
Conduit Cascades and Secure Synchronization

Simon N. Foley,
Department of Computer Science,
University College, Cork, Ireland.

(s.foley@cs.ucc.ie)

Abstract

Synchronizing Personal Digital Assistants with host
systems can result in indirect accesses that bypass
security requirements. In this paper we propose a
framework for analyzing the security vulnerabilities
that can arise from synchronization. This framework
provides us with the basis of a paradigm for analyz-
ing the access-control vulnerabilities of systems com-
prised of secure and non-secure components.

1 Introduction

Personal Digital Assistants (PDAs) such as the Palm
handheld are small hand-held computing devices that
support a variety of applications, ranging from con-
ventional electronic organizer programs to spread-
sheets, electronic mail and web browser clients. A
PDA is commonly viewed as an extension of a user's
workstation (or server); carrying data and programs
that often mirror data and programs from the work-
station. Synchronization between the workstation
and the PDA is performed on a regular basis, en-
suring that changes made to data stored on the PDA
are reected on the workstation, and vice-versa.

Little consideration has been given to the security
policy implications of using these devices as part of
an application system. While PDAs are typically
single-user systems supporting little or no access-
control, they are expected to synchronize with multi-
user host systems that do have access-control require-
ments. This synchronization may be used to bypass
host system access-controls.

For example, an employee working in sales and
engineering departments is subject to the security
requirement that sales data may not be written to
engineering datasets. If we are not con�dent about
the employee's PDA upholding this requirement then
synchronization must ensure that at any one time,
either sales or engineering information is carried on
the employee's PDA, but not both. Other scenarios
are possible, for example, the PDA carries both engi-
neering and sales datasets for information purposes.
However, only sales data can be two-way synchro-
nized with the host system.

In this paper we consider the analysis of access-
control vulnerabilities that can arise from synchroniz-
ing host systems with PDAs, in particular the Palm
handheld. The approach �rst considers our con�-
dence in the access constraints of the individual com-
ponents and then analyzes whether that con�dence
can be maintained when the components synchro-
nize. While a component such as a Palm does not
have an access-control mechanism, we can still spec-
ify, albeit with low con�dence, the access limitations
that we believe the installed software implicitly pro-
vides. Our framework provides us with the basis of
a paradigm for analyzing the security vulnerabilities
of systems comprised of secure and non-secure com-
ponents.

Access policies can be abstractly represented in
terms of directed graphs [7] or as reexive orderings
[5]. We use reexive orderings to represent these poli-
cies and Section 2 provides some notation from [5]
that is useful for specifying and reasoning about such
policies. Section 3 extends these policies to include
ratings that represent the degree of con�dence in the

policy being upheld. Sections 4 and 5 consider the ad-
ditional accesses that can arise as a result of synchro-
nization. A cascading e�ect can arise with multiple
synchronization which we show to be a generalization
of the network cascade vulnerability problem [10, 12].

The Z notation [14] is used to provide a consis-
tent syntax for structuring and presenting the de�ni-
tions and examples in this paper. We use only those
parts of Z that can be intuitively understood and Ap-
pendix A gives a brief overview of the notation used.

2 Security Policies

Every system entity (principal, subject, object, etc.)
is assumed to have an associated security label that
encodes its security relevant characteristics. Labels
may simply represent sensitivity levels such as un-
class and secret, but they may also represent any
security-relevant attribute, for example, a label rep-
resenting sales information. Given a set of labels L
then a security policy is de�ned as a reexive relation
P : L $ L. If a 7! b 2 P then information of type
a may ow/interfere with information of type b. For
example, sales information may ow (be read by) the
program labeled budgets. In this paper we are not
concerned in what is meant by information ow or
interference: we use the ow relation as a simple ab-
straction of the security policy upheld by a system.
It has been shown elsewhere [5] that this abstraction
is expressive and can be used to characterize a wide
variety of security policies, including Chinese Walls,
Clark-Wilson access triples and user-group polices.

