
 i

First Public DRAFT

MISPC
Minimum Interoperability Specification for PKI

Components, Version 2 - Second DRAFT

August 31, 2000

NIST PKI Project Team

For public distribution

 ii

 iii

Table of Contents
REVIEWER’S NOTES ..V

1. INTRODUCTION ... 1-1
1.1 PURPOSE..1-1
1.1 SCOPE..1-1
1.1 APPROACH...1-2
1.1 ASSUMPTIONS..1-3
1.1 DEFINITIONS, TERMS, AND ACRONYMS...1-4

1. INFRASTRUCTURE COMPONENT SPECIFICATIONS .. 2-1
1.1 CERTIFICATION AUTHORITY (CA) ...2-1

1.1.1 Interoperability-Relevant CA Functional Specifications ... 2-1
1.1.2 Electronic Transaction Set... 2-4

1.2 REGISTRATION AUTHORITY (RA) ..2-7
1.2.1 Interoperability-Relevant RA Functional Specifications ... 2-8
1.2.2 Transaction Set .. 2-8

1.3 CERTIFICATE HOLDER SPECIFICATIONS ...2-9
1.3.1 Interoperability-Relevant PKI Certificate Holders Functional Specifications 2-9
1.3.2 Certificate Holders Transaction Set .. 2-10

1.4 CLIENT SPECIFICATIONS ..2-13
1.4.1 Interoperability-Relevant PKI Client Functional Specifications ... 2-13
1.4.2 PKI Client Transaction Set .. 2-13

2. DATA FORMATS... 3-1
2.1 CERTIFICATE FORMAT ...3-1

2.1.1 Certificate Fields ... 3-1
2.1.2 Cryptographic Algorithms ... 3-4
2.1.3 Certificate Extensions .. 3-16

2.2 CERTIFICATE REVOCATION LIST (CRL) ...3-23
2.2.1 CRL Fields ... 3-23
2.2.2 CRL Extensions.. 3-24
2.2.3 CRL Entry Extensions.. 3-27

2.3 CERTIFICATION PATH VALIDATION..3-29
2.4 TRANSACTION MESSAGE FORMATS...3-29

2.4.1 Overall PKI Message Components .. 3-30
2.4.2 Common Data Structures... 3-32
2.4.3 Operation-Specific Data Structures... 3-38

2.5 PKI TRANSACTIONS ..3-41
2.5.1 RA-Generated Registration Requests .. 3-41
2.5.2 Certificate Renewal Request .. 3-45
2.5.3 Self-Registration Request (New Subject) ... 3-48
2.5.4 Self-Registration Request (Known Subject) ... 3-51
2.5.5 PKCS #10 Self-Registration Request ... 3-54
2.5.6 Revocation Request.. 3-57
2.5.7 Encryption Certificate Request for End-Entity Generated Key Pairs.. 3-59
2.5.8 Proof of Possession for Diffie Hellman and Elliptic Curve Key Agreement Keys 3-62
2.5.9 Proof of Possession for RSA Key Transport keys .. 3-65
2.5.10 Request for Centrally-Generated Key Pair and Key Management Certificate 3-68
2.5.11 Combined Certificate Requests.. 3-72
2.5.12 Request Certificate from a Repository ... 3-72
2.5.13 Request CRL from a Repository... 3-73

3. REFERENCES .. 4-1

 iv

APPENDIX A. X.509 V3 CERTIFICATE ASN.1..A-1

APPENDIX B. CERTIFICATE AND CRL EXTENSIONS ASN.1 ..B-1

APPENDIX C. ASN.1 MODULE FOR TRANSACTIONS ...C-1

APPENDIX D. CERTIFICATE REQUEST MESSAGE FORMAT ASN.1 MODULE....................................D-1

 v

Reviewer’s Notes
This is the first public draft of the MISPC Version 2. Version 2 introduces support for
confidentiality services. This support is manifested in extensions to the certificate profile (secs.
3.1.2.3 and 3.1.2.4), new transactions to request key management certificates (secs. 3.5.7and
3.5.10), combined requests for both signature and key management certificates (sec. 0) and
extensions to the revocation request (sec. 3.5.6.) Less drastic changes are sprinkled throughout.

Version 2 realigns the MISPC with the most recent release of the ISO X.509 specification. New
certifcate and CRL extensions have been added to this specification. The new extensions appear
in sections 3.1.3, 3.2.2, and 3.2.3.

Version 2 also realigns the MISPC with the current IETF specifications for the Certificate
Management Protocol (CMP) and Certificate Request Message Format (CRMF), ongoing
developments in the FIPS approved cryptographic algorithms, and X9 cryptographic algorithms.
(The text surrounding RSA and rDSA signatures and keys may be of special interest.)

This document also attempts to incorporate clarifications gleaned from the ongoing CMP
interoperability testing. Interim results of this testing has been published as an Internet Draft.
“CMP Interoperability Testing: Results and Agreements”, <draft-moskowitz-cmpinterop-00.txt>
provides a summary of these results. The most notable modification resulting from the workshop
is probably the substitution of SHA-1 HMAC for the DES-MAC. As this testing is a work in
progress, there may be additional changes in the future.

 vi

Second CRADA Draft, Version 2

 1-1

Minimum Interoperability Specification for PKI Components

1. Introduction

1.1 Purpose
The Minimum Interoperability Specification for PKI Components (MISPC) provides a basis for
interoperation between public key infrastructure (PKI) components from different vendors. This
specification will be available to companies interested in offering interoperable PKI components,
to Federal agencies developing procurement specifications, and to other interested parties. It will
be the basis for a NIST reference implementation. A test suite for conformance to this
specification is also planned.

1.2 Scope
This specification supports interoperability for a large scale PKI that issues, revokes and manages
digital signature and key management public key certificates. Digital signature certificates
support the use of those signatures to replace handwritten signatures in government services,
commerce, and legal proceedings, and to allow distant parties, who have no previous
relationship, to reliably authenticate each other and conduct business. Key management
certificates support the use of key transport and key agreement algorithms to establish or protect
symmetric keys for confidentiality in session or store and forward applications. Such a PKI, and
the certificates it requires, may be excessive for some applications, and other more streamlined
certificates and protocols may be more appropriate for more specialized and restricted
applications.

The MISPC addresses:

• public key certificate generation, renewal, and revocation;
• signature generation and verification;
• certificate and certification path validation.

The specification consists primarily of a profile of certificate and CRL extensions and a set of
transactions. The transactions include: certification requests, certificate renewal, certificate
revocation, and retrieval of certificates and CRLs from repositories.

The MISPC focuses primarily on the aspects of PKI interoperation most apparent to end users,
that is how to request and be issued a certificate, how to sign documents, how to retrieve the
certificates of others, and how to validate signatures. Some aspects of the “internal” operation of
a PKI, as outlined below, have not reached sufficient stability at this point, and are therefore not
specified.

In this specification a PKI is broken into five components:

• Certification Authorities (CAs) that issue and revoke certificates;
• Registration Authorities (RAs) that vouch for the binding between public keys and

certificate holder identities and other information;
• Certificate holders that are issued certificates and can sign digital documents;
• Clients that validate digital signatures and perform key management protocols, and

Second CRADA Draft, Version 2

 1-2

validate the corresponding certification paths from a known public key of a trusted CA;
• Repositories that store and make available certificates and Certificate Revocation Lists

(CRLs).

Many entities will include certificate holder and client functionality. CAs and RAs will include
both certificate holder and client functionality. End-entity certificate holders will generally also
have client functionality. There may be some clients, however, that are not also certificate
holders.

Repositories are not necessarily certificate holders and may not include client functionality. This
interoperability specification addresses only one aspect of repositories, the protocol used by
clients to request certificates and CRLs from the repository. This is because the precise concept,
role and business model of repositories is unsettled. The X.509 certificate standard [ISO94-8]
itself assumes the existence of an X.500 directory, to satisfy repository requirements, however
X.500 directories, while available for some time, have not been, and do not appear to be going to
be widely used.

The MISPC specifies the Lightweight Directory Access Protocol (LDAP) version 2 as the vehicle
for client access of repositories, primarily because it appears to be the most generally accepted
and broadly implemented alternative. This choice does not address, for example, standardized
protocols for CAs to use to update repositories, nor does it address protocols for repositories to
automatically shadow one another, both of which may be desirable. The former can be addressed
on a case by case basis between CAs and their repositories, and the latter may not be necessary.

In the conventional approach to certificate status confirmation (which the MISPC follows),
repositories are not trusted entities, rather it is the CA’s signature on a CRL that validates the
revocation status of certificates. On-line mechanisms for real-time certificate status confirmation
would require that repositories themselves be trusted entities and that they authenticate
themselves to clients. Protocols for such certificate status confirmation are not yet widely
deployed, and their utility seems to depend upon the application. Therefore such protocols are
outside the scope of this specification, but, since real-time certificate status confirmation may be
needed for some applications, this subject may be addressed in a later revision.

The MISPC does not include a protocol for repositories to authenticate users, which would be
needed to implement access by access billing for repository use. Although that may become an
important business model for repositories, there does not currently appear to be enough
agreement on such a business model and the supporting protocol to make this subject ripe for
inclusion in a minimum interoperability specification. This subject may also be addressed in a
later revision.

In some cases, out-of-band exchanges must be performed as part of the transactions defined by
this specification. The format and contents of such out-of-band transactions are generally outside
of the scope of this specification.1

1.3 Approach
The MISPC is based on X.509 version 3 certificates and version 2 CRLs. To the extent possible,

1 The format and content of the electronic data provided to an RA when requesting a certificate “in person” is the
exception to this rule. See section 3.5.1, RA-Generated Registration Requests

Second CRADA Draft, Version 2

 1-3

this document adopts data formats and transaction sets defined in existing and evolving standards
such as ITU-T X.509 [ISO94-8], ANSI [X9.31], [X9.42], [X9.44], [X9.55], [X9.57], [X9.62],
and [X9.63] and the IETF's PKIX documents [RFC2459], [RFC2510], [RFC2511]. In drafting
this document, whenever the stability of an evolving standard used in this document has come
into question, NIST has made an educated guess regarding the direction to be followed. These
issues were reviewed by industry collaborators prior to the release of this specification and
represented vigorously within the appropriate standards groups to minimize departure from the
stable version of the standards.

1.4 Assumptions
The MISPC assumes that CAs, RAs, and certificate holders are physically separated. Where
these entities are physically collocated, support for specified interfaces is not required. In
particular, a PKI component that includes both RA and CA functionality is not required to
support the MISPC message formats for transactions between these components. However, if
that system includes a CA that supports remote RAs in addition to the local RA function, it must
support the MISPC transactions for the remote RAs.

The MISPC considers CAs and RAs as functional entities in a PKI. The internal design of these
entities is outside the scope of this specification.

The MISPC assumes that, at a minimum, certificate holders will have a signature key and
certificate. Certificate holders may optionally maintain a key management key and certificate as
well. Certificate holders that wish to request or revoke a key management certificate will use
their signature key for authentication to the CA.

The MISPC does not directly support systems that do not require non-repudiation and do not
maintain a signature key pair. However, the majority of such entities are computing systems
(e.g., routers or link encryptors) and are maintained by administrators. If that administrator has a
signature key pair for the purpose of system administration, the MISPC transaction set could be
used to support certificate requests and revocation for such an entity.

The MISPC identifies three important digital signature algorithms for which suitable approved or
mature draft standards exist. New algorithms could easily be incorporated as they are introduced
in standards.

The MISPC also identifies three important key management algorithms for which suitable
approved or mature draft standards exist. As with signature algorithms, new algorithms could
easily be incorporated as they are introduced in standards.

The MISPC supports both hierarchical and networked trust models [CONOPS]. In hierarchical
models, trust is delegated by a CA when it certifies a subordinate CA. Trust delegation starts at a
root CA that is trusted by every node in the infrastructure. In network models, trust is
established between any two CAs in peer relationships (cross-certification), thus allowing the
possibility of multiple trust paths between any two CAs. The MISPC assumes that X.509 v3
extensions, such as basicConstraints, nameConstraints, keyUsage, and certificatePolicies, will be
included in certificates to explicitly manage trust relationships.

