated at-
tacks using prede�ned queries was also proposed
in [14], where queries (which we also call detection
tasks) are automatically generated from the attack
descriptions and di�erent IDR components cooper-
atively detect coordinated attacks by message pass-
ing.

The contribution of this paper is three-fold.
First, we recognize that the querying capability is
important to the performance of interoperating IDR
systems. Second, we formalize a request for speci�c
information as a pattern and an optional format
speci�cation for the response. Since patterns are
intrinsic to IDR information (as evidenced by the
existence of many pattern-based intrusion detection
systems), our approach provides a natural way
for IDR systems to express their interests. As a
further bene�t, using patterns to specify queries
can potentially lead to a reuse of existing intrusion
detection software. Finally, our work provides
a simple and consistent extension to the CISL.
Existing CIDF components can be easily adapted
to take advantage of the language extension.

The rest of the paper is organized as follows.
Section 2 briey describes the background material

about CIDF and CISL. Section 3 discusses our
extension for specifying requests using S-patterns.
Section 4 discusses some implementation issues
involved in the deployment of the request facility.
Section 5 concludes this paper and points out some
future research directions.

2 Background

CIDF is a framework that aims at interoperation
and software reuse among IDR systems [1, 4, 5,
11, 13]. CIDF views IDR systems as consisting of
discrete components that communicate via message
passing. Four kinds of IDR components are envis-
aged: Event Generators (E-boxes), Event Analyz-
ers (A-boxes), Event Databases (D-boxes) and Re-
sponse Units (R-boxes). An event generator obtains
events from the larger computational environment
outside the IDR system; an event analyzer receives
information from other components, analyzes them,
and returns the analysis result; an event database
stores information; and a response unit takes ac-
tions (e.g., killing a process) on behalf of other com-
ponents.

Data exchanged among CIDF components is
speci�ed in the form of generalized intrusion de-
tection objects (gidos) which are described in the
Common Intrusion Speci�cation Language (CISL).
A gido encodes an occurrence of a particular event
that happened at a particular time, a conclusion
about a set of events, or an instruction to carry out
an action.

CIDF components communicate over a three-
layered architecture, which consists of the gido
layer, the message layer and the negotiated trans-
port layer. Data to be exchanged is �rst encoded
in gidos. Then gidos are encapsulated in messages.
Finally, messages are sent over a transport mecha-
nism negotiated between the communicating com-
ponents.

The purpose of the gido layer is to allow
components to have a common understanding of the
semantics of the data they send to each other. As
the language to specify gidos, CISL provides a rich,
extensible format with de�ned semantics so that the
information being exchanged can be described. We
will describe CISL in further detail in section 2.1.

The message layer is concerned with security,
e�ciency and reliability of the communication.
Message format and message processing procedures
are de�ned to ensure secure, reliable and e�cient
communication among CIDF components.



The transport mechanism is not part of the CIDF
speci�cation. However, a protocol based on the
reliable UDP is selected as the default transport
protocol. Other transport layer protocols may be
used after a negotiation procedure.

CIDF also speci�es how IDR components com-
municate with each other. A directory service
based on the lightweight directory access protocol,
called matchmaking service or matchmaker, pro-
vides a mechanism for CIDF components to adver-
tise themselves and to locate communication part-
ners with which they can share information.

2.1 Common Intrusion Speci�cation

Language

CISL is proposed to specify events, analysis re-
sults and responses among CIDF components [1, 5].
CISL is based on a Lisp-like general language con-
struct, called S-expressions. S-expressions are syn-
tactic constructs for nested groupings of tags and
data, where the grouping is done with parentheses.
For example, (HostName 'ten.ada.net')
is a simple S-expression that groups two terms,
HostName and 'ten.ada.net'. The term imme-
diately after the �rst left parenthesis of an S-
expression (e.g., HostName in the example) is the
tag of the S-expression, and the terms after the
tag and before the matching right parenthesis (e.g.,
'ten.ada.net') are the data values grouped with
the tag. The data values grouped with a tag are
called the argument of the tag. We also say an
S-expression is headed by x if x is the tag of the S-
expression. The argument grouped with a tag can
be not only simple constants, but also S-expressions
(i.e., nested S-expressions).

Tags are assigned with well-de�ned semantics in
CIDF to help the interpretation of the data grouped
with them. These tags are called Semantic IDenti-
�ers, or SIDs. In the example above, HostName is
an SID with the assigned semantics that the string
'ten.ada.net' should be interpreted as a host-
name.