A standard Palm handheld does not have an ac-
cess control mechanism. However, we can use a ow
policy to represent the access limitations that we be-
lieve the installed software provides. For example, on
a standard Palm, we are reasonably con�dent that
the Gira�e game does not interfere with the mail
database. Naturally, our con�dence that the Palm
will maintain this policy is far less than our con�-
dence that a multilevel secure system can uphold a
comparable policy.

2.1 Specifying Flow Policies

The set of all ow policies between labels of (generic)
type L is de�ned by R[L], the set of all reexive re-
lations.

R[L] == fR : L$ L j id(domR [ranR) � Rg

Let the alphabet �R of policy R denote the set of
labels that it is de�ned in terms of (domR).
A ow policy may be speci�ed using the ; opera-

tor: A; B de�nes a policy such that all elements of
A may ow to all elements of B . Relations ?A and
>A de�ne the least and most restrictive ow policies
with alphabet A, that is, ?A permits all ows, while
>A does not permit any ows (other than reexiv-
ity).

[L]
; : ((PL)� (PL))! R[L]

?;> : (PL)! R[L]

A; B = idA [idB [(A� B)

?A = A�A

>A = idA

Example 1 We are reasonably con�dent that the
standard software installation on our Palm upholds
the policy GPALM.

GPALM == >fgira�e; emailg

PALM == femailg; fabacusg

MLS == funclass; secretg; fsecret; topsecretg

Policy PALM speci�es that email information may
ow to the (Abacus) spreadsheet database (but not
vice-versa); MLS speci�es the usual multilevel secu-
rity policy. 4

2.2 A Policy Algebra

Reexive policies may be constructed using the usual
set and relation operators (set comprehension, union,
and so forth). In this section an algebra is described
that is useful for the speci�cation of information ow
policies.

The projection operator projects a relation R

into relation R@A with alphabet �R \ A such that
the relationships of R are preserved, for example,
mls@fsecret; topsecretg = fsecretg ; ftopsecretg.
The policy extension operator extends R into a re-
lation R " A with alphabet �R [A, such that all re-
lationships are permitted so long as the restrictions
on relationships in R are preserved.

[L]
@ ; " : R[L]� PL! R[L]

R@A = f a; b : (A \ �R) j (a 7! b) 2 R g

R " A = f a; b : (A [�R)
j fa; bg � �R) (a 7! b) 2 R g

Example 2 A Palm is owned by a secret user and
the overall policy can be speci�ed as

SPALM == PALM " fsecretg

Note that the resulting policy is not transitive: while
abacus may ow to secret which may ow to email,
abacus may not ow to email, per the original policy.
4

Flow policies may be compared, in a security sense,
using relation v.

[L]
v : R[L]$ R[L]
u : (R[L]�R[L])! R[L]

not : R[L]! R[L]

R v Q , (�R � �Q) ^ (Q@�R) � R

R uQ = (R " �Q) \ (Q " �R)

notR = (>(�R)) [((?(�R)) nR)

If R v Q , then Q is said to be no less restrictive than
R in that any ow that is not allowed by R will also
not be allowed by Q . We view a R v Q relation as a
re�nement relation: the policy de�ned by Q is, in a
security sense, an acceptable replacement for the pol-
icy R. Intuitively, this means that a system secure
by policy Q is also secure by policy R. The set R[L]
forms a lattice under partial order v, with a lowest

upper bound operator de�ned by u. The lowest up-
per bound operator is useful for constructing complex
policies from simpler policies: R uQ is a policy that
enforces the ow restrictions of R and Q . Since RuQ
is a lowest upper bound on R and Q , then it is, in a
security sense, an acceptable replacement for R and
Q . The complement of a policy R is given as notR.

Example 3 The policy complement operator is use-
ful for constructing policies in terms of the ows that
are not permitted. For example, we might have a
Palm that does not allow spreadsheet data to be
`beamed' via the infra-red port to another.

NOBE == not(fabacusg; fbeamg)

BEAMPOL == SPALM u NOBE

The overall policy, BEAMPOL, depicted in Figure 1,
upholds the constraints of the individual policies that
compose it. 4

mail

� -

?