The MISPC assumes that certificates and certificate revocation lists (CRLs) will be available in a
repository for retrieval without authentication. MISPC clients will perform path validation by

Second CRADA Draft, Version 2

 1-4

obtaining the necessary certificates and CRLs from the appropriate repositories. The repository
may be an X.500 directory or some other type accessible by using Universal Resource Identifier
(URI) notation. Repositories are expected to support the Lightweight Directory Access Protocol
(LDAP) [RFC 1777], therefore compliant products are required to support this protocol.

These repositories need not be linked together and other protocols may be used to retrieve
certificates and CRLs. The specification requires explicit identification of the certificate
repositories used and retrieval mechanisms for the issuer’s certificate(s) and CRLs within the
certificate.2

Certificate Revocation Lists (CRLs) are expected to be a widely implemented mechanism for
revoking and validating the status of unexpired certificates. While the use of CRLs for this
purpose may not be universal, and some CAs may choose to provide an on-line mechanism for
validating certificate status in real time, CRL generation will be necessary for interoperability
with users of other CAs. In addition to current checks of certificate validity, CRLs provide an
important mechanism for documenting the historical revocation status of certificates. That is, a
dated signature may be presumed to be valid if the signature date were within the validity period
of the certificate, and the current CRL of the issuing CA at that date did not show the certificate
to be revoked.3

Therefore, the MISPC assumes that CA products will be able to generate CRLs, and that clients
will be able to use CRLs when validating certificates.

1.5 Definitions, Terms, and Acronyms
Abstract Syntax Notation 1 (ASN.1): an abstract notation for structuring complex data objects.

accredit: recognize an entity or person to perform a specific action; CAs accredit RAs to act as
their intermediary (see registration authority below).

CA certificate: a certificate whose certificate holder is trusted to issue certificates

certificate (or public key certificate): A digitally signed data structure defined in the X.509
standard [ISO94-8] that binds the identity of a certificate holder (or subject) to a public key.

certificate holder: An entity that is named as the subject of a valid certificate.

certificate policy: A named set of rules that indicates the applicability of a certificate to a
particular community and/or class of application with common security requirements. For
example, a particular certificate policy might indicate applicability of a type of certificate to the
authentication of electronic data interchange transactions for the trading of goods within a given
price range.

certificate user: An entity that uses certificates to know, with certainty, the public key of another
entity.

certificate-using system: An implementation of those functions defined in the X.509 standard

2 As a consequence of this assumption, the distinguished name of the subject is not sufficient to retrieve a certificate.
MISPC clients must obtain the signer’s certificate, or distinguished name of the subject and the identity of the
repository, from the signer.
3 This assumes you can accept the date attached to the signature on the basis of a trusted archive or notarization,
which are outside the scope of this specification.

Second CRADA Draft, Version 2

 1-5

[ISO94-8] that are used by a certificate user. This term is defined in the Draft Amendments to
X.509 [DAM] and equivalent to the term “client” used in this interoperability specification.

Certification Authority (CA): A trusted entity that issues certificates to end entities and other
CAs. CAs issue CRLs periodically, and post certificates and CRLs to a repository.

certification path: An ordered sequence of certificates, leading from a certificate whose public
key is known by a client, to a certificate whose public key is to be validated by the client.

Certification Practice Statement: A statement of the practices which a Certification Authority
employs in issuing certificates.

CRL distribution point: A directory entry or other distribution source for CRLs; a CRL
distributed through a CRL distribution point may contain revocation entries for only a subset of
the full set of certificates issued by one CA or may contain revocation entries for multiple CAs.

certificate revocation list (CRL): a list of revoked but unexpired certificates issued by a CA.

certify: the act of issuing a certificate.

client (or PKI client): A function that uses the PKI to obtain certificates and validate certificates
and signatures. Client functions are present in CAs and end entities. Client functions may also be
present in entities that are not certificate holders. That is, a system or user that verifies signatures
and validation paths is a client, even if it does not hold a certificate itself. See section 2.4.

cross certificate: a CA certificate that describes a non-hierarchical trust relationship between two
CAs

cross certification: the process of establishing non-hierarchical trust relationships between CAs

delta-CRL: A partial CRL indicating only changes since a prior CRL issue.

DES: The symmetric encryption algorithm defined by the Data Encryption Standard (FIPS 46-2).

DES MAC: An algorithm for generating a message authentication code (mac) using the
symmetric encryption algorithm DES.

Distinguished Encoding Rules (DER): rules for encoding ASN.1 objects which give a consistent
encoding for each ASN.1 value. Implementations conforming to this specification shall encode
ASN.1 objects using the DER.

digital signature: a data unit that allows a recipient of a message to verify the identity of the
signatory and integrity of the message.

Digital Signature Algorithm (DSA): a digital signature algorithm specified in FIPS PUB 186-1.

directory service (DS): a distributed database service capable of storing information, such as
certificates and CRLs, in various nodes or servers distributed across a network.

end entity: A certificate subject which uses its private key for purposes other than signing
certificates.

Elliptic Curve Digital Signature Algorithm (ECDSA): a digital signature algorithm that is an
analog of DSA using elliptic curve mathematics and specified in ANSI draft standard X9.62
[X9.62].

Second CRADA Draft, Version 2

 1-6

hash: a function which maps strings of bits to fixed-length strings of bits, satisfying the
following two properties: it is computationally infeasible to find for a given output an input
which maps to this output; and it is computationally infeasible to find for a given input a second
input which maps to the same output.

hash code: The string of bits which is the output of a hash function

LDAP: The Lightweight Directory Access Protocol, or LDAP, is a directory access protocol. In
this document, LDAP refers to the protocol defined by RFC 1777, which is also known as LDAP
V2. LDAP V2 describes unauthenticated retrieval mechanisms.

message authentication code: a data authenticator generated from the message, usually through
cryptographic techniques. In general, a cryptographic key is also required as an input.

message digest: the fixed size result of hashing a message.

out of band: Some transactions between PKI components will be performed through physical
procedures rather than implemented electronically. Such transactions are described as out of band
transactions.

policy mapping: Recognizing that, when a CA in one domain certifies a CA in another domain, a
particular certificate policy in the second domain may be considered by the authority of the first
domain to be equivalent (but not necessarily identical in all respects) to a particular certificate
policy in the first domain.

Registration Authority (RA): an entity that acts an intermediary between the CA and a
prospective certificate subject; the CA trusts the RA to verify the subject's identity and that the
subject possesses the private key corresponding to the public key to be bound to that identity in a
certificate. Note that equivalent functions are referred to as Local Registration Authority (LRAs)
or Organizational Registration Authorities (ORAs) in some documents, including the MISPC
Version 1.

repository: a database service capable of storing information, such as certificates and CRLs,
allowing unauthenticated information retrieval. Repositories include, but are not limited to,
directory services.

RSA: For the purposes of this specification, RSA is a public-key signature algorithm specified by
PKCS #1 [PKCS#1]. As a reversible public-key algorithm, it may also be used for encryption.

self-issued certificate: a CA-certificate whose subject and issuer are identical.

URI: A uniform resource identifier, or URI, is a short string containing a name or address which
refers to an object in the “web.”

URL: A uniform resource locator, or URL, is a short string containing an address which refers to
an object in the “web.” URLs are a subset of URIs.

Well Known X.500 Directory: In some environments, an X.500 service may be widely available
and used throughout an organization. If such a directory service is used to distribute certificates
and CRLs issued by that organization, such information need not be included in the certificate.

Second CRADA Draft, Version 2

 2-1

2. Infrastructure Component Specifications
This section specifies a minimal set of functions and transactions required for the interoperation
of PKI components. It includes specifications for CAs, RAs, certificate holders, and PKI Clients.

2.1 Certification Authority (CA)
CAs generate, revoke, publish, and archive certificates. They rely upon a repository to make
certificates and CRLs available to all certificate users.

CAs generate their own key pairs and publish their own certificates. As appropriate, CA should
be able to generate, and assess the quality of, any parameters required to generate/verify their
signatures. To enable CAs to join existing hierarchically managed infrastructures, they shall be
able to request certificates from a parent CA. CAs shall also be able to generate cross
certificates, to support cross-certification with other CAs as allowed by their operational policies.
CAs archive all transactions, including service requests and responses from and to other PKI
components.

CAs accredit RAs, which vouch for the identity and other attributes of users requesting
certificates. This accreditation is an off-line decision to accept RA-generated certification
requests from that RA. CAs identify certificate holders using X.500 distinguished names.
Distinguished names uniquely identify certificate holders.

CAs themselves include both a certificate holder function to request, revoke and renew
certificates issued by other CAs (see sec. 2.3) and a client function to retrieve certificates and
CRLs, and validate certification paths (see sec. 2.4).

2.1.1 Interoperability-Relevant CA Functional Specifications
CAs perform the following functions:

• Issue and deliver certificates to end-entities and CAs;
• Accept revocation requests from certificate holders and RAs for certificates it issued;
• Post certificates and CRLs to the repository; and
• Request CA certificates.

Issuing Digital Signature Certificates

CAs support three types of certification requests for digital signature certificates: self-
registration, RA-generated registration, and renewal.4 CAs authenticate the identity of the
certificate’s subject differently for each type of request. The prospective certificate holder
supplies an authenticator in a self-registration request; the authenticator is derived from a secret
obtained from an RA. RAs generate and sign RA-generated registration requests, vouching for
the identity of the subject, when the subject physically attends the RA. The subjects of currently
valid certificates can vouch for their own identity in a renewal request by signing with their
current private key.

4 CAs may be configurable to reject one or more classes of certification requests if the certificate policy prohibits
such transactions.

Second CRADA Draft, Version 2

 2-2

In an RA-generated registration request, the RA vouches for the prospective certificate holder's
identity and the binding to the public key. When CAs receive certification requests from
accredited RAs, they shall process the requests and, if accepted, generate new certificates, post
the certificates to a repository5, and send them to the requesting RAs. CAs may also send the new
certificate to the certificate holders. CAs shall reject RA-generated certification requests that do
not come from a recognized RA, that have invalid signatures, or that contain unmatched
information. If a CA rejects an RA-generated certification request, it shall report the failure to
the RA stating the reason.

In a self-registration request, the RA provides a secret message to the prospective certificate
holder. The entity generates its own key pair, forms a certification request, signs it with the
corresponding private key material, and includes authentication information based on the secret
provided by the RA.6 The CA receives the request, verifies the requester’s identity through the
authentication information and verifies that the entity holds the corresponding private key
material. If accepted, the CA will generate a new certificate, post the certificate to the repository,
and send it to the certificate holder. The CA may reject self-registration requests if the
authentication information does not verify, the signature is invalid, or fields contain unmatched
information. If a CA rejects a self-registration request, it shall report the failure to the requester
stating the reason.

In a renewal request, the established identity of the requester is perpetuated with the request.
Certificate renewals are initiated by the certificate holder and sent directly to the CA. CAs
process the renewals and, if correct, send the new certificates to the certificate holders and post
the new certificates to the repository. CAs may reject certificate renewal requests with invalid
signatures, requests from entities not currently certified, and renewal requests that are not
allowed by the CA’s certification practice statement or the certificate policy. If a CA rejects a
certificate renewal request, it shall report the failure to the requesting entity stating the reason.

Issuing Key Management Certificates

CAs may support certification requests for key management certificates for a requester that
possesses a valid signature certificate issued by that CA. The requester’s identity is verified by
digitally signing the requests. Requesters may generate their own key pairs, or the CA may
generate the keys for the requesters. Both transactions are extended versions of the renewal
request.7

In the Locally-Generated Key Management Certificate Request, the certificate holder generates a
key pair for a key transport or key agreement algorithm. The certificate holder generates a
certificate request, includes the public key and signs the request with a signature key currently
certified by this CA. The CA may, depending upon its policy, initiate a challenge-response
protocol to verify the requester’s possession of the private key. The transaction is completed by a
certification response from the CA containing either the certificate or an error code.

5 Conforming CAs shall be able to post the certificates they issue to a repository. However, it is not necessary to post
end-entity certificates, since the certificate holder may provide the certificate with the signed document.
6 Where the CA and RA are not co-located, this also requires an exchange of secrets between the CA and RA.
Details of this exchange are outside the scope of this specification.
7 Neither type of transaction requires or prevents implementation of various key escrow schemes.