SIDs are divided into several groups. The
SIDs that denote actions, recommendations or state
descriptions are called verb SIDs. An S-expression
that has at least one verb SID appearing in it is
called a sentence. A verb SID takes as its argument
a sequence of S-expressions that tells the various
aspects about the sentence. For example, in the
following S-expression, Delete is a verb SID that
denotes the action of deletion.

(Delete

(Location

(Time '15:30:34 10 June 1999')

)

(Initiator

(UserName 'Joe')

)

(Source

(Filename '/etc/passwd')

(Owner

(UserName 'root')

)

)

)

The SIDs that govern the information about the
\players" associated with a verb are called role
SIDs. A role SID takes as argument a sequence
of S-expressions that identify or describe the entity
playing the indicated role. An S-expression headed
by a role SID is called a role clause. In the S-
expression above, Location, Initiator, Source

and Owner are all role SIDs.

There are two special kinds of role SIDs. A
role SID that does not describe an object, but
locates a verb SID or modi�es its meaning is called
an adverb SID. For example, in the S-expression
above, Location is an adverb SID that governs the
information about the the context of the deletion
event. A role SID that can only occur directly under
another role SID (i.e., the S-expression headed by
the former role SID is an argument of the latter role
SID) is called an attribute SIDs. For example, in
the S-expression shown above, Owner is an attribute
SID that governs the information about the owner
of the deleted �le. Attribute SIDs describe an entity
that has a relation to another entity rather than to
the whole sentence.

An SID that can only take a constant as its
argument is called an atom SIDs. For example,
in the S-expression shown above, Time, UserName
and Filename are all atom SIDs. Atom SIDs can
only appear inside role clauses. Atom SIDs give
property values while verb and role SIDs organize
the structure of the values. An S-expression headed
by an atom SID is called an atom clause, or
sometimes an SID-data pair.

There are two special atom SIDs, ReferAs and
ReferTo. They are collectively called referent
SIDs. Referent SIDs allow one to link two or more
sentences together (or two or more parts of the same
sentence). The SID ReferAs labels a role clause or
a sentence, and the SID ReferTo refers to the role
clause or the sentence using the label.



The SIDs that can join sentences together are
called conjunction SIDs (i.e., each S-expression in
the argument of a conjunction SID must contain
at least one verb SID). Conjunction SIDs state the
relationship among sentences.

For detailed de�nition of SIDs, please refer to the
CISL document [1].

3 Query

As mentioned in the introduction, for the purpose
of e�ciency, an IDR component needs to describe
speci�cally what they would like to request from
other components. In this section, we will model
such requests by extending the CISL.

Our extension is to add new SIDs and language
constructs so that a CIDF component may specify
requests using the extended language. The speci-
�cation of a query is separated into two parts: a
condition that the information of interest must sat-
isfy and an optional speci�cation of the particular
information that must be returned to the request-
ing component. We �rst use special S-expressions
called S-patterns to capture the former part, then
describe the latter part either implicitly with the
patterns or explicitly with speci�cations.

3.1 S-Patterns

An S-pattern is an S-expression with \wild-card
terms" that stand for certain kinds of SIDs or
data values, and conditions that these wild-card
terms must satisfy. Similar to other pattern
representations (e.g., regular expressions), an S-
pattern is a syntactic notation for describing a set
of S-expressions. For example, the following S-
expression is an S-pattern, in which the SID AVerb

is a wild-card SID that stands for all verb SIDs.

(AVerb

(Initiator

(UserName 'Joe')

)

)

The two SIDs, Initiator and UserName, are as
de�ned in the CISL speci�cation, and 'Joe' is the
data value grouped with UserName. This pattern
represents the set of all S-expressions that have
the above form but with AVerb replaced with a
particular verb SID, e.g., the S-expression derived
from above by replacing AVerb with Delete.

Given the semantics assigned to the SIDs, an
S-pattern expresses the information that an IDR

component may be interested in. For example,
the aforementioned S-expression represents all the
actions or responses that are initiated by the user
whose username is Joe.

There are two kinds of wild-card terms, wild-
card SIDs and wild-card data values. We introduce
several wild-card SIDs, each of which represents
a class of SIDs (e.g., AVerb is a wild-card SID
representing verb SIDs). To allow conditions refer
to the SID that takes the place of a wild-card SID,
we also introduce naming SIDs for wild-card SIDs
so that we can give a wild-card SID a name and
later use the name to specify the conditions.

