
Subliminal Traceroute in TCP/IP

Thomas E. Daniels, Eugene H. Spafford
{daniels,spaf}@cerias.purdue.edu

CERIAS
Purdue University

West Lafayette, IN 47907

CERIAS Technical Report 2000/10

Abstract

We introduce a technique for tracing a class of “man in the middle” TCP spoofing attacks. The
technique works by embedding a traceroute-like mechanism, which we call subliminal traceroute
(ST), in the acknowledgment stream of an active TCP connection. We consider the design consid-
erations of ST and show that the attacker can take an active role to defeat our method. We conclude
by suggesting future work on ST that may make it more difficult to defeat.

Portions of this work were supported by sponsors of the
Center for Education and Research in Information Assurance and Security.



1 Introduction

In this Section, we discuss the problem known as TCP spoofing and past work that addresses
the problem. We also attempt to motivate our approach to tracing spoofed connections as opposed
to preventing them as in the past work.

1.1 The Problem

TCP spoofing attacks have been widely discussed by others in the literature.[Mor85, Bel89]
Most of these discuss attacks that hinge upon the guess-ability of initial TCP sequence numbers
(ISN) so that an arbitrary host can exploit an address-based trust relationship to establish a client
write-only TCP session. The session is client write-only because the server will respond to the
claimed IP address of the client which will not be routed to the attacking client, and therefore the
client will not receive any of the server’s responses unless it is on the route from server to client.
Many operating systems have made this attack much more difficult by using randomly generated
initial sequence numbers thereby requiring the attacker to receive at least one packet (SYN-ACK)
from the server to carry out the attack.

We consider a less general TCP spoofing attack where guess-ability of ISN’s is not an issue. The
attacker, Mallory, sits between the client, Alice, who he wishes to impersonate and the target server,
Bob. We assume that Mallory is able to read packets from Bob bound to Alice and also cause either
the network to drop the packet or Alice to ignore the packet. As shown in Figure 1, Mallory can
then create a TCP connection to Bob while masquerading as Alice. In this case, Mallory may not
be exploiting trust relationships as in the past work[Mor85], but instead Mallory may just be trying
to hide his true identity (IP address) from Bob. Physically, Mallory may accomplish this attack
by controlling a host on the route between Bob and Alice or by using one of the routing elements
between Bob and Alice to redirect TCP packets from a spoofed stream to him.

1.2 Past work

1.2.1 Source Authentication

The most common work in the area of determining the source of network traffic is source address
authentication such as in IPSec[Atk95]. The IPSec protocol allows for a digital signature to au-
thenticate the source address (and integrity) of each packet. The problem with such schemes is
that it isn’t clear that each packet deserves such a high expense procedure. Furthermore, if a host’s
key material is somehow covertly compromised then spoofing attacks are still possible leaving us
with all of the old spoofing problems. Another point is that although the signature authenticates
the source address, the scheme does not provide any other information such as a trace that might
help trace an attack in a forensic situation.

1.2.2 Tracing packets

Three past works exist that are devoted to tracing specified network packets to their point of origin.
They are DoSTracker[CD97], the intrusion detection and isolation protocol (IDIP)[Row99], and
Mansfield’s tracking protocol[MOT+99]. In the remainder of this section, we will discuss how
each of these work and some of their limitations.



Alice

Bob

Mallory
Spoofed TCP Stream

���
���
���
���

���
���
���
���

����
����
����

����
����
����

������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 1. A TCP spoofing man in the middle attack allows Mallory to
create a bidirectional TCP stream with Bob while masquerading as Alice.

DoSTracker[CD97], written by MCI, does a directed search across a network of routers looking
for packets bound for a target network and claiming to have a certain source address. DoSTracker
is used by MCI to trace denial of service attacks such as smurf attacks[CA-98]. Unfortunately,
DoSTracker requires that the network infrastructure be homogeneous (all Cisco routers) and that
the tracing person have full control of each router.

DoSTracker does its directed search by starting with the edge router of the target network and
setting a “trap” for a packet that represents the denial of service attack in progress. When the trap
goes off, the source interface that the packet arrived on is reported, and DoSTracker moves on to
all routers that can directly communicate to that interface. The traps are set again and the search
continues. Obviously, this approach only works while an attack is active and requires trapping at
least as many packets as there are hops to the source of the attack.

