FIPS 201 Cryptography

Tim Polk tim.polk@nist.gov Nov 18, 2004

Information Technology Laboratory

Computer Security Division

Cryptography in FIPS 201

- Digital signatures on logical credentials
 o CHUID, X.509 certificates, biometrics
- Cryptographic key(s)
 - One mandatory PIV asymmetric authentication key
 - May be used to sign an externally provided hash
 - Optional symmetric and asymmetric keys
 - Symmetric or asymmetric key for challenge response protocols
 - Asymmetric keys for digital signatures and key management
 - Symmetric key for card management

Digitally Signed Credentials

- CHUID and biometrics employ CMS external detached signature
- X.509 Certificate signature formats as specified in RFC 3279
 - o 1024 or 2048-bit RSA/160 or 224-bit elliptic curves
 - o For RSA: SHA-1 or SHA-256 hash
 - o For ECDSA: SHA-1 or SHA-224 hash

X.509 Certificates

- PIV Authentication Certificate
 - keyUsage asserts digitalSignature but NOT nonrepudiation
 - o Certificate includes FASC-N from CHUID in altSubjectName
- Digital signature and Key management certificates
- Asymmetric challenge-response key

Cryptographic Keys

- On-card key generation for PIV authentication keys and optional digital signature key pair
 RSA or elliptic curve key pairs
- Import symmetric authentication and card management keys
 - Triple DES or AES
- Import or generate asymmetric key management keys
 - o RSA or elliptic curve key pairs
- All private/secret key computations on-card
- Message hashing off-card

Key Sizes

• Key sizes transition in 2008 and 2010

Initial Key Sizes	Key Sizes after 2008/2010
Two and Three Key Triple DES	Three Key Triple DES
AES-128, AES-192, and AES-256	AES-128, AES-192, and AES-256
1024 and 2048 bit RSA	2048 bit RSA
160 and 224 bit elliptic curve	224 bit elliptic curve
SHA-1, SHA-224 and SHA-256 hash	SHA-224 and SHA-256 hash

Cryptographic Operations

- Initially permits 80-bit or stronger cryptography
 - o On card
 - Two and Three Key Triple DES
 - AES-128, AES-192, and AES-256
 - 1024 and 2048 bit RSA
 - 160 and 224 bit elliptic curve
 - o Off card
 - SHA-1, SHA-224 and SHA-256 hash

FIPS 140 validation required for *all* cryptographic operations

- Level 3 Physical Security
- Level 3 Operator Authentication
- Level 2 Overall

Open Issues

- Contactless asymmetric cryptography
- Primes Testing for RSA
- Random Number Generation

Contactless Cryptography

• Efficiency

- Will the electrical power available to the card be sufficient to implement a cryptographic challenge-response protocol?
- Will the time required at the gate exceed human patience?

Primes Testing for RSA

- Tests for prime numbers are specified in FIPS 186-2, X9.31, X9.80
- Is X9.31 primes testing practical for PIV cards?
 - What performance numbers can be achieved for generation of *2048 bit* keys?

Random Number Generation

- NIST is developing new standards for random number generation within ANSI
 - o Target delivery late 2005
 - o Will impact CMVP validation requirements
- Sources of randomness for PIV cards?
 - On-card hardware RNG
 - o Vendor installed seed with PRNG
- Vendor installed seed precludes non-repudiation!

