

Biometrics

Understanding the Architecture, Standards and API's, Encryption and Authentication Security of Integration into Existing Systems & Applications

National Information Systems Security Conference

William Saito

President/CEO

Company

- Founded in 1991
- Core Products & Technology

- Biometric driver development & integration
- Commercial biometric application development
- Biometric solution provider
- Original developer of BAPI & BioAPI Chair
- Licensed to biometric technology to Microsoft
 - BAPI & SecureCore

Biometrics 101

Choosing your biometric technology

Why are biometrics important?

- What you know (i.e., password or PIN)
 - Insecure, can be forgotten, needs to be changed, can easily be copied or given to others
- What you have (i.e., ID card or key)
 - Can be lost or copied (without your knowledge), replacement costs are high
- What you are (i.e., fingerprints)
 - Only non-reputable authentication method.
 Conclusively proves you are who you say you are

Types of biometrics

- Physiological vs. behavioral characteristics
 - Physiological: Don't change over time (Fingerprint, hand, iris, etc..)
 - Behavior: Change over time (Voice, signature)
- Interactive vs. Passive biometrics
 - Passive: Facial

Types of biometrics

- Fingerprint/Finger length
- Hand geometry
- Iris/Retina
- Facial image/Facial thermograms
- Voice
- Signature
- Keystroke

Trade offs

- Cost
- Security
- Size
- Convenience
- Speed
- Accuracy
- Connectivity & compatibility (ports/OS/CPU)
- Intrusiveness

Costs differ

Device + Integration + Software + Training + Enrollment + Maintenance + Support

Expense

Current status

*Source: Information Week, "Biometrics Survey", February 1999

Who's using biometrics

- Secure access
 - Nationwide
 - Barclay's Bank
 - Citibank
 - NSA/CIA
 - Various corporations
- Convenience
 - INSPass
 - CanPass

- Preventing fraud
 - Mr. Payroll
 - CT Dept. of Social Services
 - Acroprint
- Protecting lives
 - O'Hare Airport
 - Pyxis

User acceptance is key

- Some biometrics discriminate
 - Fingerprint: skin and race effects
 - Face: beards, photographs trick
 - Voice: colds, sore throat affect accuracy
- Can you afford...
 - a false reject or a false accept?
 - to offend a valued customer?
- Minimal level of effort required for acceptance

Biometric taxonomy

- Cooperative
- Overt
- Habituated
- Supervised
- Stable Environment
- Optional

- vs. Non-cooperative
- vs. Covert
- vs. Non-habituated
- vs. Unsupervised
- vs. Unstable
- vs. Mandatory

Biometrics do best in conditions of left column

How biometric devices work

How biometrics work

- User enrollment
- Image capture
- Image processing
- Feature extraction
- Comparison
 - Verification
 - Identification

Templates

- Templates are usually not compatible between vendors
- Template size/type varies
 - 50 8000+ bytes
 - Speed vs. accuracy vs. size
- Template types include:
 - Vectors
 - Minutiae

Comparison methods

- Verification
 - 1:1 matching
 - To verify that the person is who he says he is
- Identification
 - 1:n search
 - To find a person out of many in a database

Types of devices

Device interfaces

- Various port types (and issues)
 - Composite video signal
 - Parallel port (Pass through & ECP/EPP modes)
 - Serial port (RS-232, RS-422, RS-485, etc..)
 - USB port (NT support)
 - PCMCIA port
 - Weigand
- Transfer time / ease of integration
- Encryption

Image capture component

- Resolution
 - 350 500+ dpi
- Sensor types & materials
 - Optical
 - Capacitance
 - Resistance
 - Thermal
 - Polymer

Sensor comparisons

- Optical
 - Most bulky
 - Distortion issues
 - Dry finger problems
- Capacitance
 - ESD issues
 - Surface strength issues
 - Surface area limitations
- Thermal
 - Lowest surface area required

Device sophistication

- Simple
 - Scanner (only)
 - Scanner with encryption
- Processing (self-contained)
 - Scanner with CPU and/or LSI for fingerprint processing
 - Scanner with CPU and memory for storage of fingerprint (optional encryption)
- Complex
 - Scanner + CPU + protected storage for PKI type use

Evolution of biometric devices

1st generation devices

- First Generation
 - Supervised
 - Slow
 - Bulky devices / heavy!
 - Required calibration
 - Not PC based
 - Very expensive! (>\$5K)
 - Application: Criminal Enforcement

1st generation devices

- Simple design / low-cost device
- No security
- All processing done on host PC
- Ideal for simple low security applications

1st generation devices

Need standardKey delivery of the symmetric key

K: Symmetric Key Tr: Reference Template Ts: Sample Template

2nd generation devices

- Second Generation
 - Optical only devices
 - High FRR and/or FAR
 - Required some finger preparation
 - Somewhat PC friendly development environment
 - Expensive (>\$1K)
 - Applications:
 - Building access control
 - High security computing in vertical applications

2nd generation devices

- Device contains a lot of intelligence
- Communications encrypted to host
- Some or all processing done in device
- Ideal for physical access, smart cards and terminals

2nd generation devices

K: Symmetric Key Tr: Reference Template Ts: Sample Template

3rd generation devices

- Third Generation
 - Non optical based sensor
 - First mass produced devices
 - Fast, self-calibrating, encryption support, dead/fake finger detection
 - SDK's available for PC's
 - Inexpensive (<\$300)
 - Applications:
 - General Purpose Computing
 - Windows NT/95, UNIX

3rd generation devices

- Devices are small and portable
- Templates and private keys (PKI) never leave device (storage is protected)
- Tamperproof (FIPS 140-1)
- Ideal for PKI (PKCS#11 cryptoki) applications

3rd generation devices

Application suitability

Client/Server

Smart card

PKI

Other device features

- Keypads & LED's
- "Live finger" sensor
- Smart card integration
- Ergonomics
- Size
- Water resistance

Other issues

- FCC, CE, UL certification
- Microsoft WHCL compatibility
- NS1 export approval
- CC1 export approval
- Federal Information Processing Standard
 FIPS 140-1
- AFIS compatibility

Biometric applications

Types of applications

- Physical access
- Computer logon/logoff
- File encryption
- Client/Server
- Dumb terminals
- Internet / e-Commerce
- Smart cards
- PKI Public Key Infrastructure

Biometric applications

- SecureSuite
 - Biometrically authenticated Windows 95/98/NT Logon
 - Screen saver unlocking
 - Password provider
 - Hard disk encryption
 - PKI, etc...
- Smart card (VeriFone)
 - Biometrically locking smart card contents
- Web / Internet Commerce (SecureWeb)

SecureSuite

- SecureStart Secure logon system for Windows 95/98/NT
- SecureFolder Windows file / folder encryption application
- SecureSession Windows password bank / provider
- SecureEntrust PKI based authentication and encryption provider for Entrust
- SecureApp Windows based application execution control
- SecureWeb Customizable web server access control solution

1533 Spruce St.
Riverside, CA 92507
(909) 222-7600
(909) 222-7601 FAX
Web: www.iosoftware.com
E-Mail: William@iosoftware.com