Second CRADA Draft, Version 2

 2-3

In a Centrally-Generated Key Management Certificate Request, the certificate holder generates a
certificate request, specifies the desired key management algorithm and signs the request with a
signature key currently certified by this CA. The CA responds with a certificate and an encrypted
private key.

CAs that claim conformance to the MISPC confidentiality enhancements must implement the
Locally-Generated Key Management Certificate Request. Implementation of the Centrally-
Generated Key Management Certificate Request is optional.

Cross Certification

CAs may issue certificates to other CAs with appropriate constraints. The decision to cross-
certify is made out-of-band and involves examination of Certification Practice Statements and
certificate policies. Each CA determines the appropriate constraints for path validation by their
users. After obtaining the other CA’s public key, the CA generates the certificate and posts it to
the repository.

Optionally, cross-certifying CAs may exchange certificates, construct certificate-pairs, and post
them to the repository.8

Revoking Certificates

CAs shall be capable of generating and issuing certificate revocation lists (CRLs). CAs shall be
able to issue CRLs that contain all revoked certificates that they issued and have not expired.
Optionally, CAs may also issue indirect and delta CRLs. The types of CRLs issued will be
determined by the CA’s certification practice statement.

In those cases where a CA issues a single CRL for all revoked certificates it has issued:

• When a new CRL is generated, all revoked unexpired certificates from the previous CRL
shall be carried over to the new CRL, and any certificates with approved pending
certificate revocation requests shall be added to the new CRL. Certificates on the
previous CRL with a reason code of certificateHold may be carried over to the new CRL
with same reason code, listed on the new CRL with a different and permanent reason
code, or omitted from the new CRL. Omission from the new CRL indicates the CA will
vouch for the binding between the subject and public key. A certificate with an approved
pending certificate revocation request shall be included in the next CRL even if it expires
before the CRL is issued.

• In this case, CAs shall only revoke certificates they issued.9 The signer of the revocation
request must either be the certificate holder or an authorized entity (such as an accredited
RA) acting on behalf of the certificate holder or the certificate holder’s organization.
CAs shall validate revocation requests prior to including a certificate in a CRL.
Validation of a revocation request shall include validation of the signature on the request.
Out-of-band validation of revocation requests signed by RAs may optionally be required

8 A CA may issue a certificate to another CA even if the latter refuses to issue a certificate to the former. In this case,
the CA could (optionally) construct a cross certificate pair containing only the reverseCertificate.
9 Revocation may be initiated by receipt of a signed request, or by the CA’s own procedures. This specification does
not address revocations initiated by the CA.

Second CRADA Draft, Version 2

 2-4

by the certificate policy.

CAs shall issue X.509 version 2 CRLs.10 The fields and extensions utilized, and the values
assigned to them, shall be in accordance with section 3.2.1. After generating and signing a CRL,
CAs shall send it to the repository.

Post Certificates, Cross Certificates, and CRLs

CAs shall be capable of posting certificates, cross certificate pairs, and CRLs for retrieval by PKI
clients. CAs shall always post CA certificates, cross certificate pairs, CRLs, and end entity key
management certificates. Posting of end-entity digital signature certificates is optional. The
mechanisms used to update directories is beyond the scope of this specification.

Request CA Certificates

CAs shall be capable of requesting certificates from hierarchically superior CAs to support PKIs
based on the hierarchical trust model. This request is supported as described in section 3.5.1.
The certificate request shall identify the entity as a CA through the basicConstraints extension as
described in section 3.1.3.3.

2.1.2 Electronic Transaction Set.
Table 2-1 summarizes electronic transactions used in providing certificate management services.
These transactions enable:

• processing of certification requests and certificate revocation requests for end entity
certificates;

• posting of certificates and CRLs on the repository;
• the retrieval of certificates and CRLs from the repository for signature validation.

CAs shall process RA-generated certification requests in the form of CertReq messages.11
CertReq messages are signed by the RA in the PKIProtection structure. By signing requests, RAs
vouch for the identity of the certificate holder and confirm that requesting certificate holders are
in possession of the corresponding private keys. CAs respond to the RAs or certificate holders
with CertRep messages. If a request was accepted, the CertRep message contains the new
certificate. If the request was rejected, the message contains the error code (see sec. 3.5.1).

CAs shall also support the self-registration request, where users who are not current certificate
holders sign their own certificate request. The CA shall require the entity to generate
authentication information based on out-of-band interaction with an RA. This information
substitutes for RA signature to vouch for the requester’s identity. To request a certificate without
appearing before an RA, the entity obtains some information out-of-band from the RA. This
information might be a symmetric key for use in generation of a mac or keyed hash. The entity
generates a CertReq message and signs it with the entity’s new private key. This message is then
protected with the information obtained out-of-band as directed by the RA. The CA generates a

10 Version 2 CRLs correspond to the Version 3 certificate; the Version 2 certificate definition did not result in
creation of a new CRL format.
11 This section refers to CertReq, CertRep, RevReq and RevRep messages. The precise structure and content of
these messages is defined in section 3.4.

Second CRADA Draft, Version 2

 2-5

CertRep message; if the request was fulfilled the message contains the new certificate. If the
request was rejected, the message contains error codes. This transaction is described in detail in
section 3.5.3.12

CAs shall process certificate renewal requests in the form of CertReq messages. These messages
are sent to a CA by the entity requesting the certificate. The message shall include the certificate
holder's distinguished name, the serial number of their current certificate, the new public key, and
proof of possession of the private key. The message may optionally include a proposed validity
period and a proposed key id. The message shall be signed with the private key corresponding to
the certificate holder's unexpired, unrevoked certificate. CAs shall respond to the requester in the
form of an CertRep message. This message shall contain either a new certificate or a failure code.
 If issued, the certificate shall include the certificate holder's distinguished name and the new
public key. CAs are free to modify the validity period proposed in the request. CAs shall
generate a key identifier if the message did not include one. (see sec. 3.5.2.)

CAs shall receive RevReq messages from RAs or certificate holders. The RevReq message shall
include the certificate serial number or the certificate holder's distinguished name. CAs shall
respond with a RevRep message. This message shall include status and failure information, and
may include additional details about the revoked certificate(s).

CAs may support one or both of the following transactions:

• key management certificate requests for end-entity generated key pairs; or
• key management certificate requests for centrally generated key pairs.

CAs that support key management certificate requests for end-entity generated key pairs shall
process these requests in the form of CertReq messages. These messages are sent to a CA by the
entity requesting the certificate. The message shall include the certificate holder's distinguished
name, the serial number of their current certificate, and the new public key. The message may
optionally include a proposed validity period and a proposed key id. The message shall be signed
with the private key corresponding to the certificate holder's unexpired, unrevoked signature
certificate. If a CA desires proof of possession of the corresponding private key, the CA initiates
a challenge-response mechanisms by encrypting a random challenge with the new private key.13
The requester returns the random challenge, and signs the message as above. If the CA is not
concerned with proof of possession, the challenge-response mechanism may be omitted. At this
point, the CA shall respond to the requester in the form of an CertRep message. This message
shall contain either a new certificate or a failure code. If issued, the certificate shall include the
certificate holder's distinguished name and the new public key. CAs are free to modify the
validity period proposed in the request. CAs shall generate a key identifier if the message did not
include one.

12 An alternative syntax for this transaction is specified in section 3.5.5.
13 A CA may also wish to perform public key validation of the public key value. This is a policy decision, and does
not affect the certificate request protocol. Mechanisms for public key validation are algorithm dependent.

Second CRADA Draft, Version 2

 2-6

Transaction Description From To

RA-Generated
Registration

RA submits a certificate request on behalf of an authenticated
entity

RA CA

Request (sec.
3.5.1)

CA returns signed certificate or error message CA RA

Certificate
Revocation

RA or certificate holder requests revocation of a certificate requester Issuer CA

(sec. 3.5.6) CA responds with acceptance or rejection of the request Issuer CA requester

Self-Registration
Request

message signed with new public key encapsulates certificate
request with ORA-directed protection value

client Issuer CA

(secs. 3.5.3 and
3.5.5)

CA returns signed certificate and CA's certificate or an error
message

Issuer CA client

Certificate
Renewal Request

 certificate request containing new public key with proof of
possession and current certificate serial number; signed with

current private key

Certificate
holder

CA

(sec. 3.5.2) CA returns signed certificate or error message CA certificate
holder

End-Entity
Generated Key

End-entity generates a key management certificate request
including the public key and signs it with its currently

certified signature key.

Certificate
holder

CA

Management
Certificate

The CA challenges the requester to prove possession of
private key

CA Certificate
holder

Request (sec.
3.5.7)

If challenged, the requester generates proof of possession as
response to challenge message

Certificate
holder

CA

 CA returns signed certificate or error message certificate
holder

CA

Centrally
Generated Key
Management

End-entity generates a key management certificate request
specifying the key management algorithm and a NULL public

key and signs it with its currently certified signature key.

Certificate
holder

CA

Certificate
Request (sec.

3.5.10)

CA generates a key pair and returns signed certificate and
encrypted private key or an error message

CA Certificate
holder

Table 2-1

Second CRADA Draft, Version 2

 2-7

CAs that support key management certificate requests for centrally generated key pairs shall
process these requests in the form of CertReq messages. These messages are sent to a CA by the
entity requesting the certificate. The message shall include the certificate holder's distinguished
name and the serial number of their current certificate. The message may optionally include a
proposed validity period. The message shall be signed with the private key corresponding to the
certificate holder's unexpired, unrevoked certificate. CAs shall respond to the requester in the
form of an CertRep message. This message shall contain either a new certificate and encrypted
private key, or a failure code. If issued, the certificate shall include the certificate holder's
distinguished name and the new public key. CAs are free to modify the validity period proposed
in the request.

CAs shall post CA certificates, cross certificate pairs, CRLs, and end-entity key management
certificates that it issues to a repository. CAs may optionally be capable of posting end entity
certificates to a repository.14

2.2 Registration Authority (RA)
RAs vouch for the identity of entities requesting certification. RAs may verify that identity by
requiring the requesting entity to attend the RA physically with a physical token, or through out-
of-band mechanisms. Where the entity physically attends the RA, the RA also verifies their
possession of private key material corresponding to the public key by verifying a signed message
(as described in sec. 3.5.1).

The format for a certificate request on behalf of an entity in physical attendance appears in
section 3.5.1. RAs shall verify the entity possesses a complete key pair. After the key pair and
the entity's identity are verified, an RA signs and sends an electronic certificate request to the
appropriate CA.

Certificate requests on behalf of a user who does not physically attend the RA require that the
RA provide authentication information to the entity. This information is used by the entity to
authenticate itself to the CA in a self-registration request as defined in section 3.5.3. This
specification does not define the content or format of the out-of-band exchange(s) required to
implement self-registration requests.

RAs may request certificate revocation for end-entity certificates issued by CAs that have
accredited them. The format of the RevReq is presented in section 3.5.6. The RA function may
be collocated with the CA or performed at a separate facility.

RAs themselves include both a certificate holder function to request, revoke and renew
certificates (where it is the subject) issued by CAs (see sec. 2.3) and a client function to retrieve
certificates and CRLs and validate certification paths (see sec. 2.4).

14 Posting of end entity digital signature certificates is not strictly required, since the originator of a signature can
supply their own certificate.

Second CRADA Draft, Version 2

 2-8

2.2.1 Interoperability-Relevant RA Functional Specifications
RAs shall perform the following functions:

• Accept and validate certification requests;
• Send certification requests to the CA;

• Retrieve certificates and CRLs from the repository; and
• Generate certificate revocation requests.

The RA shall be able to pass the newly signed certificate on to the certificate holder, along with
the CA's certificate.

RAs shall generate and sign certificate revocation requests on behalf of certificate holders who
no longer possess their private key and suspect compromise.15 If permitted by the CA’s
certification practice statement, RAs shall also generate and sign certificate revocation requests
on behalf of the certificate holder’s organization. Revocation requests are signed by the RA
which then sends them to the issuing CA.

2.2.2 Transaction Set
Table 2-3 gives the subset of electronic transactions used by RAs. These transactions enable
request, delivery, and revocation of end entity certificates, and the retrieval of certificates and
CRLs from the repository for signature validation. The following text provides an overview of
these transactions; they are described more fully in section 3.5.