6}

=

>

� -

secret

beam

abacus
6

Figure 1: Possible Flows in policy BEAMPOL

3 Con�dence Rated Policies

The policy PALM (Example 1) speci�es that we are
con�dent, to some degree, that it is not possible
to email Abacus spreadsheet data from a particular
Palm handheld. A sophisticated user could bypass
this by developing and installing a new Palm pro-
gram that performs the necessary copying. Policy
PALM reects our belief that this compromise is un-
likely and/or we are willing to accept the risks. In
[6] we describe a PalmOS extension that enforces a
limited type-enforcement security policy. While the
extension is not protected and can be bypassed by
determined malicious code, we have more con�dence
in this operating system (PalmTE) upholding policy
PALM than standard PalmOS. Similarly, we have far

greater con�dence in a multilevel secure system up-
holding the policy than either PalmOS or PalmTE.
Let the type [RT] represent the set of all possi-

ble con�dence ratings that we might associate with a
system and/or policy. We assume that this set forms
a lattice ordering over � , where s � t means
we have more con�dence in a system rated t than a
system rated s .

Example 4 Figure 2 gives sample con�dence order-
ings. Since the Palm does not support hardware
memory management and winCE does, Palm and
winCE ratings are not comparable. 4

mls

6

� o

I

�
palm

winCE

mls

.

palm

palmTE

6

Figure 2: Con�dence Rating Orderings R1 and R2.

We include these con�dence ratings when specify-
ing ow policies. A rated policy is a ow policy over
rating/label pairs, whereby given P : R[RT�L], then
(r ; x) 7! (s ; y) 62 P means that we are con�dent that
x information on an r -rated system cannot interfere
with y information on a s-rated information.

Example 5 f(palm; email)g ; f(palm; abacus)g cor-
responds to a palm rated PALM policy. The policy

C == f(mls; unclass); (mls; secret)g
; f(palm; abacus)g

is an example of a conduit synchronization policy
that speci�es that during synchronization both un-
classi�ed and secret (on a mls-rated system) data
may be transferred to the spreadsheet database on
(a palm-rated) handheld. Conduit policies will be
considered in the next section. 4

If one's level of con�dence is r that policy P is
upheld, then this gives rise to a rated policy r �

� P

where,

[L]
�

� : RT �R[L]! R[RT � L]

r �

� P = f s ; t : RT ; x ; y : L
j s � r ^ t � r ^ x 7! y 2 P

� (s ; x) 7! (t ; y) g

It follows from this de�nition that if my con�dence is
r that P is upheld then the same policy can be upheld
if I decrease my con�dence level to s � r . Note that
no assumption is made in r �

� P about higher ratings
in the sense that ratings that are higher or disjoint
to r are not considered in the alphabet of r �

� P .

Example 6 Figure 3 illustrates the possible ows in
the rated policies mls ��PALM and palm �

�PALM based
on the rating ordering R1 from Figure 2. 4

(palm,email)(palm,email)

(palm,abacus)

6 6

� -

� -
1i

(mls,abacus)

(mls,email)

(palm,abacus)

6

Figure 3: Rated Policies palm�

�PALM and mls��PALM.

Lemma 1 Given ratings r ; s , and policies P ;Q :
R[L] then it follows from the de�nitions of �

� and v
that

r � s ^ P v Q) r �

� P v s �

�Q

That is, the rated policy r : P can be replaced (re-
�ned) by the higher rated policy s : Q without any
loss of con�dence. 2

4 Secure Synchronization

The purpose of synchronization is to ensure data con-
sistency between PDA and host system databases.
Changes to data on one platform need to be reected

on the other, and vice-versa. During a Palm `hot-
sync', a Synchronization Manager running on the
host system calls a series of conduits . Each conduit
is responsible for checking and updating the consis-
tency of certain application databases. For example,
the Oracle Lite relational DBMS for the Palm pro-
vides a conduit that runs on the host, synchronizing
selected host/server databases with the (Oracle) ap-
plication databases on the Palm.
Thus, conduits can be designed to control the ow

of information between the handheld and the host
system, helping to ensure that the overall system
policy is upheld. For example, a conduit might be
designed that allows secret and unclassi�ed informa-
tion to be down-loaded to a Palm (owned by a secret
user), but only secret data may be uploaded. We use
a rated policy to describe the ow controls enforced
by the conduit.