IDIP and Mansfield’s tracking protocol are very similar so I will refer to both of them as IDIP.
The main difference between the two approaches is that IDIP looks for packets that match a specific
criteria passing a router whereas Mansfield’s approach tries to correlate flows of packets based on
RMON-like counts of types of packets seen by the router. IDIP uses a router modification to trace
flows of packets. It does this in a way similar to DoSTracker in that the trace begins at the IDIP
routers nearest (by network topology) to the attacked network. The router that has seen the packets
reports it, and the trace continues with that router’s neighboring IDIP routers. Another difference
between IDIP and Mansfield’s work is that IDIP attempts active response by allowing IDIP routers
nearest the source of the attack to filter the malicious packets.

Each of these approaches may be capable of tracing a stream of spoofed TCP packets as in



our problem statement, but each has certain limitations in this regard. DoSTracker with trivial
modification could trace the stream, but since we are dealing with a “man in the middle” attack,
the attacker may have already subverted one or more routers. In this case, the router may be
configured to “lie” to DoSTracker and never set the requested traps. IDIP and Mansfield’s work
might work as well, but both require significant modification to the network infrastructure and are
therefore not immediately applicable. Also, these techniques require knowledge that an attack is
occurring and are too costly to run for any significant number of packets.

Another similar past work is the Firewalk tool[SG98]. Firewalk can perform traditional tracer-
oute functionality using ICMP, UDP, or TCP. The tool can be used to determine network traces
behind a traditional packet filtering firewall. While Firewalk can do a traceroute using TCP pack-
ets, our work is different in that it embeds the tracing into an active TCP stream.

1.3 Why Trace?

In most networks, an address is usually considered to be the one identifier that uniquely refers
to an entity. Unfortunately, in IP addressing this is not necessarily true. For instance, there are
private address spaces such as 10.0.0.0 where many disparate networks use those addresses to
refer to their hosts and then use network address translation (NAT) to connect to other networks.
In this case, even an authenticated address of 10.0.0.1 would be of very little use because we
would not know the network the host was on. A trace may take us only back to the NAT gateway,
but this is still much better than the internal address! Furthermore, NAT may be used in several
layers thereby requiring several hops of a trace to uniquely identify a host. We understand that
conventional tracing does not penetrate NAT borders, but we use this an example of how a trace
may be preferable to a single address. In our work, we do not claim to address the problem of
tracing through NAT gateways, but we include this as an example of the insufficiency of the IP
address to uniquely identify a host.

There is an even better reason for considering a trace useful. A trace can be wrong but not
completely so. For instance, the last few hops of a trace may be wrong or unobtainable, but we
may be able to trust the trace only as far back as the attacker’s Internet service provider, A trace
therefore provides levels of accuracy whereas a wrong address is likely to be completely wrong.
The reason for this is if the attacker can lie about his IP address why not lie in a big way so as to
avert attention elsewhere? On the other hand, it may be very difficult to subvert enough routers to
make them lie about substantial portions of the trace.

2 Our Approach

Our approach is to build a traceroute-like[KS94] mechanism into an active TCP stream so that
a server can collect traces by modifying an active TCP stream. This approach requires no modifi-
cations to the network infrastructure but has weaknesses of its own as we shall see.

Traceroute works as shown in Figure 2. By sending UDP packets to a host with successively
increasing time to live (TTL) values, we cause the routers along the path to reply with ICMP time
exceeded messages when the TTL expires on a packet. When the TTL becomes great enough that
the host receives the UDP packet, the assumption is that the host is not listening on the packet’s
destination port and therefore the system replies with an ICMP port unreachable message. This



signifies the end of the trace.

4. UDP (A,B, TTL = 4)

3. UDP (A,B, TTL = 3)

2. UDP (A,B, TTL = 2)

1. UDP (A,B, TTL = 1)

ICMP (R1, A, Time Exceeded)

ICMP (R3, A, Time Exceeded)

ICMP (B, A, Port Unreachable)

ICMP (R2, A, Time Exceeded)
R2

R3

R1 Bob

Alice

������

����
����
����

����
����
����

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 2. The traceroute protocol works by using successively larger
time to live’d UDP packets sent to the target host.

An obvious approach to tracing a man in the middle spoofed connection is to just use traceroute
to attempt a trace. Unfortunately, this easily defeated as the attacker can choose to allow the UDP
packets to continue on to their original destination. In this case, the route will lead to the host that
is being imitated, not our attacker. For instance, defeating the tracerout might simply add route the
traffic based on whether it is UDP or TCP.

Our approach is to perform a traceroute inside a TCP stream so that if the attacker is redirecting
TCP packets headed for a spoofed client or consuming the TCP packets prematurely, the trace will
indicate it and presumably lead us to the attacker. We do this by setting the TTL low on every other
ACK sent by the TCP state machine. When a low TTL ACK times out, the remote router responds
with a ICMP time exceeded packet that is then captured by the host. We allow TCP to compensate
for and resend the lost ACK as part of its reliable service.