RAs receive certification requests from prospective certificate holders in the form of CertReq
messages. The CertReq message is signed by the prospective certificate holder in the
PKIProtection structure. After reviewing the requester’s credentials and confirming that the
prospective certificate holder is in possession of the corresponding private key, the RA extracts
the public key information, and creates a new CertReq message with the RA’s name and
signature. The RA sends this message to a CA. RAs shall provide certificate holders with the
CA's certificate.

RAs may receive CertRep messages from the CA. If a certification request is rejected, the RA
will review the error code from the CA and may submit a new request. If a certification request is
accepted, the RA may provide the new certificate to the certificate holder.

15 Signature keys lost but not believed compromised are not necessarily revoked; this is determined by policy. Note
that confidentiality keys which are lost must be revoked regardless, or a sending party may encrypt and transmit
messages the receiver could never decrypt.

Second CRADA Draft, Version 2

 2-9

RAs shall generate revocation requests upon request of certificate holders who no longer possess
their private key or the certificate holder’s organization. By signing the request, the RA is
vouching for the identity of the requester. RAs shall generate RevReq messages, including the
certificate serial number or the certificate holder's distinguished name. The RevReq message shall
be signed by an RA. The CA shall respond to the RA with a RevReq message.

This message shall include status and failure information, and may include additional details
about the revoked certificate. If the certificate is revoked, the RA shall provide this information
to the requester. If the request is rejected, the RA will review the error code and may re-
formulate the request.

2.3 Certificate Holder Specifications
The PKI provides certificate management functions for certificate holders. Certificate holders
include CAs, RAs and other end entities. End entities may include persons and computing
systems (e.g., routers and firewalls) or applications (in addition to CAs and RAs).

PKI certificate holders generate signatures and support PKI transactions to obtain, revoke and
renew their certificates.

2.3.1 Interoperability-Relevant PKI Certificate Holders Functional Specifications

Certificate holders shall be able to:

• generate signatures;
• generate certificate requests;
• request certificate revocation;
• request certificate renewal (optional).

Certificate holders are also PKI clients, and must also meet the specifications defined in section
2.4.

Table 2-1 RA Electronic Transaction Set

Transaction Description From To

RA-Generated
Registration

Request

User (or system administrator) submits
digitally signed certificate request to RA with

proof of identity

client RA

 (sec. 3.5.1) RA submits a certificate request on behalf of
an authenticated prospective certificate holder

RA CA

 CA returns signed certificate or error message CA RA

Certificate RA requests revocation of a certificate RA Issuer CA

Revocation
(sec. 3.5.6)

CA responds with acceptance or rejection of
revocation request

Issuer CA RA

Second CRADA Draft, Version 2

 2-10

2.3.2 Certificate Holders Transaction Set

Table 2-3 gives the summary of transactions used by certificate holders. These transactions
enable certificate holders to request new certificates and request revocation of certificates held by
the certificate holder (if any) for whom the client acts. All certificate holder transactions are
performed with the CA that issued the certificate or an RA accredited by that CA.

Certificate holders shall be able to request revocation of their own certificates. This transaction is
performed with the CA and permits certificate holders to sign their own certificate revocation
requests. Certificate holders generate a RevReq message for each certificate they wish to revoke
and transmit to the issuing CA. The RevReq message shall include the reason for revocation.
The CA generates a RevRep message for each request and transmits it to the certificate holder.
This transaction is described in detail in section 3.5.6.

Certificate holders shall be able to generate a CertReq message to present to an RA for in person
authenticated certificate requests. The certificate holder constructs and signs the CertReq
message, so the RA can verify the requester holds corresponding private key material.

Certificate holders may also implement the Certificate Renewal Request. This transaction is
performed with the CA and permits certificate holders to sign their own certificate requests (i.e.,
without an RA verification of identity). CAs shall support this transaction, but its use is
determined by the certificate policy. To request a new certificate without appearing before an
RA, the certificate holder generates a CertReq message and signs it with both the new and current
private keys. The CA generates a CertRep message; if the request was fulfilled the message
contains the new certificate. If the request was rejected, the message contains error codes. This
transaction is described in detail in section 3.5.2.

Certificate holders may also implement the self-registration request to request a certificate when
they are not current certificate holders. This transaction is performed with the CA and permits
certificate holders to sign their own certificate requests. The CA shall require the entity to
generate or include information based on out-of-band interaction with an RA. This information
substitutes for RA verification of identity. CAs shall support this transaction, but its use is
determined by the certificate policy. To request a certificate without appearing before an RA, the
entity obtains some information out-of-band from the RA. This information might be a secret key
for use in mac generation or a signed message that will simply be included in the request. The
entity generates a CertReq message and signs it with the entity’s new private key. The entity
attaches appropriate protection information to the signed message as directed by the RA. The
CA generates a CertRep message; if the request was fulfilled the message contains the new
certificate. If the request was rejected, the message contains error codes. This transaction is
described in detail in section 3.5.3.16

Certificate holders may also implement the Locally-Generated Key Management Certificate
Request. In this transaction, the certificate holder generates a key pair for a key transport or key
agreement algorithm. The certificate holder generates a certificate request, includes the public
key and signs the request with a signature key currently certified by this CA. The CA may,
depending upon its policy, initiate a challenge-response protocol to verify the requester’s
possession of the private key. The transaction is completed by a certification response from the

16 An alternative syntax for this transaction is presented in section 3.5.5.

Second CRADA Draft, Version 2

 2-11

CA containing either the certificate or an error code.

Certificate holders may also implement the Centrally-Generated Key Management Certificate
Request. In this transaction, the certificate holder generates a certificate request, specifies the
desired key management algorithm and signs the request with a signature key currently certified
by this CA. The CA responds with a certificate and an encrypted private key or an error code.

Second CRADA Draft, Version 2

 2-12

Table 2-2 Certificate Holders Electronic Transaction Set

Transaction Description From To

RA-Generated
Registration

(see sec.
3.5.1)

User (or system administrator) submits digitally
signed certificate request to RA with proof of

identity

client RA

Certificate
Revocation

certificate holder requests revocation of a
certificate

certificate
holder

Issuer CA

(sec. 3.5.6) CA responds with acceptance or rejection of
revocation request

Issuer CA certificate
holder

Self-
Registration

Request

message signed with new public key encapsulates
certificate request with RA-directed protection

value

client Issuer CA

(secs. 3.5.3
and 3.5.5)

CA returns signed certificate and CA's certificate
or an error message

Issuer CA client

Certificate
Renewal
Request

certificate request containing new public key
with proof of possession and current certificate
serial number; signed with current private key

certificate
holder

Issuer CA

(sec. 3.5.2) CA returns signed certificate and CA's certificate
or an error message

Issuer CA certificate
holder

End-Entity
Generated

Key

End-entity generates a key management certificate
request including the public key and signs it with

its currently certified signature key.

Certificate
holder

CA

Management
Certificate

The CA challenges the requester to prove
possession of private key

CA Certificate
holder

Request (sec.
3.5.7)

If challenged, the requester generates proof of
possession as response to challenge message

Certificate
holder

CA

 CA returns signed certificate or error message CA certificate
holder

Centrally
Generated

Key
Management

End-entity generates a key management certificate
request specifying the key management algorithm

and a NULL public key and signs it with its
currently certified signature key.

Certificate
holder

CA

Certificate
Request (sec.

3.5.10)

CA generates a key pair and returns signed
certificate and encrypted private key or an error

message

CA Certificate
holder

Second CRADA Draft, Version 2

 2-13

2.4 Client Specifications
PKI Clients use the PKI to provide certificate processing functions for certificate holders and
certificate users, including CAs and other end entities. End entities may also include RAs,
persons and computing systems (e.g., routers and firewalls).

At a minimum, PKI Clients validate signatures, obtain certificates and CRLs, and validate
certification paths. PKI Clients that serve certificate holders also generate signatures and may
support PKI transactions to revoke or renew their certificates.

2.4.1 Interoperability-Relevant PKI Client Functional Specifications
At a minimum, clients shall be able to:

• verify signatures;
• obtain certificates and CRLs from a repository; and
• validate certification paths.

2.4.2 PKI Client Transaction Set
Table 2-4 gives the summary of transactions used by clients. These transactions enable clients to
obtain certificates and CRLs from the repository. All client transactions are performed with the
certificate repository. All clients shall support the following transactions:

• Retrieve certificates - this transaction permits a user to bind to the directory service or a
specified repository using LDAP and retrieve one or more certificate(s) according to:
− subject name; or
− certificate serial number and issuer's name.

• Retrieve a CRL - This transaction permits a user to bind to the directory service or a
specified repository using LDAP and retrieve the current CRL for a particular CA, or a
specifically identified CRL.

At a minimum, retrieval of certificates and CRLs using the Lightweight Directory Access
Protocol (LDAP) shall be supported by all compliant clients. These transactions are described
further in [RFC1777].

Table 2-4 Client Electronic Transaction Set

Transaction Description From To

Retrieve
Certificate

Query repository or specified repository for an
entity's certificate(s)

 client repository

(see sec.
3.5.12)

return certificate or error message to requester repository client

Retrieve CRL
(sec. 3.5.13)

Query repository or specified repository for
latest CRL issued by a particular CA

client repository

 return CRL to requester repository client

Second CRADA Draft, Version 2

 3-1

3. Data Formats
Basic data formats must be defined for interoperability of PKI components. The data formats
include certificate, CRL, and transaction formats. These specifications include data formats for
all transactions between infrastructure components, and between PKI clients and infrastructure
components.

3.1 Certificate Format
The X.509 v3 certificate format shall be used. Although the revision to ITU-T Recommendation
X.509 that specifies the version 3 format is not yet published, the version 3 format has been
widely adopted and is specified in American National Standards Institute X9.55-1995 [X9.55],
and the Internet Engineering Task Force's Internet Public Key Infrastructure working document
[RFC2459]. The X.509 version 3 certificate includes the following:

 Version
 Serial Number
 Issuer Signature Algorithm
 Issuer Distinguished Name
 Validity Period
 Subject Distinguished Name
 Subject Public Key Information
 Issuer Unique Identifier (optional)
 Subject Unique Identifier (optional)
 Extensions (optional)
 Issuer’s Signature on all the above fields

3.1.1 Certificate Fields
The Abstract Syntax Notation One (ASN.1) definition of the X.509 certificate syntax is stated in
Appendix A. For signature calculation, the certificate is encoded under the ASN.1
Distinguished Encoding Rules (DER). ASN.1 DER encoding is a tag, length, value encoding
system for each element.[ISO25-1]

The following items specify the use of the X.509 v3 certificate. With the exception of the
optional subjectUniqueID and the issuerUniqueID fields, CAs shall generate these fields and
clients shall be capable of processing them in accordance with the X.509 standard. CAs shall not
issue certificates containing the optional subjectUniqueID and the issuerUniqueID fields. Clients
are not required to process subjectUniqueID and the issuerUniqueID fields; however, they shall
reject certificates containing these fields if they do not process them.

Version

The version field describes the version of the encoded certificate. The value of this field shall be
2, signifying a version 3 certificate.

Second CRADA Draft, Version 2

 3-2

Serial number

The serialNumber is an integer assigned by the CA to each certificate. It shall be unique for each
certificate issued by a given CA (i.e., the issuer name and serial number identify a unique
certificate).

Signature

The signature field contains the algorithm identifier for the algorithm used to sign the certificate.
The signature field includes an algorithmIdentifier, which, in principle may be used to pass
parameters. Certificates conforming to this interoperability specification shall be signed with
either the DSA, RSA or ECDSA algorithms, and the contents of the algorithmIdentifier field
shall be as specified in section 3.1.2.2. Certificates shall not use the signature field to pass
parameters (see Subject Public Key Information below) since this field is not protected by the
issuer’s signature.17

Issuer Name

The issuer field provides a globally unique identifier of the authority signing the certificate. The
syntax of the issuer name is an X.500 distinguished name. The distinguished name is composed
of AttributeType - AttributeValue pairs. In general, the AttributeType will be defined by the
X.500 series of recommendations; AttributeValue will be of type DirectoryString.

DirectoryString is a choice of PrintableString, TeletexString, BMPString, UniversalString, and
Utf8String. PrintableString is a basic Latin character set supporting upper and lowercase letters,
digits, and a handful of special characters. TeletexString is a superset of PrintableString, adding
Latin characters with accents and Japanese characters. BMPString is a two-octet character set
satisfying most European character sets. UniversalString is a multi-octet character set including
all the major character sets. Utf8String is an alternative encoding of UniversalString.