Example 7 An email conduit synchronizes unclassi-
�ed data with the email database on the Palm.

C0 == ?f(mls; unclass); (palm; email)g

A spreadsheet conduit synchronizes secret data with
spreadsheet database on the Palm.

C1 == ?f(mls; secret); (palm; abacus)g

Another conduit allows unclassi�ed and secret data
to be only down-loaded to the spreadsheet database
(one-way synchronization).

C2 == f(mls; secret); (mls; unclass)g
; f(palm; abacus)g

4

Given rated policies H ;P of a host system and a
Palm, respectively, and conduit rated policy C , then
when the Palm synchronizes with the host the follow-
ing ows are possible:

� Flows described by H or P .

� If the conduit connects ow a 7! b 2 H to c 7!
d 2 P by b 7! c 2 C , then we can have an
additional indirect ow a 7! d . These indirect
ows may be de�ned by relational composition
S o

9 C o
9 P .

The composition by synchronization of host policy
H with Palm policy P using conduit C is thus de�ned
by H j[C]jP .

[L]
j[]j : R[RT � L]�R[RT � L]�R[RT � L]

! R[RT � L]

H j[C]jP = H [P [(H o
9 C o

9 P)

Note that since policies are reexive, then a 7! b 2 P

and b 7! c 2 P does not necessarily imply that a 7!
c 2 P and therefore a transitive closure should not be
computed for H j[C]jP on a single synchronization.
Section 5 considers multiple synchronization.

Example 8 Given host policy MLS, Palm policy
PALM and conduit C1 (Example 7), we can compute

(mls �

�MLS) o
9 C1 o

9 (palm
�

� PALM)
= ?f(mls; secret); (palm; abacus)g [
f(mls; unclass)g; f(palm; abacus)g

and thus (mls �

� MLS) j[C1]j(palm �

� PALM) may be
viewed at regarding abacus information as secret. 4

Recall that the policy re�nement relation may
be used to to compare con�dence in rated policies,
whereby R v S means that we are no less con�dent
in S than in R.

Example 9 From Example 8, we have

mls �

�MLS v (mls �

�MLS) j[C1]j(palm �

� PALM)

and we are con�dent that the policy on the host is
upheld. We also have

palm �

� PALM v (mls �

�MLS) j[C1]j(palm �

� PALM)

that is, that the policy on the Palm is also upheld.
Conduit C4 = C1[C3 synchronizes abacus as secret

and email as unclass.

C3 == f(mls; unclass)g; f(palm; email)g

To uphold con�dence in the host policy, only one-
way synchronization (down-load) of email data is sup-
ported. We have

mls �

� PALM v (mls �

�MLS) j[C4]j(palm �

� PALM)

If two-way synchronization is required the overall pol-
icy becomes

SP == (mls �

�MLS) j[C0 [C1]j(palm �

� PALM)

We are no longer as con�dent in the security of the
host since mls��MLS 6v SP. However, palm�

�MLS v SP
holds, reecting our weaker con�dence. Con�dence
in the handheld's security remains the same: palm �

�

PALM v SP. 4

Example 10 Example 2 illustrates how the clear-
ance of the owner of a handheld can be included in
the ow policy. This approach can also be used for
rated policies, for example, the rated Palm ow pol-
icy

SPALM == (palm �

� PALM) " (mls �

� fsecretg)

speci�es that an mls-rated secret user handles infor-
mation on the handheld. Our generalized notation
(mls��fsecretg) gives the pair (mls; secret) and all other
lower rated pairs involving secret, that is,

r �

� S = f s : RT ; x : S j s � r � (s ; x) g

If this Palm is two-way synchronized with an unclas-
si�ed conduit we have

mls �

�MLS 6v mls �

�MLS j[C0]j SPALM

This loss of con�dence occurs since secret may ow
to email on the handheld, which in turn may ow to
unclass via the conduit. 4

Example 11 Let label mgr denote the class of infor-
mation that a manager is trusted to handle. The
manager is cleared to secret and therefore, may
read/write unclassi�ed and secret information, and
write top-secret information (in a security preserving
way). The rated policy is speci�ed as

MMLS == mls �

� (MLS u notftopsecretg; fmgrg)

Recall that policies are not necessarily transitive.
Thus we have secret 7! mgr;mgr 7! secret 2 MMLS,
but secret 7! unclass 62 MMLS.