A di�erent approach is used to represent wild-
card data values due to the restriction imposed
by the CISL (which will be discussed later). We
introduce a couple of escape SIDs such that when
they take atom clauses as arguments (recall that
data values only appear in atom clauses), the data
values will be reinterpreted as wild-card data values.
To facilitate the use of wild-card data values in
conditions, the escape SIDs also assign names to
the wild-card data values.

We describe conditions with predicates and log-
ical combinations of predicates. Accordingly, we
introduce SIDs that stand for predicates and logi-
cal operations to specify the conditions. Predicates
determine the relationship among their arguments,
and logical operations allow representation of com-
plex relationships by combinations of predicates.

In summary, we add the following kinds of SIDs
to support the speci�cation of patterns.

- wild-card SIDs: AVerb, ARole, etc.

- naming SIDs for wild-card SIDs: SIDReferAs

and SIDReferTo

- escape SIDs: ValueReferAs and ValueReferTo

- predicate SIDs: EqualTo, LessThan, etc.

- logical operation SIDs: LogicalAnd, LogicalOr

and LogicalNot

- other SIDs: Condition, Query and SIDValue

In the following, we explain these SIDs in further
detail.

3.1.1 Wild-card SIDs

A wild-card SID is essentially a variable which
stands for any SID that can be placed at that
position. We have seen an example using the wild-
card SID AVerb at the beginning of section 3.1.



The following wild-card SIDs are added to
the CISL to support S-patterns: AVerb, ARole,
AnAdverb, AnAttribute, AConjunction, and AnAtom.
They are wild-cards for the corresponding kinds of
SIDs. AVerb is a verb SID that stands for any verb
SID other than AVerb. It can be placed in an S-
expression as a normal verb SID and represents any
verb SID other than AVerb. ARole is a role SID that
stands for any role SID other than ARole. It can be
placed in an S-expression as a normal role SID and
represents any role SID other than ARole. The wild-
card SIDs AnAdverb, AnAttribute, AConjunction
and AnAtom are similarly de�ned.

3.1.2 Naming SIDs and SIDValue

Two naming SIDs, SIDReferAs and SIDReferTo,
are introduced to facilitate the use of wild-card SIDs
in conditions. Following the convention of CISL,
they are atom SIDs that take unsigned long integers
as arguments. SIDReferAs is usually placed under
a wild-card SID such that the S-expression headed
by the SIDReferAs is in the argument of the wild-
card SID. SIDReferAs gives names to wild-card
SIDs, while SIDReferTo uses the SID by making
a reference to the name.

For convenience of presentation, however, we will
use \symbolic names" for the data values grouped
with the naming SIDs hereafter. They can be easily
transformed to unsigned integers.

Another SID, SIDValue, is introduced to facili-
tate the comparisons involving wild-card SIDs and
\constant" SIDs. SIDValue is an atom SID that
takes a valid SID as its argument. It instructs that
its argument be interpreted as an SID. For example,
the S-expression (SIDValue Delete) means that
Delete is an SID.

The following S-expression shows an example of
the naming SIDs for wild-card SIDs.

(AVerb

(Initiator

(UserName 'Joe')

)

(SIDReferAs var verb)

(Condition

(NotEqual

(SIDReferTo var verb)

(SIDValue Delete)

)

)

)

The clause (SIDReferAs var verb) gives the name

var verb to the wild-card SID AVerb, and (SIDReferTo
var verb) later uses the wild-card SID by making
reference to var verb. Here NotEqual is a predi-
cate SID which determines whether the verb SID
represented by var verb is SID Delete or not, and
Condition is the SID that governs the conditions
for the pattern. Thus, together with the semantics
assigned to the SIDs, this S-expression represents
the S-pattern for all the actions or responses ini-
tiated by user 'Joe' except for deletion. We will
explain predicate SIDs and the SID Condition in
more detail later.

Note that SIDReferAs/SIDReferTo SIDs are dif-
ferent from ReferAs/ReferTo. ReferAs/ReferTo
link roles or sentences represented by the corre-
sponding S-expressions, while SIDReferAs/SIDReferTo
refer to wild-card SIDs.

3.1.3 Escape SIDs

Because of the restriction imposed by the CISL,
we cannot use the same naming mechanism as we
used for wild-card SIDs. Since sentences speci�ed
in CISL are intended to be encoded in binary forms
and some types of data values are assigned a �xed-
length �eld (e.g., IPV4Checksum is a 16-bit integer),
we cannot use a special data value as a wild-card
term (otherwise, we won't be able to represent
some data value, for example, a checksum of an
IP packet). Thus, we introduce a couple of escape
SIDs such that when they take atom clauses as their
arguments, the data values will be reinterpreted as
wild-card data values.