When establishing new names, conforming CAs shall always use the most restrictive choice from
{PrintableString, BMPString, and Utf8String}when constructing a DirectoryString. That is, an
AttributeValue which requires only basic Latin characters shall always be represented as
PrintableString. An AttributeValue that includes accented Latin characters shall be represented as
BMPString. Utf8String shall only be used if the character set for BMPString is insufficient.

The TeletexString and UniversalString are included for backward compatibility, and should not
be used for certificates for new subjects. However, these types may be used in certificates where
the name was previously established.18 Clients should be prepared to receive certificates with
these types.

Alternative names may be supplied in the issuerAltName extension and some users of X.509
certificates apparently contemplate a null issuer field. However, certificates conforming to this
interoperability specification shall contain the X.500 distinguished name of the certificate issuer
in this field.

17 See “A Security Flaw in the X.509 Standard,” available from http://www.cygnacom.com/docfiles/dsaflaw.zip, for
the rationale for excluding parameters from this field.
18 This is especially important for cross certificates. Changing the name form will invalidate certification paths.

Second CRADA Draft, Version 2

 3-3

Validity

The validity field indicates the dates on which the certificate becomes valid (notBefore) and on
which the certificate ceases to be valid (notAfter). The validity field may represent dates in
UTCTime or GeneralizedTime.

For dates between the year 1950 and the year 2049 (inclusive), the validity field shall always use
UTCTime. The UTCTime (Coordinated Universal Time) values included in this field shall be
expressed in Greenwich Mean Time (Zulu) and shall express granularity to the second. Seconds
shall be explicitly stated, even if zero. UTCTime shall be expressed as YYMMDDHHMMSSZ.
The year field shall be interpreted as follows:

• if YY is equal to or greater than 50, the year shall be 19YY; and
• if YY is less than 50, the year shall be 20YY.

For dates in the year 2050 or later, the validity field shall always use GeneralizedTime. The
GeneralizedTime values included in this field shall be expressed in Greenwich Mean Time (Zulu)
and shall express granularity to the second. Seconds shall be explicitly stated, even if zero. That
is, GeneralizedTime shall be expressed as YYYYMMDDHHMMSSZ. GeneralizedTime values
MUST NOT include fractional seconds.

(Representation of dates before the year 1950 is not required to implement this specification.)

Subject Name

The purpose of the subject field is to provide a unique identifier of the subject of the certificate.
The syntax of the subject name shall be an X.500 distinguished name. As described for issuer
names, conforming CAs shall use the most restrictive choice when constructing DirectoryStrings.
Alternative names may be supplied in the subjectAltName extension and some users of X.509
certificates apparently contemplate a null subject field. However, certificates conforming to this
interoperability specification shall contain the subject’s X.500 distinguished name in this field.

Subject Public Key Information

The subjectPublicKeyInfo field is used to carry the public key and identify the algorithm with
which the key is used. It includes the subjectPublicKey field and an algorithmIdentifier field with
algorithm and parameters subfields. Certificates conforming to this interoperability specification
shall use either the DSA, rDSA, ECDSA or RSA algorithms, and the contents of the
algorithmIdentifier field shall be as specified in section 3.1.2.2. The parameters subfield of the
subjectPublicKeyInfo field shall be the only method used to pass or obtain DSA or ECDSA
parameters.

Unique Identifiers

The subjectUniqueIdentifier and issuerUniqueIdentifier fields are present in the certificate to
handle the possibility of reuse of subject and/or issuer names over time. Compliant CAs shall
not issue certificates that include these unique identifiers. Compliant PKI clients are not required
to process certificates that include these unique identifiers. However, if they do not process these
fields, they are required to reject certificates that include these fields.

Second CRADA Draft, Version 2

 3-4

Extension

The addition of the extension field is the principal change introduced to X.509 v3 certificates.
Extensions have three components: extnId, that names the extension, critical, the criticality flag
that specifies that the extension is critical or noncritical, and extnValue, the extension value. A
certificate may contain any number of extensions, including locally defined extensions. If the
criticality flag is set, a client shall either be able to process that extension, or shall not validate
the certificate.

A set of standardized extensions has been developed in an amendment to the X.509 standard
[DAM]. The use of these standardized extensions in conforming implementations is specified in
section 3.1.3 below.

Issuer’s Signature

The actual signature on the certificate is defined by the use of the SIGNED parameterized type,
which expands to a SEQUENCE of the data being signed (i.e., the certificate), an algorithm
identifier, and a BIT STRING which is the actual signature. The algorithmIdentifier that identifies
the algorithm used to sign the certificate. Although this algorithimIdentifier field includes a
parameters field that can, in principle, be used to pass the parameters used by the signature
algorithm (see sec. 3.1.2.2), it is not itself a signed object. The parameters field of the certificate
signature shall not be used to pass parameters. When parameters are used to validate a signature,
they shall be obtained from the subjectPublicKeyInfo field of the issuing CA’s certificate.

3.1.2 Cryptographic Algorithms
This document specifies six classes of cryptographic algorithms: secure hash algorithms; digital
signature algorithms; key agreement algorithms; key transport algorithms; message
authentication algorithms; and symmetric encryption algorithms. Where describing a digital
signature, algorithms are always identified with a secure hash algorithm. Where describing a
public key, as in a certificate, the hash algorithm is omitted. This permits a certificate to be used
even if a hash algorithm is replaced with a stronger algorithm.

At a minimum, a conforming PKI component shall implement one of the identified digital
signature algorithms. For simple PKI clients, it is sufficient to verify one of the identified
algorithms; other components are required to generate and verify signatures for one of the
identified algorithms. PKI components that claim conformance to the MISPC confidentiality
extensions shall support one of the identified key management algorithms. At a minimum, a CA
that claims conformance to the MISPC confidentiality extensions must recognize the OID and
encoding of at least one of the specified algorithms. A client that claims conformance to the
MISPC confidentiality extensions must be able to generate a key pair and assemble a certificate
request for one of the specified algorithms.

Conforming components are permitted to implement additional algorithms even if they do not
implement all the algorithms identified in this specification. For example, a client that supports
one of the specified key agreement algorithms may implement any key transport algorithm it
chooses, even if it does not support the specified key transport algorithm.

Second CRADA Draft, Version 2

 3-5

3.1.2.1 Secure Hash Algorithms
Secure hash algorithms are employed as an interim step in the generation of digital signatures
(see 3.1.2.2) for certificates and CRLs. Secure hash algorithms are also used with shared secrets
to generate hash-based message authentication codes (HMACs).

This specification requires the use of SHA-1 in the generation of all digital signatures. SHA-1
is fully described in [FIPS 180-1]. In general, SHA-1 is indicated through the object identifier
associated with the digital signature algorithm. (see 3.1.2.2).

Where necessary to identify the hash algorithm independently, the ASN.1 object identifier used
to identify this hash algorithm is:

sha1 OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 26 }

When this OID appears within the ASN.1 type AlgorithmIdentifier, the parameters component of
that type shall be the ASN.1 type NULL.

3.1.2.2 Digital Signature Algorithms
X.509 certificates specify both the algorithm used to sign the certificate (in the signature field)
and the algorithm of the subject’s public key (in the subjectPublicKeyInfo field). The two
algorithms may be different.

This section specifies the encodings for public keys and digital signatures for four distinct
algorithms:

• the Rivest-Shamir-Adelman (RSA) algorithm as specified by Public Key Cryptographic
Standard #1 (PKCS-1);

• the Reversible Digital Signature Algorithm (rDSA) specified in ANSI X9.31-1998;
• the Digital Signature Algorithm specified in FIPS 186-1; and
• the Elliptic Curve Digital Signature Algorithm (ECDSA) specified in ANSI X9.62-1998.

To conform to this specification through January 1, 2001, a conforming PKI component shall
implement one of the identified digital signature algorithms. (After January 1, 2001, a
conforming PKI component shall implement at least one FIPS approved digital signature
algorithm. Currently, DSA and rDSA are the FIPS approved digital signature algorithms.)

Note that implementation requirements may vary according to the type of component:

• Conforming clients shall be able to validate signatures of at least one of the identified (FIPS
approved after 1/1/2001) algorithms. (To achieve maximum interoperability, it is
recommended that clients be capable of validating signatures for all four of the algorithms
specified below.)

• Conforming CAs shall be able to sign certificates and Certificate Revocation Lists (CRLs)
using at least one of the identified (FIPS approved) algorithms.

• Conforming end entities shall be able to sign with at least one of the identified (FIPS
approved) algorithms.

Second CRADA Draft, Version 2

 3-6

RSA (PKCS #1)

The RSA signature algorithm is defined in PKCS #1 [PKCS#1]. Although RSA can be used with
several hash algorithms, the only variant used to sign certificates and CRLs conforming to this
interoperability specification is RSA with the SHA-1 hash algorithm specified in FIPS 180-1
[FIPS 180]. For this specification, the sha-1WithRSAEncryption object identifier is used to
identify RSA with SHA-1:
pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) US(840)
 rsadsi(113549) pkcs(1) 1 }

sha-1WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1(1) 5 }

This object identifier shall appear in the parameterized type SIGNED and the signature field in
both certificates and CRLs signed with RSA. Whenever this object identifier appears as the
value for algorithmIdentifier, the parameters component shall be NULL.

When a certificate or CRL is signed with RSA and SHA-1, the signature shall be generated and
encoded as follows:

The certificate or CRL is ASN.1 DER encoded, and is used as the input to the SHA-1
hash function. The SHA-1 output value is ASN.1 encoded as an OCTET STRING and the
result is encrypted with the RSA algorithms to form the signed quantity. When signing,
the RSA algorithm generates an integer y. This signature value is then ASN.1 encoded as
a BIT STRING, such that the most significant bit in y is the first bit in the bit string and the
least significant bit in y is the last bit in the bit string, and included in the Certificate or
CertificateList (in the signature field).

(In general the conversion to a bit string occurs in two steps. The integer y is converted to
an octet string such that the first octet has the most significance and the last octet has the
least significance. The octet string is converted into a bit string such that the most
significant bit of the first octet shall become the first bit in the bit string, and the least
significant bit of the last octet is the last bit in the bit string.)

When a conforming CA issues a certificate whose subjectPublicKeyInfo field contains an RSA
public key, the object identifier rsaEncryption shall appear as the algorithmIdentifier in the
subjectPublickeyInfo field to identify the key as an RSA public key.
 rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

Whenever the rsaEncryption object identifier is used in the algorithm field of a value of type
AlgorithmIdentifier, the parameters field shall have ASN.1 type NULL.

The RSA public key shall be encoded using the ASN.1 type RSAPublicKey:
 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER -- e
 }

where modulus is the modulus n, and publicExponent is the public exponent e. The DER
encoded RSAPublicKey is the value of the BIT STRING subjectPublicKey.

This object identifier is used in public key certificates for both RSA signature keys and RSA

Second CRADA Draft, Version 2

 3-7

encryption keys. The intended application for the key may be indicated in the key usage field (see
sec. 4.2.1.3). The use of a single key for both signature and encryption purposes is not
recommended, but is not forbidden.

For interoperability with emerging systems, this specification strongly recommends that any
component supporting [PKCS#1] also support the rDSA key format, signature format, and
signature algorithm. The rDSA key and signature formats are described below; the signature
algorithm is specified in [X9.31].

rDSA

Recently, a new signature standard based on the RSA algorithm was approved as the X9.31
standard, “X9.31-1998 Digital Signatures Using Reversible Public Key Cryptography for the
Financial Services Industry (rDSA)” by ANSI.[X9.31] The Reversible Digital Signature
Algorithm (rDSA) standard is based on the RSA algorithm, but specifies an alternative key
generation and signature algorithm from that found in [PKCS1].

Following ANSI's recent approval of the ANSI X9.31 standard, the Secretary of Commerce
approved an interim modification to FIPS 186 (FIPS 186-1) to approve use of the digital
signature technique specified in X9.31 in addition to the algorithm currently specified in FIPS
186. As the algorithms are closely related, cryptographic modules that support [PKCS#1] are
expected to support [X9.31] as well, and vice versa. This should ease interoperability problems
that may be created by these differences.