This manager uses a PalmTE handheld. The rated
policy is extended to include its owner.

MPALM = (palmTE �

� PALM) " (mls �

� fmgrg)

This manager can use two-way conduits C0 and C1
(Example 7), and while the result does not give us
mls-rated con�dence, we have

(palmTE �

�MMLS) v (mls �

�MMLS) j[C0 [C1]j
(palmTE �

�MPALM)

In general, a Palm policy should include a label to
represent its `owner'. 4

During synchronization, a number of conduits may
be invoked, each one checking the consistency of their
respective application database(s). In ow policy
terms, these conduits may be modeled as individual
ow policies, or as one overall conduit policy.

Lemma 2 Given rated policies H ,P ;C0 and C1 then

H j[C0 [C1]jP = H j[C0]jP [H j[C1]jP

This follows since since relational composition dis-
tributes over union.
Corollary Given a rated policy S then it follows
that

(S v H j[C0]jP) ^ (S v H j[C1]jP)
, S v H j[C0 [C1]jP

This means that we can reason about conduits inde-
pendently. 2

Example 12 Example 9 models two conduits that
two-way synchronizes secret with abacus data (C1)
and one-way down-load synchronizes unclass with
email (C3) in terms of one ow policy C4. Using
Lemma 2 the same result may be achieved as

mls �

�MLS v (mls : MLS) j[C1]j(palm �

� PALM)

mls �

�MLS v (mls : MLS) j[C3]j(palm �

� PALM)

4

In practice, it may be appropriate to run conduits
separately on the host system. In Example 12, sepa-
rate conduits C1 and C3 can run as untrusted single
level processes (at secret and unclass, respectively).
To have mls-rated con�dence in the ows modeled
by C4, synchronization would have to be regarded as
trusted since it can, in principle, simultaneously read
and write secret and unclass data. Existing research
on secure transaction processing is applicable to the
development a trusted/multilevel secure synchroniza-
tion manager.

5 Cascading Conduits

Thus far we have considered ows resulting from a
single synchronization. In practice, a Palm is repeat-
edly synchronized with one or more hosts. Additional
ows may emerge as a result of a cascading e�ect
brought about by the repeated synchronization.
Consider a Palm with rated policy P that synchro-

nizes with a host (rated policy H) via conduit C . The
resulting ow policy on the Palm can be de�ned as
the projection

P 0 = (H j[C]jP)@�P

that is, the resulting ows de�ned over the alphabet
of P . A similar policy can be constructed for the host
policy.

H 0 = (H j[C]jP)@�H

A second synchronization may result in additional
ows, that is, the resulting policy H 0 j[C]jP 0 is not
necessarily equal to the original policy H j[C]jP .
This is illustrated in the following example.

Example 13 A Palm P synchronizes with host H

via conduit C .

P == >fk ; l ;mg;

H == Hx [Hy ;

C == Cx [Cy ;

Hx == fag; fbg [>fcg;

Cx == fkg; fag [fbg; flg [fmg; fcg

Hy == fyg; fzg [>fxg;

Cy == fxg; fkg [flg; fyg [fzg; fmg

The ows resulting from synchronization are depicted
in Figure 4. The additional ows k 7! l ; l 7! m are in-
dicated by dashed arcs labeled with a `1'. The dashed
arcs labeled `2' are due to a cascading e�ect that the
additional ows from the �rst synchronization gener-
ate during a second synchronization. The policy sta-
bilizes after two synchronizations, when the overall
policy is (H j[C]jP)@�P) j[C]j((H j[C]jP)@�H).
4

Cy

a

b

c

k

l

m

P

x

y

z

Hx Hy

2

1

1

2

Cx

Figure 4: Multiple Synchronizations and Cascading
Flows.