Two escape SIDs, ValueReferAs and ValueReferTo,
are introduced to represent wild-card data values
and assign names to the data values.

An escape SID takes atom clauses as its argu-
ment, and causes the data values grouped with the
atom SID to be interpreted as \names" for wild-card
data values. Also, within an S-expression headed by
an escape SID, an atom SID takes an unsigned long
integer as argument (for convenience of presenta-
tion again, we shall use symbolic names instead of
integers). For example, the S-expression

(ValueReferAs

(UserName var uname)

)

makes var uname being interpreted as a reference
to a possible username. An S-expression headed by
an escape SID is called an escape clause, and can
be used as an atom clause.

As SIDReferAs and SIDReferTo, ValueReferAs



gives a name to a data value that is grouped with an
atom SID, and ValueReferTo catches this value by
making a reference to the name. For example, in the
following S-expression that represents an S-pattern
of all the delete actions initiated by users other
than Joe, the possible value of UserName under the
Initiator role clause is given a name var uname,
and later ValueReferTo makes a reference to this
value under the NotEqual SID.

(Delete

(Initiator

(ValueReferAs

(UserName var uname)

)

)

(Condition

(NotEqual

(ValueReferTo

(UserName var uname)

)

(UserName 'Joe')

)

)

)

3.1.4 Predicate SIDs

Predicate SIDs are introduced to help state condi-
tions for patterns in S-expressions. Predicate SIDs
are role SIDs. A predicate SID takes as its argument
role clauses, atom clauses and (or) escape clauses,
representing the relationship among them.

An S-expression headed by a predicate SID is
called a predicate clause, or more speci�cally a
simple predicate clause. A predicate clause is
expected to return True or False according to
whether the relationship holds or not.

The following S-expression shows an example of
predicate clause that represents whether the host
denoted by var host is in the domain 'ada.net'.
Here we assume that var host is de�ned by
ValueReferAs somewhere else.

(HostInDomain

(ValueReferTo

(FQHostName var host)

)

(DomainName 'ada.net')

)

Predicate SIDs are important for the expressive-
ness of the extended language. Since the original
language was not developed for specifying requests,

no SIDs pertaining to request are included in the
language speci�cation. To fully support CIDF com-
ponents to ask queries, extensive work is needed to
determine what predicate SIDs should be provided.
We will not give a complete list for predicate SIDs
in this paper, but consider it as future work. The
predicate SIDs used in the examples of this paper
are HostInDomain, NotEqual and LessThan, whose
semantics are explained along with the examples.

3.1.5 Logical Operation SIDs

Logical operation SIDs are used to represent com-
plex conditions by logically combining simple pred-
icate clauses. Logical operation SIDs are role
SIDs representing logical operations. Correspond-
ing to the three logical operations AND, OR and
NOT, three logical operation SIDs, LogicalAnd,
LogicalOr and LogicalNot, are used.

A logical operation SID takes as its argument
a sequence of predicate clauses (in the case of
LogicalNot, only one S-expression is allowed as its
argument), representing the result of applying the
corresponding logical operation to the argument.
An S-expression headed by a logical operation SID
is also called a predicate clause, or more speci�-
cally a complex predicate clause. Therefore, logical
operation SIDs along with predicate SIDs can re-
cursively express complex conditions. For example,
the following S-expression shows a condition that
var verb is not Delete and var host is within the
'ada.net' domain. Here we assume that var verb

and var host have been de�ned.

(LogicalAnd

(NotEqual

(SIDReferTo var verb)

(SIDValue Delete)

)

(HostInDomain

(ValueReferTo

(FQHostName var host)

)

(DomainName 'ada.net')

)

)

3.1.6 SIDs Condition and Query

The SIDs Condition and Query are used to or-
ganize S-expressions for conditions and patterns,
respectively. The SID Condition is introduced
to govern the S-expressions that describe the con-
ditions that must be satis�ed by the wild-card
terms. The Condition SID takes as argument an



S-expressions headed by predicate SIDs or logical
operation SIDs (i.e., a predicate clause). An S-
expression headed by the Condition SID is called
a condition clause. To make conditions speci�c, we
require that each condition clause be placed directly
under a verb or AVerb SID, meaning that the condi-
tion must be satis�ed when the action, description
of analysis result or response corresponding to the
verb SID occurs.

The SID Query is introduced to govern the S-
expressions that describe a pattern. Query SID
is a conjunction SID that takes as its argument a
sequence of sentences. An S-expression headed by
Query SID is called a query sentence.