Although rDSA could theoretically be used with several hash algorithms, the [X9.31] specifies
the SHA-1 hash algorithm specified in FIPS 180-1 [FIPS 180]. Conforming CAs that sign
certificates and CRLs with rDSA will always use the SHA-1 hash algorithm. For this
specification, the sha-1WithrDSA object identifier is used to identify rDSA with SHA-1:
tC68arc OBJECT IDENTIFIER ::= { iso(1) member-body(2) US(840)
 rsadsi(113549) pkcs(1) 1 }

sha-1WithrDSA OBJECT IDENTIFIER ::= {
 tC68arc ??? }

This object identifier shall appear in the parameterized type SIGNED and the signature field in
both certificates and CRLs signed with RSA. Whenever this object identifier appears as the
value for algorithmIdentifier, the parameters component shall be NULL.

When a certificate or CRL is signed with RSA and SHA-1, the signature shall be generated as
specified in X9.31. The result shall be encoded as specified above for [PKCS1].

When a conforming CA issues a certificate whose subjectPublicKeyInfo field contains an rDSA
public key, the object identifier rDSAkey shall appear as the algorithmIdentifier in the
subjectPublickeyInfo field to identify the key as an rDSA public key.
rDSAkey OBJECT IDENTIFIER ::= { tC68arc ??? }

Whenever the rDSA object identifier is used in the algorithm field of a value of type
AlgorithmIdentifier, the parameters field shall have ASN.1 type NULL.

Where a certificate contains an rDSA public key, the key shall be encoded in the
subjectPublicKey field as specified in [????].

Second CRADA Draft, Version 2

 3-8

For interoperability with legacy systems, this specification strongly recommends that any
component supporting [X9.31] support the [PKCS1] key format, signature format, and signature
algorithm.

DSA

The Digital Signature Algorithm is defined in FIPS 186-1 [FIPS186]. The ASN.1 object
identifier used to identify DSA public keys shall be:
id-dsa ID ::= { iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) dsa(1) }

The Digital Signature Standard (DSS) [FIPS186] specifies that DSA shall be used with the SHA-
1 hash algorithm. The ASN.1 object identifier used to identify DSA signatures shall be:

id-dsa-with-sha1 ID ::= {
 iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) id-dsa-with-sha1(3) }

The AlgorithmIdentifier within subjectPublicKeyInfo is the only place within a certificate where
id-dsa shall be used. The id-dsa algorithm syntax includes optional parameters. These
parameters are commonly referred to as p, q, and g. Where omitted, the parameters component
shall be omitted entirely. If the DSA algorithm parameters are absent from the
subjectPublicKeyInfo AlgorithmIdentifier and the CA signed the subject certificate using DSA,
then the certificate issuer's DSA parameters apply to the subject's DSA key. If the DSA
algorithm parameters are absent from the subjectPublicKeyInfo AlgorithmIdentifier and the CA
signed the certificate using a signature algorithm other than DSA, then clients shall not validate
the certificate. The parameters are included using the following ASN.1 structure:
 DSAParameters ::= SEQUENCE {
 prime1 INTEGER, -- modulus p
 prime2 INTEGER, -- modulus q
 base INTEGER } – base g

The id-dsa-with-sha1 algorithm identifier shall be used in the SIGNED parameterized type (e.g., in
the signature on a certificate or CRL) and the signature fields of certificates and CRLs. Where
the id-dsa-with-sha1 algorithm identifier appears as the algorithm field in an AlgorithmIdentifier,
the encoding shall omit the parameters field. That is, the AlgorithmIdentifier shall be a
SEQUENCE of one component - the OBJECT IDENTIFIER id-dsa-with-sha1. The DSA parameters
in the certificate of the issuer shall apply to the verification of the signature.

The DSA public key shall be ASN.1 DER encoded as an INTEGER; this encoding shall be used as
the contents (i.e., the value) of the subjectPublicKey component (a BIT STRING) of the
SubjectPublicKeyInfo data element.
 DSAPublicKey ::= INTEGER -- public key Y
When signing, the DSA algorithm generates two values. These values are commonly referred to
as r and s. To easily transfer these two values as one signature, they shall be ASN.1 encoded
using the following ASN.1 structure:
 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

Second CRADA Draft, Version 2

 3-9

The encoded signature is conveyed as the value of the BIT STRING in the SIGNED parameterized
type in a certificate or CertificateList.

ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in the draft ANSI X9.62
standard [X9.62]. The ASN.1 object identifier used to identify the ECDSA algorithm shall be:
 ansi-X9-62 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 10045 }

When used to sign certificates, CRLs, or PKI messages, the ECDSA shall be used with the SHA-1 hash algorithm.
When ECDSA and SHA-1 are used to sign an X.509 certificate, CRL, or PKI message, the
signature shall be identified by the value ecdsa-with-SHA1, as defined below:
 id-ecSigType OBJECT IDENTIFIER ::= { ansi-X9-62 signatures(4) }
 ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { id-ecSigType 1 }
When the ecdsa-with-SHA1 algorithm identifier is used in the SIGNED parameterized TYPE (e.g.,
in the signature on a certificate or CRL) it shall have NULL parameters. The ECDSA parameters
in the certificate of the issuer shall apply to the verification of the signature.

When signing, the ECDSA algorithm generates two values. These values are commonly referred
to as r and s. To easily transfer these two values as one signature, they shall be ASN.1 encoded
using the following ASN.1 structure:
 Ecdsa-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

When certificates contain an ECDSA public key, the id-ecPublicKey algorithm identifier shall be
used. The id-ecPublicKey algorithm identifier is defined as follows:

 id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 }

 id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }

The elliptic curve public key (an ECPoint which is an OCTET STRING) is mapped to a
subjectPublicKey (a BIT STRING) as follows: the most significant bit of the OCTET STRING
becomes the most significant bit of the BIT STRING, etc.; the least significant bit of the OCTET
STRING becomes the least significant bit of the BIT STRING.

ECDSA requires use of certain parameters with the public key. When the parameters are
inherited, the parameters field shall contain implictlyCA, which is the ASN.1 value NULL. When
parameters are specified by reference, the parameters field shall contain the namedCurve choice,
which is an an object identifier. When the parameters are explicitly included, they shall be
encoded in the ASN.1 structure ECParameters:

 Parameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve CURVES.&id({CurveNames}),
 implicitlyCA NULL }

Second CRADA Draft, Version 2

 3-10

The parameters may be explicitly included in the certificate using the following ASN.1 structure:
 ECParameters ::= SEQUENCE {
 version INTEGER { ecpVer1(1) } (ecpVer1),
 -- version is always 1
 fieldID FieldID { {FieldTypes} },
 -- identifies the finite field over
 -- which the curve is defined
 curve Curve, -- coefficients a and b of the elliptic curve
 base ECPoint, -- specifies the base point P
 -- on the elliptic curve
 order INTEGER, -- the order n of the base point
 cofactor INTEGER,
 …
 }

 FieldElement ::= OCTET STRING
 Curve ::= SEQUENCE {
 a FieldElement,
 b FieldElement,
 seed BIT STRING OPTIONAL
 }

 ECPoint ::= OCTET STRING

The components of type ECParameters have the following meanings:

• version specifies the version number of the elliptic curve parameters. It shall have the
value 1 for this version of the Standard. The notation above creates an INTEGER named
ecpVer1 and gives it a value of one. It is used to constrain version to a single value.

• fieldID identifies the finite field over which the elliptic curve is defined. Finite fields are
represented by values of the parameterized type FieldID, constrained to the values of the
objects defined in the information object set FieldTypes. Additional detail regarding
fieldID is provided below.

• curve specifies the coefficients a and b of the elliptic curve E. Each coefficient shall be
represented as a value of type FieldElement, an OCTET STRING. seed is an optional
parameter used to derive the coefficients of a randomly generated elliptic curve.

• base specifies the base point P on the elliptic curve. The base point shall be represented
as a value of type ECPoint, an OCTET STRING.

• order specifies the order n of the base point.
• cofactor is the integer h = #E(Fq)/n.

The AlgorithmIdentifier within subjectPublicKeyInfo is the only place within a certificate where
the parameters may be used. If the ECDSA algorithm parameters are encoded as implicitlyCA in
the subjectPublicKeyInfo AlgorithmIdentifier and the CA signed the subject certificate using
ECDSA, then the certificate issuer's ECDSA parameters apply to the subject's ECDSA key. If
the ECDSA algorithm parameters are encoded as implicitlyCA in the subjectPublicKeyInfo
AlgorithmIdentifier and the CA signed the certificate using a signature algorithm other than
ECDSA, then clients shall not validate the certificate.
FieldID { FIELD-ID:IOSet } ::= SEQUENCE {

Second CRADA Draft, Version 2

 3-11

 fieldType FIELD-ID.&id({IOSet}),
 parameters FIELD-ID.&Type({IOSet}{@fieldType}) OPTIONAL
}
FieldTypes FIELD-ID ::= {
 { Prime-p IDENTIFIED BY prime-field } |
 { Characteristic-two IDENTIFIED BY characteristic-two-field },
 ...
}
FIELD-ID ::= TYPE-IDENTIFIER
FieldID is a parameterized type composed of two components, fieldType and parameters. These
components are specified by the fields &id and &Type, which form a template for defining sets of
information objects, instances of the class FIELD-ID. This class is based on the useful information
object class TYPE-IDENTIFIER, described in X.681 Annex A. In an instance of FieldID,
“fieldType” will contain an object identifier value that uniquely identifies the type contained in
“parameters.” The effect of referencing “fieldType” in both components of the fieldID sequence is
to tightly bind the object identifier and its type.

The information object set FieldTypes is used as the single parameter in a reference to type
FieldID. FieldTypes contains two objects followed by the extension marker (“...”). Each object,
which represents a finite field, contains a unique object identifier and its associated type. The
values of these objects define all of the valid values that may appear in an instance of fieldID. The
extension marker allows backward compatibility with future versions of this standard which may
define objects to represent additional kinds of finite fields.

The object identifier id-fieldType represents the root of a tree containing the object identifiers of
each field type. It has the following value:

id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }

The object identifiers prime-field and characteristic-two-field name the two kinds of fields
defined for this specification. They have the following values:

prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }

Prime-p ::= INTEGER -- Field size p

Characteristic-two ::= SEQUENCE {
 m INTEGER, -- Field size 2^m
 basis CHARACTERISTIC-TWO.&id({BasisTypes}),
 parameters CHARACTERISTIC-TWO.&Type({BasisTypes}{@basis})
}

BasisTypes CHARACTERISTIC-TWO::= {
 { NULL IDENTIFIED BY onBasis } |
 { Trinomial IDENTIFIED BY tpBasis } |
 { Pentanomial IDENTIFIED BY ppBasis },
 ...
}

Trinomial ::= INTEGER
Pentanomial ::= SEQUENCE {

Second CRADA Draft, Version 2

 3-12

 k1 INTEGER,
 k2 INTEGER,
 k3 INTEGER
}

CHARACTERISTIC-TWO ::= TYPE-IDENTIFIER

The object identifier id-characteristic-two-basis represents the root of a tree containing the
object identifiers for each type of basis for the characteristic-two finite fields. It has the
following value:

id-characteristic-two-basis OBJECT IDENTIFIER ::= {
 characteristic-two-field basisType(1) }

The object identifiers onBasis, tpBasis and ppBasis name the three kinds of basis for
characteristic-two finite fields defined by [X9.62]. They have the following values:

onBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }
tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }
ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }

3.1.2.3 Key Agreement Algorithms
Key agreement algorithms are a class of algorithms where both parties contribute to the
derivation of a shared key. X.509 certificates for the purpose of key agreement specify the
algorithm of the subject’s public key (in the subjectPublicKeyInfo field) and convey the public
key.

Two key agreement algorithms are recognized by this specification. They are the Diffie-Hellman
algorithm and its elliptic curve analog. If the keyUsage extension is present in a certificate which
conveys a DH public key, the value will be keyAgreement.