Note that it is more difficult for our attacker to simply ignore the packets in our mechanism
because they are actually part of the TCP stream in which we wants to participate. The only
distinguishing characteristic of the packets used in ST is an occasional TCP acknowledgment with
a low TTL. If the attacker chooses to ignore low TTL TCP packets that are part of the stream, he



may ignore the stream itself. Of course, this is dependent on the operating system of the remote
host and the length of the route or routes taken by the traffic.

2.1 Design and Implementation

The ST system was designed around the socket API in the Linux 2.2.10 kernel. Our additions to
the socket API allow user mode processes to configure which TCP sockets to trace, and the kernel
socket structures provide a convenient abstraction for storing state about each trace in progress.

To allow processes to specify which TCP sockets to trace, we added a new socket option,
SOCK_SUBLIM,to thesetsockopt system call. By setting SOCK_SUBLIM to 0 (the default),
no trace is done on the socket. Setting SOCK_SUBLIM to 1 will enable the tracing functionality
which we will soon describe. Other values are allowed so that different trace strategies may be
added. For instance, if the TCP stream is expected to be short-lived, a more aggressive trace style
may be activated. We have modified a version of SSH[Ylo95] to set this socket option.

To implement ST, we modified the portion of the TCP implementation that sends acknowledg-
ments. To this part of the code we added a simple state machine (shown in Figure 3) that dictates
the TTL set on each acknowledgment sent by the system. Each edge has a two lines associated
with it—the top line is the firing condition for the edge and the bottom line is the action taken when
the edge is traversed. Note that each edge has an implicit firing condition: a TCP ACK is ready to
be sent.

Init

i < 3 
 i++ 

TraceAck

i >= 3 
 T=1; ttl=T DoneNormalAck

True 
 T++ ; ttl = 255

T = 255T < 255 
 ttl = T

Figure 3. The finite state machine that determines the behavior of the
subliminal traceroute. The top line of the edge label represents the firing
condition while the bottom line represents the action taken during the
transition. i and T are per socket variables and initialized to 0 at time of
socket creation.

The values of most of the constants in the state machine were chosen somewhat arbitrarily. We
let 3 ACKs go by unmodified so that there is plenty of traffic for the TCP handshake to proceed as
normal, and the TCP stream will get established. After this initial stage, the first ACK is sent with
a TTL of 1, and every other ACK is then sent with the next higher TTL value. It is important to
note that the variables referenced in the state machine are kept separate for each socket in its own
data structures. The value of 255 was used as it is the maximum value for a TTL in IP.

The resulting ICMP time exceeded messages are then collected with Tcpdump[Lab]. The source
addresses of the ICMP messages are the trace between the server and the client. Packets from



multiple simultaneous streams can be distinguished by looking at the message’s contents to find
the triggering TCP packet’s addresses and ports.

2.2 Tradeoffs

There are many tradeoffs in the design and configuration of ST. The state machine controlling
the trace can be modified to do a more aggressive trace by reducing the initial waiting period and
sending multiple low-TTL packets at once instead of for every other ACK. Also, the state machine
could be modified to do many low-TTL ACKs at first so that the trace is done very aggressively.

I chose not to send ACK’s in parallel with the TCP stream because it might have interfered
with the TCP state machine by causing side effects in the kernel code. However, doing so would
allow for a fast trace instead of the current implementation which requiresnumberofhops + 3

acknowledgment cycles to occur to complete the trace. This might come into play if one was trac-
ing HTTP requests where there may be few acknowledgments sent back and forth, and hence too
few ACKs may be exchanged for the trace to complete. Our system works fine in most interactive
login sessions because each character sent by the client calls for an acknowledgment.

Other design tradeoffs involve implementation details such as our choice to modify the kernel
itself. It should be possible but more difficult to create a kernel module that sits between the driver
module and the IP stack that performs a subliminal trace. In this case, it might be more difficult to
implement control over which TCP streams are traced.

Another problem with ST is that there is no guarantee of correctness of the trace. For each TTL
value, we only send one ACK, and therefore if any ICMP time exceeded packet is lost, the trace
will be missing a host. Also, time exceeded messages may return out of order causing the trace to
have certain hops listed in the incorrect order.