With the SIDs introduced earlier, CIDF compo-
nents are provided with support for speci�cation of
S-patterns. The following example shows a com-
plete S-pattern.

Example 1 Suppose a component wants to
know from what IP address and port a user with
username 'Joe' telnets to the host having IP
address '10.0.0.3'. The component can specify
this request using the following pattern.

(Query

(Login

(Initiator

(UserName 'Joe')

)

(Session

(ValueReferAs

(SourceIPV4Address s IP)

(TCPSourcePort s port)

)

(DestinationIPV4Address

'10.0.0.3')

(TCPDestinationPort 23)

)

(Condition

(NotEqual

(ValueReferTo

(SourceIPV4Address s IP)

)

(DestinationIPV4Address

'10.0.0.3')

)

)

)

)

3.2 Format of Returning Message

With the extension introduced above, a CIDF
component is able to describe its interest as S-

patterns. However, S-patterns are not speci�c
enough to express the exact request of a component.
In other words, it is not clear what should be
included in the reply to a query and how the
information should be arranged. As a result,
it is still possible that a requesting component
gets unnecessary messages or misses important
information. Thus, additional mechanism is needed
in order to provide a su�cient solution.

There are alternative ways to solve this problem.
The content and the arrangement of the reply
(i.e., the format of the returning message) can
be speci�ed either implicitly or explicitly in the
request. In the following, we will discuss them
respectively.

3.2.1 Implicit Request for Returning

Message

The information that must be returned can be
speci�ed implicitly. When a component �nds the
information that matches a request, it is required
to instantiate all the wild-card terms in the request
using the information and return the resulting
S-expression. This approach basically assigns a
\returning all" semantic to a query sentence.

In order to have the requested information, a
component has to list the particular aspects of
information as wild-card SIDs or wild-card data
values.

For example, with the assigned \returning all"
semantic, the query sentence shown in example 1
speci�es a request for all the session information
about user Joe's telnet sessions. The requesting
component can directly send the query sentence
to the event analyzer that monitors the host.
Suppose the event analyzer that receives the query
does �nd a telnet session to '10.0.0.3' initiated
by user 'Joe' and the source IP address and
the source port number are '129.174.40.15' and
6543, respectively. It will instantiate the wild-card
data values s IP and s port in the above query and
return the following S-expression.

(Login

(Initiator

(UserName 'Joe')

)

(Session

(SourceIPV4Address

'129.174.40.15')

(TCPSourcePort 6543)

(DestinationIPV4Address

'10.0.0.3')



(TCPDestinationPort 23)

)

(Condition

(NotEqual

(SourceIPV4Address

'129.174.40.15')

(DestinationIPV4Address

'10.0.0.3')

)

)

)

The advantage of this approach is its simplic-
ity. By assigning the \returning all" semantic to a
query sentence, it doesn't need any additional mech-
anisms. In addition, the relationships represented
by the conditions in queries are also kept in the re-
turning message. Thus, the returning messages are
complete in the sense that all the related constraints
are contained in the message.

However, some information may be redundant
in the returning message. Some part of the query
may be presented to specify the conditions that
the requested information should satisfy, and may
not be of interest to the requesting component. If
we use this approach, these parts will have to be
returned by the requested component.

3.2.2 Explicit Request for Returning

Message

Alternatively, we can specify explicitly what should
be returned and how the information is arranged.
We introduce an additional component into a query,
which arranges the format of returning messages.

A new SID, Format, is introduced to govern S-
expressions that specify the format. Format is a
conjunction SID that takes sentences as argument.
It is always placed directly under the SID Query,
representing the request by the query for particular
messages. S-expressions under the SID Format

are described using constants as well as references
to wild-cards and data values that appear in the
pattern of the same query. An S-expression headed
by the SID Format is called a format sentence.

A format sentence describes the requested aspect
of the information. When there is information
that matches the S-pattern, related aspects are
extracted and described in S-expression according
to the format sentence.

For example, with the explicit approach, the
query about the telnet session shown in example
1 can be speci�ed as follows.

(Query

(Login

(Initiator

(UserName 'Joe')

)

(Session

(ValueReferAs

(SourceIPV4Address s IP)

(TCPSourcePort s port)

)

(DestinationIPV4Address

'10.0.0.3')

(TCPDestinationPort 23)

)

(Condition

(NotEqual

(ValueReferTo

(SourceIPV4Address s IP)

)

(DestinationIPV4Address

'10.0.0.3')

)

)

)

(Format

(Login

(Session

(ValueReferAs

(SourceIPV4Address s IP)

(TCPSourcePort s port)

)

)

)

)

)

When the event analyzer �nds the corresponding
telnet session information, it will arrange the session
information according to the S-expression under the
SID Format and return the following responding
message.

