

Security in a Computational Grid Environment

Douglas E. Engert

DEEngert@anl.gov

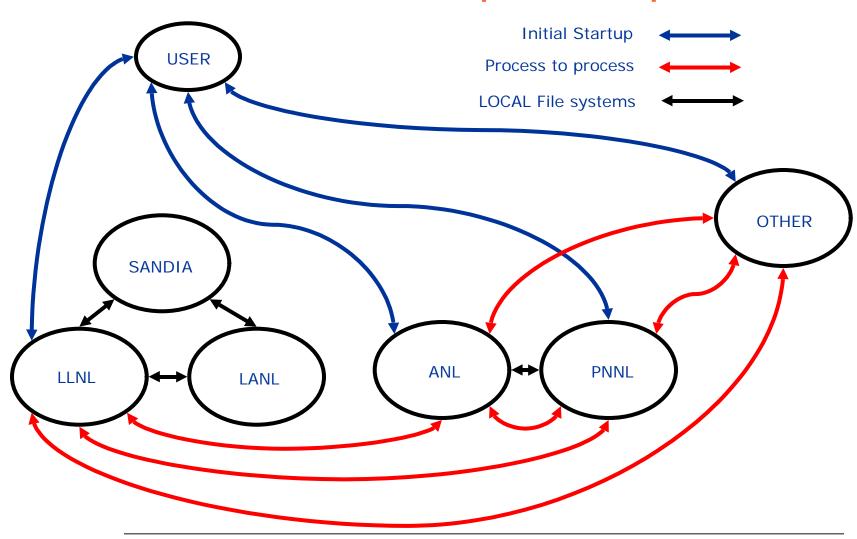
Argonne National Laboratory

10/2000

COPYRIGHT STATUS: Documents authored by Argonne National Laboratory employees are the result of work under U.S. Government contract W-31-109-ENG-38 and are therefore subject to the following license: The Government is granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license in these documents to reproduce, prepare derivative works, and perform publicly and display publicly by or on behalf of the Government.

Introduction

- The GRID Environment
- Security issues for the GRID Environment
- Its more then Client Server!
- Globus GSI
- GSSAPI
- Delegation Proxy Certificates
- Interfacing to local site security
- GSI vs. Kerberos
- Conclusions



The GRID Environment

- Multiple supercomputers
 - Each may have own job scheduler
- Multiple organizations
 - DOE, DoD, NASA, NSF, Universities
- User has accounts on each
 - Local control of resources
- User runs a job across the GRID creating a virtual supercomputer

the globus project www.globus.org

A GRID Virtual Supercomputer

Security Issues for GRID Environment

- Multiple Organizations
 - May not have MOUs, but user has accounts
- Process to process communication
 - User's processes act as servers to other processes
 - Need authentication at least
 - Firewall issues
- May need credentials for local resources such as DFS or AFS

Its More then Client - Server!

- Processes start other processes
- Processes act as servers
- Process to process authentication, integrity, encryption
- Local control of resources
- Local security infrastructures

Globus

- Enables the construction of networked virtual supercomputers
 - http:\\www.globus.org
- Multiple Components A toolkit
 - Scheduling, I/O, Naming Services ...
- Security Component GSI
 - Globus/Grid Security Infrastructure
 - Single sign-on

Security Infrastructure

- Globus Security adopted by Grid Forum and renamed to Grid Security
 Infrastructure
 - Widely adapted: DOE, DoD, NCSA, NPACI, NASA, among others
 - Installations on five continents
 - Globus CA in operation since 1998

GSI Features

- Public key certificates X.509 (standard)
 - Multiple CAs
 - Commercial CAs
- SSLv3 protocol (standard)
 - SSLeay or OpenSSL
- Delegation
 - "Proxy" certificates short term
- U. S. export exemption
 - We also have encryption if you need it
- GSSAPI implementation (standard)