Diffie-Hellman

The Diffie-Hellman algorithm (DH) is defined in the draft ANSI X9.42 standard [X9.42] The
ASN.1 object identifier supported by this standard is

 dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-x942(10046) number-type(2) 1 }

The dhpublicnumber object identifier is intended to be used in the algorithm field of a value of
type AlgorithmIdentifier. The parameters field of that type, which has the algorithm-specific
syntax ANY DEFINED BY algorithm, would have ASN.1 type DHParameter for this algorithm.
 DHParameter ::= SEQUENCE {
 prime INTEGER, -- p
 base INTEGER, -- g }

The fields of type DHParameter have the following meanings:

• prime is the prime p.

Second CRADA Draft, Version 2

 3-13

• base is the base g.

This specification requires that the parameters field be present whenever an AlgorithmIdentifier
field contains the dhpublicnumber object identifier.

The Diffie-Hellman public key (an INTEGER) is mapped to a subjectPublicKey (a BIT STRING) as
follows: the most significant bit (MSB) of the INTEGER becomes the MSB of the BIT STRING;
the least significant bit (LSB) of the INTEGER becomes the LSB of the BIT STRING.

Elliptic Curve Diffie-Hellman

The Elliptic Curve Diffie-Hellman algorithm (ECDH) is defined in the draft ANSI X9.63
standard [X9.63]; key encoding and algorithm identifiers are defined in the draft ANSI X9.62
standard [X9.62]. When certificates contain an ECDH public key, the id-ecPublicKey algorithm
identifier shall be used. The id-ecPublicKey algorithm identifier is defined as follows:
 id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 }

 id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
The elliptic curve public key (an ECPoint which is an OCTET STRING) is mapped to a
subjectPublicKey (a BIT STRING) as follows: the most significant bit of the OCTET STRING
becomes the most significant bit of the BIT STRING, etc.; the least significant bit of the OCTET
STRING becomes the least significant bit of the BIT STRING.

When parameters are included, they use the ECParameters structure, as defined for ECDSA.
However, they shall include the cofactor parameter, which is not required for signature keys. The
cofactor parameter is used to validate parameters.

If the ECDH algorithm parameters are absent from the subjectPublicKeyInfo AlgorithmIdentifier
and the CA signed the subject certificate using ECDSA, then the certificate issuer's ECDSA
parameters apply to the subject's ECDH key. If the ECDH algorithm parameters are absent from
the subjectPublicKeyInfo AlgorithmIdentifier and the CA signed the certificate using a signature
algorithm other than ECDSA, or signed with ECDSA but the cofactor parameter is not present,
then clients shall not validate the certificate.

ECDH certificates are differentiated from ECDSA certificates by the value of the keyUsage
extension (see Sec. 3.1.3.1.), which shall be keyAgreement or digitalSignature. As with the RSA
algorithm, the use of a single key for both signature and encryption purposes is not
recommended, but is not forbidden.

3.1.2.4 Key Transport Algorithms
X.509 certificates can convey public key encryption keys for the purpose of key transport. In this
scenario, the initiator uses the public key in the receiver’s key management certificate to encrypt
a symmetric key. The receiver uses their private key to recover the symmetric key.

Two algorithms for key transport are recognized by this specification - the RSA algorithm and
the X9.44 Key Establishment Using Factoring-Based Public Key Cryptography.

Second CRADA Draft, Version 2

 3-14

RSA

RSA public keys in the subjectPublicKeyInfo field of a key management certificate are encoded
identically to RSA signature keys and are identified by the same OID (see Sec. 3.1.2.2.) The
purpose of the key is differentiated by the value of the keyUsage extension (see Sec. 3.1.3.1.),
which shall be keyExchange or digitalSignature. As stated in Sec. 3.1.2.2, the use of a single key
for both signature and encryption purposes is not recommended, but is not forbidden.

X9.44 Key Establishment Using Factoring-Based Public Key Cryptography

X9.44 public keys in the subjectPublicKeyInfo field of a key management certificate are encoded
identically to RSA signature keys but are identified by the same OID as rDSA keys (see Sec
3.1.2.2.) The purpose of the key is further specified by the value of the keyUsage extension (see
Sec. 3.1.3.1.), which shall be keyExchange or digitalSignature. As stated in Sec. 3.1.2.2, the use
of a single key for both signature and encryption purposes is not recommended, but is not
forbidden.

3.1.2.5 Message Authentication Algorithms

This specification recognizes two message authentication algorithms: the DES-MAC and the
SHA1-HMAC. The preferred algorithm is the SHA1-HMAC. The DES-MAC is included for
backwards compatibility.

SHA-1 HMAC

This algorithm provides integrity by computing a SHA-1 HMAC (as specified by [RFC2104]) on
data. This algorithm is identified by the following object identifier:

 SHA1-HMAC OBJECT IDENTIFIER ::= { 1 3 6 1 5 5 8 12 }
The length of the mac shall be 96 bits for this specification.

DES MAC

This algorithm provides integrity by computing a DES MAC (as specified by [FIPS-113]) on
data. This algorithm is identified by the following object identifier:

 DES-MAC OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 10

-- carries length in bits of the MAC as
-- an INTEGER parameter, constrained to 32
-- for this specification

 }

The parameters field contains an INTEGER specifying the length of the MAC; this length shall be
32 bits for this specification.

Second CRADA Draft, Version 2

 3-15

3.1.2.6 Symmetric Encryption Algorithms
This specification requires the use of symmetric encryption to implement challenge-response
protocols and protect private keys in transit. For this specification, all symmetric encryption is
performed using the Triple Data Encryption Algorithm (tDEA) in electronic codebook mode.

The tDEA algorithm is defined in [X9.52], Triple Data Encryption Algorithm Modes Of
Operation. The tDEA is based upon the DES algorithm and uses three 56 bit keys: K1; K2; and
K3. For this specification, the tDEA algorithm is used with the two key option, where K1 = K3.
tDEA keys are never conveyed in X.509 certificates. In some cases, it may be necessary to
convey the symmetric key material (K1 and K2) in a PKI message. In such a case, the key
material must itself be encrypted.

The remainder of this subsection describes how to specify that data is encrypted with tDEA in
ecb mode, indicate the two key option, and encode keying material.

An AlgorithmIdentifier is required to specify the algorithm used for data encryption. The
AlgorithmIdentifier is composed of an OID and parameters. To indicate that data is encrypted
under tDEA in ecb mode, the OID tECB is used; the keying option is specified through the
parameters structure ECBParms. The ASN.1 structures are provided below.

TDEAIdentifier ::= AlgorithmIdentifier {{ TDEAModes }}

TDEAModes ALGORITHM-ID ::= {
 { OID tECB PARMS ECBParms } | -- mode 1 --
 { OID tCBC PARMS TDEAParms } | -- mode 2 --
 { OID tCBC-I PARMS TDEAParms } | -- mode 3 --
 { OID tCFB PARMS CFBParms } | -- mode 4 --
 { OID tCFB-P PARMS CFBParms } | -- mode 5 --
 { OID tOFB PARMS TDEAParms } | -- mode 6 --
 { OID tOFB-I PARMS TDEAParms }, -- mode 7 --
 ...
}

ECBParms ::= TDEAParms (WITH COMPONENTS {

 ..., ivGeneration ABSENT })

-- Note : the syntax for ivGeneration is not given here,
-- as it is not used in this specification
TDEAParms ::= SEQUENCE {
 keyingOptions KeyingOptions OPTIONAL,
 ivGeneration [0] IVGeneration OPTIONAL
}

-- only the 2-key option is used in this specification
KeyingOptions ::= BIT STRING {
 option-1 (0), -- (3-key) K1, K2 and K3 are independent keys
 option-2 (1), -- (2-key) K1 and K2 are independent and K3 = K1
 option-3 (2) -- (1-key) K1 = K2 = K3
}

id-ansi-x952 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) ansi-x952(10047) }

Second CRADA Draft, Version 2

 3-16

mode OBJECT IDENTIFIER ::= { id-ansi-x952 1 }

tECB OBJECT IDENTIFIER ::= { mode 1 }

Where tDEA key material must be encoded, the keys are simply concatenated. TwoKeys = [K1 |
K2], where the most significant bit of TwoKeys is the most significant bit of K1.

3.1.3 Certificate Extensions
A set of standardized extensions has been developed and is specified in an amendment to X.509
[DAM]. Extensions have three components: extension name, criticality flag, and extension
value. As specified in the amendment to X.509 [DAM], clients shall not validate certificates that
contain an extension with the criticality flag set, unless the client can process that extension.

The standardized extensions that have been defined may be divided into four categories: key and
policy information; subject and issuer characteristics; certification path constraints; and CRL
identification extensions.

3.1.3.1 Key and Policy Information
These extensions provide information to identify a particular public key and certificate. They can
be used to identify a particular public key/certificate for a CA which has several certificates.
This may help a client to find the particular CA certificate needed to establish a certification
path. These extensions may restrict the purposes for which a key may be used, and provide
information in CA certificates about equivalent policies.

Authority Key Identifier

The authorityKeyIdentifier extension provides a means of identifying the particular private key
used to sign a certificate. The identification can be based on either the key identifier or on the
issuer name and serial number. The key identifier method shall be used in certificates
conforming to this interoperability specification. This extension is used where an issuer has
multiple signing keys (either due to multiple concurrent key pairs or due to changeover). CAs
shall be capable of generating this extension, and clients shall be capable of finding and
validating certification paths where the issuing CA has several digital signature keys. It is
recommended that clients be able to process either the key identifier or the certificate issuer plus
certificate serial number form of key identifier to help find certification paths.

Subject Key Identifier

This field enables differentiation of keys held by a subject. This field shall be included in every
certificate issued. This extension shall be noncritical.

Key Usage

The keyUsage extension defines restrictions on the use of the key contained in the certificate
based on policy and/or usage (e.g., signature, encryption). CAs shall support the generation of
this extension and clients shall be capable of processing it. While KeyUsage is defined as a BIT

Second CRADA Draft, Version 2

 3-17

STRING, conforming CAs shall set only one value within this string in end-entity certificates. For
example, KeyUsage shall not be both digitalSignature and dataEncipherment in an end-entity
certificate. This extension shall be set to critical.

Private Key Usage Period

The privateKeyUsagePeriod extension applies only to digital signature keys. A signature on a
document that purports to be dated outside the private key usage period is not valid.19 CAs may
generate certificates containing this extension but conforming clients are not required to process
it.

Extended Key Usage

The extendedKeyUsage extension defines application-specific restrictions on the use of keys
contained in a certificate. When this extension is used, interoperability is not a factor.
Conforming PKI components are not required to support this extension.

Certificate Policies

The certificatePolicies extension contains one or more object identifiers (OIDs). Each OID
indicates a policy under which the certificate has been issued. CAs shall be able to generate
certificates with one or more instances of policyIdentifier. CAs can include the special policy
OID anyPolicy. The anyPolicy OID may be thought of as a wildcard which matches every
policy.Clients shall be capable of processing policyIdentifier fields against a list of acceptable
policies. (The list of policies is dependent upon on application requirements.) Clients shall
compare the policy identifier(s) in the certificate to that list. If a list of acceptable policies is
provided, the client shall validate the certification path only if at least one of the acceptable
policies appears in the certificatePolicies field of each certificate or maps to one of the policies in
the certificatePolicies field. If the special policy OID anyPolicy appears in the certificatePolicies
field of a certificate and any policy is not inhibited (see section 3.1.3.3), then all policies in the
list of acceptable policies are considered to be matched.

Conforming components are required to process the policyQualifiers subfield of
certificatePolicies if present, and shall support the policy qualifiers id-pkix-cps and id-pkix-
unotice (see [RFC2459].) Conforming CAs need not be able to generate this subfield.

Policy Mapping

3.1.3.2 This noncritical extension is used in CA certificates. It lists pairs of object identifiers;
each pair includes an issuerDomainPolicy and a subjectDomainPolicy. The pairing indicates that
the issuing CA considers its issuerDomainPolicy equivalent to the subject CA’s
subjectDomainPolicy. CAs shall be capable of generating the policyMappings extension. Clients
shall be capable of processing this extension.Certificate Subject and Issuer Characteristics

The subjectAltName, issuerAltName, subjectDirectoryAttributes, and authorityInformationAccess
are all noncritical extensions. They provide additional information about other names and

19 Note that verification of time associated with a signature implies use of a notary or trusted timestamp. Both are
outside the scope of this specification.

Second CRADA Draft, Version 2

 3-18

characteristics of the subject and issuer.