(Login

(Session

(SourceIPV4Address

'129.174.40.15')

(TCPSourcePort 6543)

)

)

Using the explicit approach, the responding
message can be shorter than when the implicit
approach is used, since at least those parts that
specify conditions in the pattern can be omitted
from the responding message. This will save



network bandwidth and processing time for the
reply.

However, the requesting messages usually be-
come larger because of the explicit speci�cation of
the general form of responding messages. In ad-
dition, the requesting components should be able
to link responding messages to requesting ones. In
other words, the requesting components must know
which responding message replies to which request-
ing message. Here we assume that there exist other
mechanisms that link the corresponding requesting
and responding messages together. A simple solu-
tion could be embedding in the reply the identi�er
of the requesting message.

3.3 An Example - Tracing Suspicious

Users

We conclude this section with an example of
tracing suspicious users. Tracing techniques have
been studied by various research groups and some
solutions specialized for this problem have been
proposed (e.g., thumbprinting [12]). Here we show
how we can achieve the same purpose through the
cooperation of CIDF components that comunicate
using the extended CISL. The language extension
is certainly not limited to this problem.

Suppose the Event Analyzer monitoring host
A detects a suspicious user who remotely logged
in from host B and wants to trace the origin
of this user. The Event Analyzer discovers that
the user was connected from host B to host A
through a telnet session beginning at 14:45:36 on
May 17 1999, and the telnet session is carried over
a TCP connection from IP address '10.0.0.2' port
4321 to IP address '10.0.0.1' port 23 ('10.0.0.1'
and '10.0.0.2' are IP addresses of host A and B,
respectively). Then the Event Analyzer for host A
can start tracing by posing the following query to
the Event Analyzer for host B instead of getting all
login-related events from the corresponding Event
Generator.

(Query

(Login

(Location

(ValueReferAs

(Time login time)

)

)

(Initiator

(ValueReferAs

(HostName src host)

)

)

(Session

(ValueReferAs

(SourceIPV4Address s IP)

(TCPSourcePort s Port)

(DestinationIPV4Address d IP)

(TCPDestinationPort d Port)

)

(ReferAs first session)

)

(Account

(HostName B)

)

(Condition

(NotEqual

(ValueReferTo

(HostName src host)

)

(HostName B)

)

)

(ReferAs first login)

)

(Login

(Location

(Time '14:45:36 17 May 1999')

)

(Session

(SourceIPV4Address '10.0.0.2')

(TCPSourcePort 4321)

(DesinationIPV4Address '10.0.0.1')

(TCPDestinationPort 23)

(Ancestor

(ReferTo first session)

)

)

(Condition

(LessThan

(ValueReferTo

(Time login time)

)

(Time '14:45:36 17 May 1999')

)

)

)

(Format

(ReferTo first login)

)

)

Informally, this query asks: From where and
when did the suspicious user log into host B, given
the clue that he (or she) telneted to host A through
a TCP connection from IP address '10.0.0.2' port



4321 to IP '10.0.0.1' port 23 at time '14:45:36
on May 17 1999?

In the query sentence, the Query SID takes as
argument three sentences. The �rst sentence is
headed by a Login SID, representing the login
event that the suspicious user logged into host
B remotely. The references to login time and
the parameters for the TCP session expresses the
interest of the requesting component, and the
condition explains that the initiating host should
be one di�erent from host B. The second sentence
is also headed by a Login SID, representing the
login event that the suspicious user remotely logged
into host A from host B. The Location clause and
the Session clause specify the login time and TCP
connection that carried the login event, respectively.
The attribute clause headed by Ancestor, which
is under the Session SID, also requires that
this session must be started within the session
of the �rst login event (i.e., the session referred
by first session is an ancestor session of the
second session). The condition clause of the second
sentence explains that the �rst login event should
be before the second one. The third sentence states
that the returning message should be in the same
form as the �rst login sentence, which is denoted by
the reference first login.

Suppose the Event Analyzer for host B discovers
that the suspicious user logged into B from host
'another.hop.com' at time '14:40:04' on May
17 1999, and the TCP connection that carried
this remote login was from '129.174.142.177'

port 1234 to '10.0.0.2' port 23 (i.e., a telnet
session). Then the Event Analyzer will return a
responding message as follows (according to the
format sentence in the requesting message).