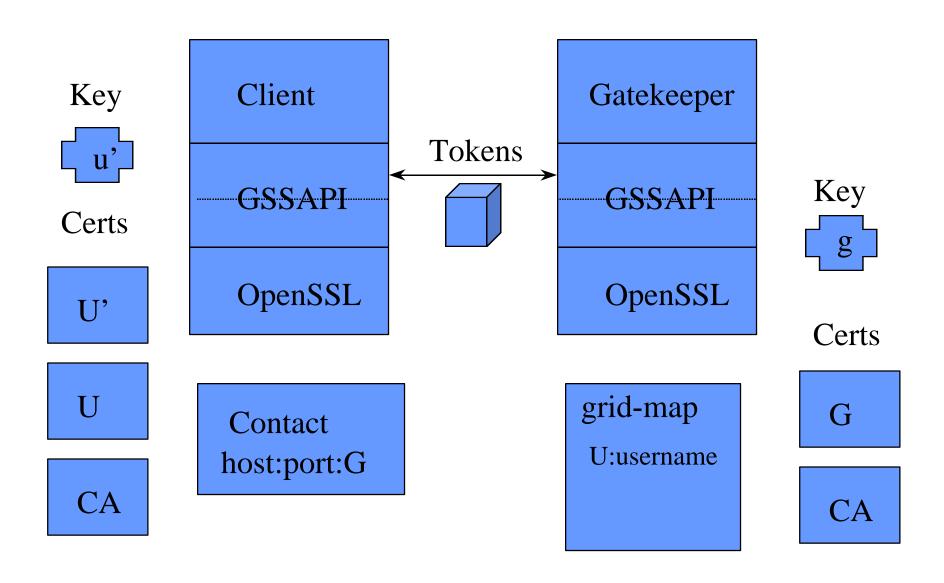
GSI Applications

- Globus
- SSH mods for GSSAPI authentication
 - ◆ ssh-1.2.27
 - SecureCRT
 - Commercial SSH for Windows
- FTP/FTPD MIT gssftp, ncftp, wu-ftpd ...
- Any other GSSAPI aware application
 - CORBA, SASL?

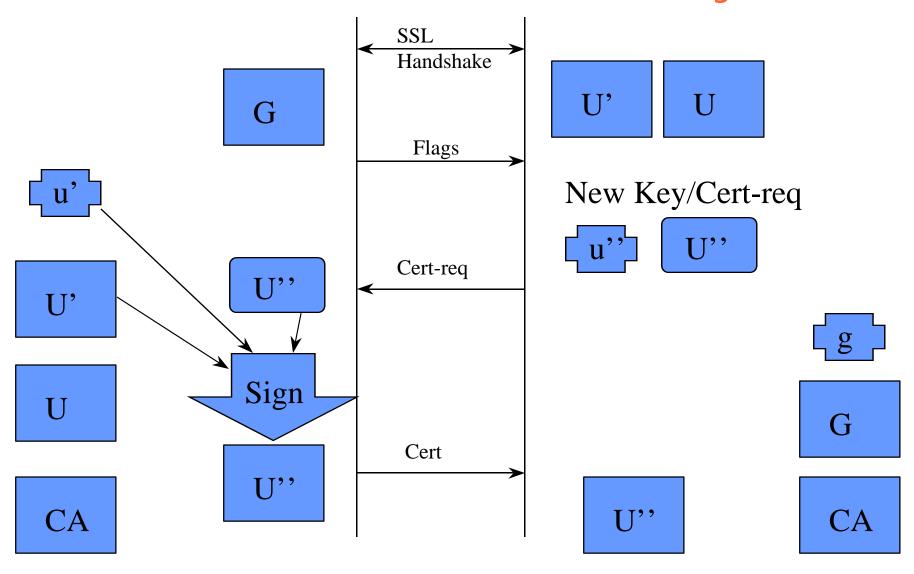
Delegation using Proxy Certificates

- Server creates key pair and certificate request, client signs request, returns certificate to server
- Subject name + CommonName "proxy"
- Passed by SSL in certificate chains
- GSI will accept a proxy as the user
 - Verifies the certificate chain