Sold = >(�H [�P);
Snew = H j[C]jP ;
while (Sold 6= Snew)f

P = Snew@�P ;
H = Snew@�H ;
Sold = Snew ;
Snew = H j[C]jP ;

g

Figure 5: Computing Cascading Conduit Flows.

In general, the overall ow policy can be computed
by repeated calculation of the synchronized policies,
as de�ned in Figure 5. This algorithm terminates
and may be viewed as a variation of computing a
transitive closure using iterative squaring [3]. We are
currently implementing rated policies using Binary
Decision Diagrams [2].

Cascading ows emerge when one or more Palms
synchronize with one or more systems. Reconsider
Example 13; Palm P alternatively synchronizes with
two hosts (upholding policies) Hx and Hy via con-
duits Cx and Cy , respectively. The �rst synchroniza-
tion with Hx reveals ow k 7! l ; this is followed by
synchronization with Hy which reveals x 7! y ; l 7! m.
This stabilizes after an additional synchronization
with Hx , revealing ow b 7! c.

Example 14 The problem of cascading ows during
multiple synchronizations can be viewed as a gener-
alization of the network cascade problem [4, 10, 12].
Assurance levels can be represented as con�dence rat-
ings, and conduits correspond to connections between
systems. Flow cascades may be determined by com-
puting the transitive closure of all system policies and
conduits. For example, given ratings B1 � A1, host
policies Ha and Hb connected via (conduit) C , where

Ha = A1 �

� (funclassg; fsecretg)
Hb = B1 �

� (fsecretg; ftopsecretg)
C = ?f(B1; secret); (A1; secret)g

Since multilevel policies are transitive, then the over-
all rated policy is computed as the transitive clo-
sure NET = (Ha [Hb [C)�. This network can be
evaluated as B1, but not A1 since we can show that
A1 �

�MLS 6v NET. Our approach is more general than
the solution to the network cascade problem since we
can reason about networks of components supporting
di�erent and possibly non-transitive ow policies. 4

6 Discussion and Conclusion

In this paper we considered security policy issues that
arise when synchronizing handhelds with host sys-
tems. A framework was developed that allows us
state our con�dence in the security of the individual
components and test whether that con�dence can be
maintained when the components synchronize. While
the examples were straightforward and were limited
to multilevel-style policies, we have shown elsewhere
[5] that reexive ow policies can be used to express a
wide variety of security policies. Thus, for example,
it is possible to analyze the security vulnerabilities

that arise when synchronizing a Palm with a system
that enforces Clark-Wilson style policies.
We believe that the framework is applicable to the

more general problem of security in networks of het-
erogenous components. These components represent
systems, or alternatively, COTS components whose
potential accesses are articulated as a ow policy. It
is not necessary for these components to have an ex-

plicit access control mechanism; the ow policy repre-
sents the access limitations that we believe the soft-
ware e�ectively upholds. Thus, in the sense of [1],
every component in the system can be regarded as
contributing to the overall trusted computing base.
In our framework we can distinguish the merit of
each component's contribution. This gives rise to a
paradigm for analyzing security of secure/non-secure
components:

1. Identify suitable con�dence ordering.

2. Develop rated ow policies for components. En-
suring that every relevant entity is modeled, in-
cluding users, �les, databases, devices, and so
forth.

3. If a component incorporates an access control
mechanism then the security policy upheld cor-
responds to the ow policy. In the case of dis-
cretionary access, the policy will be based on
our con�dence of whether access is likely to be
granted.

4. If a component has no access control mechanism
then the policy represents the access limitations
that we believe the component implicitly pro-
vides.

5. Analyze synchronizations.

We use an ordering relation to provide a meaning
for con�dence. This allows us to compare our con-
�dence in di�erent policies. Alternative con�dence
metrics may be possible. For example, the probabil-
ity of a particular access constraint being upheld, or
costs related to the insurance value of of the indi-
vidual systems. The probabilistic approach taken in
[11] examines how insecurity may propagate through

a protection schemes. Probabilistic and other mea-
sures of con�dence or trust have also been studied
in the context of authentication metrics [13] and it
would be worth investigating their applicability to
security policies in general.