(Login

(Location

(Time '14:40:04 17 May 1999')

)

(Initiator

(HostName 'another.hop.com')

)

(Session

(SourceIPV4Address '129.174.40.15')

(TCPSourcePort 1234)

(DestinationIPV4Address '10.0.0.2')

(TCPDestinationPort 23)

)

(Account

(HostName B)

)

(Condition

(NotEqual

(HostName 'another.hop.com')

(HostName B)

)

)

)

After receiving the responding message, the
Event Analyzer for host A may send the Event An-
alyzer for host 'another.hop.com' a similar query
sentence with the new information to determine the
origin of the user. This process may continue until
the origin of the user is found.

4 Discussion

4.1 Impact on CIDF

By extending CISL, we add a new facility into
CIDF, namely speci�cation of request for particular
information. CIDF components are given a mecha-
nism to specify requests for selected information so
that message processing e�ort, storage capacity and
network bandwidth can be saved. However, it also
imposes new requirements on CIDF components.

In order to take advantage of the new function-
ality, a CIDF component has to decide what to re-
quest according to its needs, and describes them in
correct forms. This requires that the component
not only understand the language used to describe
requests (i.e., CISL), but also send right requesting
messages to the right partners when necessary. This
seems to be a strong requirement. However, this re-
quirement can be satis�ed by classifying typical sit-
uations and arranging possible requesting messages
ahead of time. Rule-based expert systems may help
to generate requests automatically. Of course, re-
quests may also be improvised by system adminis-
trators or site security o�cers to handle exceptional
situations.

When cooperating with components from which
requesting messages have been received, a CIDF
component should understand the requesting mes-
sages correctly, �nd the necessary information, and
send back the replying messages in the CISL. This
requires that the component have some mechanisms
to �nd the requested information. This requirement
is outside the scope of the original CIDF. One pos-
sible way to generate reply for a query is to take
advantage of the signature-based intrusion detec-
tion techniques, which are well studied and widely
adopted [3, 6, 7, 8]. Since both queries in our lan-
guage extension and the signature-based intrusion
detection techniques are based on patterns, it is pos-



sible to translate a query in the extended CISL into
a description in a certain signature-based intrusion
detection model, �nd the answer using existing in-
trusion detection software modules (which is possi-
bly modi�ed), and translate the result back to de-
scription in the CISL.

More SIDs than those described in this paper
may be needed for CIDF components to specify re-
quests. Indeed, the SIDs introduced in the previ-
ous section are the minimum set of SIDs that pro-
vide the language support for specifying requests.
Since the original language speci�cation is devel-
oped for CIDF components to make statements
about events, analysis results and responses, the
SIDs may not be enough for making queries. For
example, there is no SIDs that direct a CIDF com-
ponent to collect statistics for certain events.

Determining additional SIDs that are needed for
queries will involve extensive exploration of CIDF
components' requirements. We don't discuss this
issue in this paper but consider it as future work.

4.2 Alternative Approaches

There are alternative approaches in addition to
extending CISL. The simplest solution is to classify
the information into several classes, each of which
represents one kind of information that may be
requested by an IDR component. The original
CIDF proposal adopts a similar approach, where
information is sent to an IDR component according
to the gido classes being requested [4]. The major
drawback of this approach is the lack of exibility.
An IDR component will not be able to express a
request that is not prede�ned. One can certainly
try to make up by listing all possible requests.
However, even a huge number of prede�ned requests
cannot ensure that there are no exceptions. On the
contrary, our extension to CISL provides some basic
language constructs that allow exible speci�cation
of requests.

Another alternative approach is to use mobile
code. One IDR component may send another
component a piece of mobile code (e.g., Java script),
which collects the desired information and sends it
back using CISL. This approach is more expressive
and exible than ours. However, the disadvantages
are also serious. First, the component executing the
mobile code is under more security risk, since the
mobile code, which is on behalf of a remote system,
may bypass the security control and perform some
malicious actions. Second, since it is working in a
CIDF environment, the mobile code has to be able
to \speak" in CISL. This is a strong requirement

because a piece of mobile code has to bring with
itself a parser (for S-expression) and have access
to the dictionary of the SIDs. On the other hand,
our approach extends CISL by adding query facility.
A request speci�ed in the common language can
be sent to a remote IDR component as a query
or set up as a trap, and the requested information
can then be collected and returned by the remote
component if its security policy permits.

Furthermore, some query languages (e.g., SQL)
seem to be good choices because of their expressive-
ness and exibility. However, query languages usu-
ally assume particular data models that they work
on and these data models are usually quite di�er-
ent from what is considered by CISL. For example,
a SQL query statement takes one or more relations
as input and produce a relation as output, while
there is no relation at all in CISL. In addition, an
IDR component may not understand a query spec-
i�ed in a query language like SQL.