3 Results

We have implemented the ST system and demonstrated that it works in an SSH daemon modified
to enable tracing. After a login, each packet sent by the client causes the next hop of the trace to
be captured by script running Tcpdump. By sorting the ICMP time exceeded messages by the
destination address found in the packet payloads, we can reconstruct a trace for a given peer even
if multiple traces occurred simultaneously.

3.1 Defeating the Trace

Unfortunately, we also discovered a mechanism by which the attacker can defeat the ST mecha-
nism. To do this, we capture all IP packets with TTL equal to one, drop the packet, and reply with
an ICMP time exceeded message with source address spoofed to appear to come from some other
router. Similarly, we can do this for all packets with TTL� n to simulate the lastn hops of a faked
path.

As a proof of concept, we modified the same kernel used to implement ST to simulate fake
routers that immediately precede the host. We changed the IP layer of the kernel so that IP packets
with TTL below some threshold were dropped and an ICMP time exceeded message was sent
in response. One instance of this technique replied toTTL = 1 packets with ICMP messages
apparently from a host at the National Security Agency. Similarly,TTL = 2 packets appeared to



time out at a Central Intelligence Agency host. This made the last two traceroute hops preceding
the modified host to appear rather comical. Of course, a real hijacker could use this technique to
fake the trace between himself and the host he is impersonating.

If implemented naively, it is possible to detect this faked route. Since the same host is simulating
a number of routers to send false time outs, the delay times observed in a traceroute command
should be nearly the same. In order to overcome this, a robust implementation would simulate
the increasing latency of successive routers along the path. This could be done by adding variable
delays based on path measurements to the implementation, but it would greatly complicate a kernel
implementation as it would require scheduling the sending of ICMP time exceeded messages.

4 Conclusions and Future Work

We have demonstrated a subliminal traceback technique in TCP streams for tracing “man in the
middle” attacks to their source. Although we have also found a way for the attacker to defeat the
trace, we still believe it raises the bar for a would–be attacker as he would have to either drastically
modify his host by modifying the kernel or drivers to reject low-TTL’d TCP packets or by somehow
intercepting low TTL’d packets before they arrive at the host.

For future work, we believe that by measuring hop times on a route using conventional traceroute
and then comparing them with times for a subliminal traceroute, we can make it more difficult to
fake a trace as described above. Another possibility for future work involves continually doing a
subliminal traceroute in a TCP stream with the goal of detecting TCP hijacking attacks.

References

[Atk95] R. Atkinson. RFC 1825: Security architecture for the internet protocol.http://
www.cs.purdue.edu/homes/clay/papers/ipsec/rfc1825.txt , Aug
1995.

[Bel89] S.M. Bellovin. Security problems in the TCP/IP protocol suite.Computer Communi-
cation Review, 19(2):32–48, APR 1989.

[CA-98] CERT Advisory CA-98.01. ’Smurf’ IP Denial-of-Service Attacks.
http://www.cert.org/advisories/CA-98.01.smurf.html, January 1998.

[CD97] H. Chang and D.Drew. DoSTracker. This was a publically available PERL script that
attempted to trace a denial-of-service attack through a series of Cisco routers. It was
released into the public domain, but later withdrawn. Copies are still available on some
websites. http://www.artsci.net/ jlinux/security/dostrack/, June 1997.

[KS94] G. Kessler and S. Shepard. RFC 1739: A primer on internet and tcp/ip tools.ftp:
//ftp.isi.edu/in-notes/rfc1739.txt , Dec 1994.

[Lab] Lawrence Berkeley National Laboratory. Tcpdump.ftp://ftp.ee.lbl.gov/
tcpdump-3.4.tar.Z .



[Mor85] Robert T. Morris. A weakness in the 4.2BSD Unix TCP/IP software. Technical report,
AT and T Bell Laboratories, Murray Hill, New Jersey 07974, Feb 1985.

[MOT+99] Glenn Mansfield, Kohei Ohta, Y. Takei, N. Kato, and Y. Nemoto. Towards trapping
wily intruders in the large. InProceedings of the 2nd International Workshop on
Recent Advances in Intrusion Detection, West Lafayette, IN, USA, Sep 1999.

[Row99] Jeff Rowe. Intrusion detection and isolation protocol: Automated response to attacks.
Talk presented at Recent Advances in Intrusion Detection Workshop, 1999, September
1999.

[SG98] Mike Schiffman and David Goldsmith. Firewalk. A publically available tool for doing
traceroutes through firewalls. Available athttp://www.packetfactory.net/
firewalk/ ., Oct 1998.

[Ylo95] Tatu Ylonen. Secure shell man page. Available athttp://www.cs.hut.fi/ssh ,
Nov 1995.


	Table of Contents