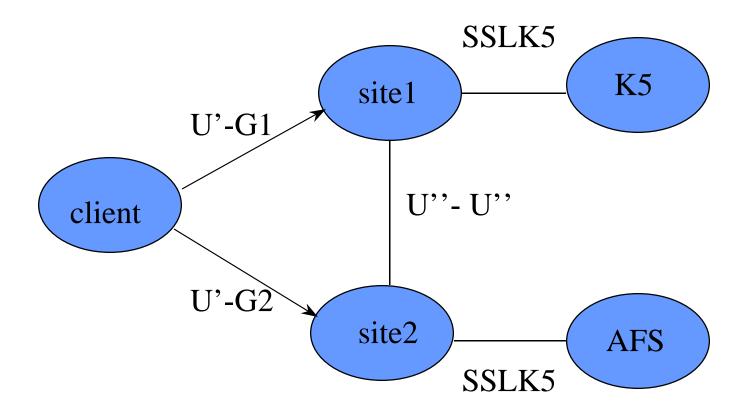
the globus project


- Usable for process to process authentication
- Limited delegation continuing research

Keys and Certificates


Proxy Files Key Certificates CA U" - /C=US/O=Globus/.../CN=Doug/CN=proxy/CN=proxy - /C=US/O=Globus/.../CN=Doug/CN=proxy - /C=US/O=Globus/.../CN=Doug

CA - /C=US/O=Globus/.../CN=Certificate Authority


GSSAPI_SSLEAY - Proxy

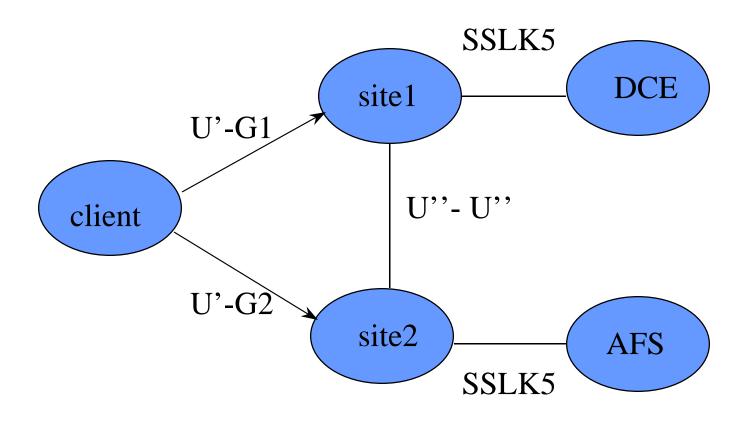
GSSAPI_SSLEAY- Proxy

Local Site Authentication

Local Site Authorization

- Local accounts/username
 - Users arrange for this on their own
- Control access by local site
 - Gatekeeper/SSHD/FTPD/Server uses gridmap file to map certificate subject name to local userid

site security infrastructures


- Kerberos, DCE and AFS
 - sslk5 Use GSI certificates to get Kerberos ticket at local site Equivalent to PKINIT
 - K5cert uses Kerberos ticket to get short term certificate
- Entrust
 - Generate "Proxy" certificate (NASA proof of concept)
- Secure-ID
 - SecureID gets Kerberos ticket
 - K5cert uses Kerberos ticket to get short term certificate
- Smart cards
 - PKCS#11 (Demonstrated at SC98) Uses same DLL as
 Netscape on Win32

K5cert to get a certificate

- K5cert authenticates to k5certd
 - User has Kerberos TGT:
 - b17783@dce.anl.gov
- K5certd acts as a CA
 - /C=US/O=Argonne National Laboratory/OU=Kerberos Realm dce.anl.gov/CN=Certificate Authority
- Issues certificate:
 - /C=US/O=Argonne National Laboratory/OU=Kerberos Realm dce.anl.gov/CN=b17783@dce.anl.gov
- Certificate lifetime = ticket lifetime

Local Site Authentication and user to user

GSI vs. Kerberos GSSAPI

- Certificate subject name
- /O=Grid/O=Globus/CN=Doug Engert
- /O=.../CN=host/cpu.anl.gov
- Grid-proxy-init
- Key and Certificate
- Delegation
- Proxy (key and certificate)
- CA (offline)
- Process-to-process YES
- CRL

- Principal name
- b17783@dce.anl.gov
- host/cpu.anl.gov@dce.anl.gov
- kinit
- password or v5srvtab
- Forwarding
- Forwarded tickets
- KDC online
- User-to-user Almost
- Online KDC

Conclusions

- GSI is becoming widely accepted
- GSI uses well established security protocol
- GSI uses standard GSSAPI
- GSI can interface to current site security
- Delegation, across Kerberos and GSI
- Process -to-process authentication
- Local authorization and accounting
- Single sign-on

The End