4.3 Query Templates

Query templates may be used to reduce the work
involved in writing queries. A query template
speci�es a request for information using some
parameters. When interoperating with other CIDF
components, a requesting component can replace
the parameters with constants and send out the
instantiated query. Libraries of query templates
may be published and shared among many systems.

One way to take advantage of query templates
(and the query facility) is to use them along with
some triggering mechanism such as rule-base expert
system. For example, we may associate appropriate
query templates with the rules in a rule-based
expert system. When these rules are �red due
to certain events, the associated templates can be
instantiated using the event attributes and sent to
other IDR components. The automatic generation
and processing of IDR queries is an interesting
topic; however, we do not cover it in this paper but
consider it as future work.

5 Conclusion and Future Work

This paper described the result of an ongoing re-
search e�ort. Extensions to the Common Intrusion
Speci�cation Language were designed on the basis
of a formal approach for general IDR systems [10].
The goal of this work was to provide language sup-
port for components in the Common Intrusion De-
tection Framework so that they can request speci�c
information from interoperating partners. Based



on the original language, several kinds of semantic
identi�ers were added and requests can be speci�ed
as patterns in the extended language.

Several issues are worth further research. The
�rst is to decide additional SIDs that should
be included to fully support CIDF components'
requests. The second is to de�ne libraries of query
templates for frequently used requests. In addition,
the automatic generation and processing of IDR
queries is also an interesting work that will facilitate
the deployment of the query facility. Finally,
approaches to e�ciently obtain query results are
also important.

References

[1] R. Feiertag, C. Kahn, P. Porras, D. Schnacken-
berg, S. Staniford-Chen, and B. Tung. A com-
mon intrusion speci�cation language (CISL).
http://seclab.cs.ucdavis.edu/cidf/cisl current.txt,
1998.

[2] IETF Intrusion Detection Work-
ing Group. Intrusion detection exchange for-
mat. http://www.ietf.org/html.charters/idwg-
charters.html.

[3] K. Ilgun, R. A. Kemmerer, and P. A. Porras.
State transition analysis: A rule-based intru-
sion detection approach. IEEE Transaction on
Software Engineering, 21(3):181{199, 1995.

[4] C. Kahn, D. Bolinger, and D. Schnackenberg.
Communication in the common intrusion de-
tection framework.
http://seclab.cs.ucdavis.edu/cidf/cidfcomm.txt,
1998.

[5] C. Kahn, P. A. Porras, S. Staniford-Chen,
and B. Tung. A common intrusion detection
framework. Submitted to Journal of Computer
Security, July 1998.

[6] S. Kumar. Classi�cation and Detection of
Computer Intrusions. PhD thesis, Purdue
University, August 1995.

[7] S. Kumar and E. H. Spa�ord. A pattern
matching model for misuse intrusion detection.
In Proceedings of the 17th National Computer
Security Conference, pages 11{21, October
1994.

[8] J. Lin, X. S. Wang, and S. Jajodia.
Abstraction-based misuse detection: High-
level speci�cations and adaptable strategies.

In Proceedings of the 11th Computer Security
Foundations Workshop, pages 190{201, Rock-
port, MA, June 1998.

[9] T. Lunt and C. McCollum. Intrusion detection
and response research at DARPA. Technical
report, The MITRE Corp., 1999.

[10] P. Ning, X. S. Wang, and S. Jajodia. Model-
ing requests among cooperating intrusion de-
tection systems. To appear in the special is-
sue "Advances in Research and Application of
Network Security" of the Computer Communi-
cations Journal, 2000.

[11] P. Porras, D. Schnackenberg, S. Staniford-
Chen, M. Stillman, and F. Wu. The common
intrusion detection framework architecture.
http://seclab.cs.ucdavis.edu/cidf/draft.txt,
1998.

[12] S. Staniford-Chen and L. Heberlein. Holding
intruders accountable on the internet. In Pro-
ceedings of 1995 IEEE Symposium on Security
and Privacy, pages 39{49, Oakland, May 1995.

[13] B. Tung. CIDF APIs: Their care and feeding.
http://seclab.cs.ucdavis.edu/cidf/apis.txt,
1998.

[14] J. Yang, P. Ning, X. S. Wang, and S. Jajo-
dia. CARDS: A distributed system for detect-
ing coordinated attacks. To appear in the 15th
International Conference on Information Secu-
rity (SEC 2000), August 2000.


	Table of Contents