If a particular composition does not achieve our
desired level of con�dence there are two alternatives.
One is to determine what is the highest level of con-
�dence that can be achieved by the composition; this
is a straightforward search over the relation. The
other alternative is to limit the accesses possible by
the conduits. We expect that an attempt to do this
in an optimal way would lead to hard complexity re-
sults similar to those for the cascade problem [8, 9]
and access-control in heterogenous networks [7]. De-
vising practical approaches to addressing this in the
context of our framework is a topic for future study.

References

[1] B Blakley and D.M. Kienzle. Some weaknesses
of the TCB model. In IEEE Symposium on Se-

curity and Privacy. IEEE CS Press, May 1997.

[2] R.E. Bryant. Symbolic boolean manipulation
with ordered binary decision diagrams. ACM

Computing Surveys, 1992.

[3] J.R. Burch et al. Symbolic model checking: 1023

states and beyond. Information and Computa-

tion, 98:142{170, 1992.

[4] J.A. Fitch and L.J Ho�man. A shortest path
network security model. Computers and Secu-

rity, 12:169{189, 1993.

[5] S.N. Foley. The speci�cation and implementa-
tion of commercial security requirements includ-
ing dynamic segregation of duties. In 4th ACM

Conference on Computer and Communications

Security. ACM Press, 1997.

[6] S.N. Foley and G. Hayes. PalmTE: Limited type
enforcemented on the Palm handheld. In prepa-

ration, 2000.

[7] L. Gong and X. Qian. The complexity and com-
posability of secure interoperation. In Proceed-

ings of the Symposium on Security and Privacy,
pages 190{200, Oakland, CA, May 1994. IEEE
Computer Society Press.

[8] S. Gritalis and D. Spinellis. The cascade vulner-
ability problem: The detection problem and a
simulated annealing approach to its correction.
Microprocessors and Microsystems, 21(10):621{
628, 1998.

[9] R.J. Horton et al. The cascade vulnerabil-
ity problem. Journal of Computer Security,
2(4):279{290, 1993.

[10] J.K Millen and M.W. Schwartz. The cascad-
ing problem for interconnected networks. In 4th

Aerospace Computer Security Applications Con-

ference, pages 269{273. IEEE CS Press, Decem-
ber 1988.

[11] I.S. Moskowitz and M.H. Kang. An insecurity
ow model. In New Security Paradigms Work-

shop. ACM Press, 1997.

[12] National Computer Security Center, USA.
Trusted Network Interpretation, 1987.

[13] M.K. Reiter and S.G. Stubblebine. Toward ac-
ceptable metrics of authentication. In IEEE

Symposium on Security and Privacy, pages 10{
20, May 1997.

[14] J. M. Spivey. The Z Notation: A Reference Man-

ual. Series in Computer Science. Prentice Hall
International, second edition, 1992.

A The Z Notation

A set may be de�ned in Z using set speci�cation in
comprehension. This is of the form fD j P � E g,
where D represents declarations, P is a predicate and
E an expression. The components of fD j P � E g
are the values taken by expression E when the vari-
ables introduced by D take all possible values that
make the predicate P true. For example, the set
of squares of all even natural numbers is de�ned as
fn : N j (nmod2) = 0 � n2 g. When there is only one
variable in the declaration and the expression con-
sists of just that variable, then the expression may be
dropped if desired. For example, the set of all even
numbers may be written as fn : N j (n mod 2) = 0 g.
Sets may also be de�ned in display form such as
f1; 2g.
In Z, relations and functions are represented as sets

of pairs. A (binary) relation R, declared as having
type A$ B , is a component of P(A�B). For a 2 A

and b 2 B , then the pair (a; b) is written as a 7! b,
and a 7! b 2 R means that a is related to b under
relation R. Functions are treated as special forms of
relations. We use the generic schema notion to de�ne
functions giving the function signature followed by its
de�nition.

PA The power set of A
A$ B Relations between A and B

A! B Total functions from A to B

dom R; ran R Domain and Range of relation R

id A Identity relation over values from A

R o
9 S Relational composition

	Table of Contents
	Session Abstract