Alternative Name

The subjectAltName and issuerAltName extensions allow additional identities to be bound to the
subject and issuer of the certificate. Defined options include an RFC822 [RFC 822] name
(electronic mail address), a DNS name, and a uniform resource identifier (URI.) Multiple
instances may be included. Whenever such identities are to be bound in a certificate, the
subjectAltName or issuerAltName fields shall be used.20

The subjectAltName and issuerAltName extensions are normally noncritical in certificates
conforming to this interoperability specification. An implementation which recognizes these
extensions need not be able to process all the alternatives of the choice. If the alternative used is
not supported by the implementation, the extension field is ignored.

This specification defines the semantics associated with an issuerAltName field containing a URI.
The URI specifies the location of the issuer’s certificate(s) which contain the public key material
corresponding to the private key used to sign the certificate. The semantics associated with other
classes of identities, or any subjectAltName entries, are not defined in this specification.

If a CA’s certificates are not available from a well-known X.500 directory service, the CA shall
include URI alternative names specifying the location of the issuer’s certificate(s). Clients are
required to process the URI alternative name format and must recognize the LDAP URL
[RFC1959]. Clients are not required to recognize any other URI formats.

Subject Directory Attributes

The subjectDirectoryAttributes extension may hold any information about the subject where that
information has a defined X.500 Directory attribute. This extension is always noncritical.
Implementation and use of this extension is optional.

Authority Information Access

The authorityInformationAccess extension may hold any information about how to access CA
information and services for the issuer of the certificate in which the extension appears.
Information and services may include on-line validation services and CA policy data. (The
location of CRLs is not specified in this extension; that information is provided by the
cRLDistributionPoints extension.)

3.1.3.3 Certification Path Constraints
The basicConstraints, nameConstraints and policyConstraints extensions all apply restrictions to
valid certification paths.

Basic Constraints

The basicConstraints extension tells whether the subject of the certificate is a CA through the cA

20 X.509 allows null certificate subject or issuer fields accompanied by a critical subjectAltName or
issuerAltName giving the name in an alternative format. Such certificates are not supported by this
interoperability specification.

Second CRADA Draft, Version 2

 3-19

component and the lengths of certification paths through the pathLenConstraint component. CAs
shall support the generation of the basicConstraints extension in certificates and clients shall be
capable of processing it. The pathLenConstraint component is meaningful only if cA is set to
TRUE.

The basicConstraints extension shall be included in all CA certificates. CA certificates shall
contain a basicConstraints extension with the cA component set to TRUE. The basicConstraints
extension may be included in end entity certificates. Where a basicConstraints extension appears
in an end entity certificate, it shall contain an empty SEQUENCE value. The basicConstraints
extension shall be marked as critical in all CA certificates.

Name Constraints

The nameConstraints field applies only to CA certificates. It indicates a name space in which all
subsequent certificates in a certification path must be located. CAs shall be capable of including
this field in certificates and clients shall be capable of processing it. If used, it shall be critical.

Policy Constraints

The policyConstraints field applies only to CA certificates. It can be used to constrain the
interpretation of policy in two ways: it can be used to prohibit policy mapping or require that
each certificate in a path contain an acceptable policy identifier.

This extension contains two field: inhibitPolicyMapping and requireExplicitPolicy. If the
inhibitPolicyMapping field is present, the value indicates the number of additional certificates that
may appear in the path before policy mapping is no longer permitted. If the requireExplicitPolicy
field is present, subsequent certificates shall include an acceptable policy identifier. The value of
requireExplicitPolicy indicates the number of additional certificates that may appear in the path
before an explicit policy is required.

CAs shall be capable of supporting the issuance of certificates with this extension, and clients
shall be capable of processing this extension. If used, it shall be critical.

Inhibit anyPolicy

This extension inhibits the use of anyPolicy in future certificates. This critical extension may
appear in certificates issued to CAs. The inhibit any-policy indicates that the special anyPolicy
OID, with the value {2 5 29 32 0}, is not considered an explicit match for other certificate
policies. The value is an INTEGER and indicates the number of additional certificates that may
appear in the path before any-policy is no longer permitted. For example, a value of one
indicates that any-policy may be processed in certificates issued by the subject of this certificate,
but not in additional certificates in the path. CAs shall be capable of generating this extension.
Clients shall be capable of processing this extension.

3.1.3.4 CRL Identification Extensions
These extensions include information in a certificate about where to obtain the Certificate
Revocation List (CRL) that applies to that certificate. They facilitate the division of a CA’s
potentially large CRL into several shorter CRLs, by identifying in the certificate which CRL

Second CRADA Draft, Version 2

 3-20

applies to a certificate and stating the name of the CRL issuer (which may be a CA other than the
CA that issued the certificate).

CRL Distribution Points

The cRLDistributionPoints extension identifies the CRL distribution point or points to which
clients should refer to ascertain if a certificate has been revoked. This field has three component
fields: distributionPoint, reasons and cRLIssuer.

• The distributionPoint component identifies the location from which the CRL can be
obtained. If this field is absent, the CRL distribution point name defaults to the issuer
name. This extension provides a mechanism to divide the CRL into manageable pieces if
the CA has a large constituency.

• The reasons component identifies the reasons for revocation covered by the CRL issued
by the corresponding distributionPoint. If the reasons component is absent, the
corresponding distributionPoint distributes a CRL which will contain an entry for this
certificate, if it has been revoked for any reason. Clients are not required to process the
reasons component.

• The cRLIssuer component identifies the authority that issues and signs the CRL. If this
component is absent, the CRL issuer name defaults to the certificate issuer name. One
use for this component is to allow the construction of consolidated CRLs, that include
certificates issued by more than one CA.

CAs shall include the cRLDistributionPoints extension with a distributionPoint component. If a
CA’s CRLs are not available from a well-known X.500 directory service, the CA shall include
URI alternative names specifying the location of the current CRL for this certificate in the
distributionPoint component. Clients shall be able to process the cRLDistributionPoints
extension; they must recognize the URI format and process at a minimum the LDAP URI.
Clients shall be able to use distribution point CRLs and validate CRLs where the cRLIssuer
component is used. See section 3.2.2 below for a further discussion of distribution points.

Second CRADA Draft, Version 2

 3-21

 Table 3-1 Summary of Standardized Certificate Extensions

Extension Used
By

Use Critical

Key and Policy Information
 keyIdentifier all identifies the key used to sign this certificate (the

signing CA may have several keys)
No

 authorityKeyIdentifier all unique with respect to authority.
 authorityCertIssuer all identifies issuing authority of CA's certificate;

alternative to key identifier

 authorityCertSerialNumber all used with authorityCertIssuer
 subjectKeyIdentifier all enables differentiation of different keys for same

subject. Must be unique for subject.
No

 keyUsage all defines allowed purposes for use of key (e.g., digital
signature, key agreement...)

Yes*

 extendedKeyUsage all defines application-specific purposes for keys No*
 privateKeyUsagePeriod all digital signature keys only. Signatures on that

purport to be dated outside the period are invalid.
No*

 certificatePolicies all policy identifiers and qualifiers that identify and
qualify policies applying to the certificate

No*

 policyIdentifiers all the OID of a policy.
 policyQualifiers all more information about the policy
 policyMappings CA indicates equivalent policies No
Certificate Subject and Issuer Characteristics
 subjectAltName all used to list alternative names (e.g., rfc822 name,

X.400 address, IP address...)
No*

 issuerAltName all used to list alternative names No*
 subjectDirectoryAttributes all any attributes (e.g., supported algorithms) No
 authorityInfoAccess all How to access issuer’s information and services No
Certification Path Constraints
 basicConstraints all constraints on subject's role & path lengths Yes*
 cA all distinguish CA from end entity cert.
 pathLenConstraint CA max. number of following CAs in cert. path; 0

indicates that CA only issues end entity certs.

 nameConstraints CA constrains names in certs issued by subsequent CAs Yes*
 permittedSubtrees CA names outside indicated subtrees are forbidden
 excludedSubtrees CA indicates disallowed subtrees
 policyConstraints all constrains certificates issued by subsequent CAs Yes*
 requireExplicitPolicy all All certificates in the path must contain an

acceptable policy identifier

 inhibitPolicyMapping all prevent policy mapping in following certs.
 inhibitAnyPolicy CA prevent matching policies with the anyPolicy OID Yes
CRL Identification
 crlDistributionPoints all divides long CRL into shorter lists No*
 distributionPoint all location from which CRL can be obtained
 reasons all reasons for cert. inclusion in CRL
 cRLIssuer all name of component that issues CRL.

NOTES:

* Standard allows either critical or noncritical. Indication is for use in interoperable implementations.

Second CRADA Draft, Version 2

 3-22

Table 3-2 Use of Standardized Certificates by the MISPC

Extension Certificate Client
Key and Policy Information
 authorityKeyIdentifier
 authorityKeyIdentifier to be included in all certs issued: a

random number large enough to
generally be globally unique

optional - may be used to help find
cert. paths where issuer has
multiple certs. (1)

 authorityCertIssuer not used optional - used to find cert. paths
 authorityCertSerialNumber not used where issuer has multiple certs. (1)
 subjectKeyIdentifier to be included in all certs issued: a

random number large enough to
generally be globally unique

optional: used with CRLs to
identify revoked certificates.

 keyUsage supported supported
 extendedKeyUsage not used not used
 privateKeyUsagePeriod supported optional
 certificatePolicies
 policyIdentifiers supported supported; compared during cert.

path validation with a list of
acceptable policies

 policyQualifiers supported supported (see 3.1.3.1)
 policyMappings supported supported
Certificate Subject and Issuer Characteristics
 subjectAltName supported not used
 issuerAltName supported not used
 subjectDirectoryAttributes not used not used
 authorityInfoAccess supported optional
Certification Path Constraints
 basicConstraints
 cA used in all certificates supported
 pathLenConstraint supported supported
 nameConstraints
 permittedSubtrees supported supported
 excludedSubtrees supported supported
 policyConstraints
 requireExplicitPolicy supported supported
 InhibitPolicyMapping supported supported
 inhibitAnyPolicy supported supported
CRL Identification
 cRLDistributionPoints
 distributionPoint supported supported
 reasons supported supported
 cRLIssuer supported supported

NOTES:

For Certificates, “supported” means that CAs shall be able to issue certificates that contain this extension. For
clients, “supported” means that the client shall be capable of processing this extension.

(1) Clients shall be capable of finding certification paths where CAs have multiple certificates, whether or not
they use this extension to do so.

Second CRADA Draft, Version 2

 3-23

3.1.3.5 Summary of Certificate Extension Use
Table 3-1 summarizes the standardized certificate extensions, while Table 3-2 summarizes the
use by the MISPC of standardized extensions for certificates and clients.

3.2 Certificate Revocation List (CRL)
Certificate Revocation Lists (CRL) are used to list unexpired certificates that have been revoked
or placed on “hold.” Certificates may be revoked for a variety of reasons, ranging from routine
administrative revocations, (when the certificate's subject leaves the issuing organization, or
when responsibilities and certificate values change), to situations where the private key is
compromised. A “hold” indicates the CA will not vouch for the binding of the certificate subject
and public key at this time.

The X.509 v2 certificate revocation list format is augmented by several optional extensions,
similar in concept to those defined for certificates. CAs shall be able to generate X.509 v2 CRLs
as specified below, and clients shall be capable of processing them when validating certification
paths. The CA that issues a CRL is not necessarily the CA that issued the revoked certificate,
and some CAs may issue only CRLs. The X.509 v2 CRL includes the following:

 Version
 Issuer Signature Algorithm
 Issuer Distinguished Name
 This Update
 Next Update
 Revoked Certificates, a sequence of zero or more of the following sequence:
 Certificate Serial Number
 Revocation Date
 CRL Entry Extensions (optional)
 CRL Extensions (optional)
 Issuer’s Signature on all the above listed fields

3.2.1 CRL Fields
The X.509 v2 CRL ASN.1 syntax is given in Appendix A. For signature calculation, the data
that is to be signed is ASN.1 DER encoded. ASN.1 DER encoding is a tag, length, value
encoding system for each element.

The following items describe the use of the X.509 v2 CRL.

Version

This field describes the version of the encoded CRL. The value of this field shall be 1, indicating
a v2 CRL.

Signature

The signature field contains the algorithm identifier for the algorithm used to sign the CRL. The
contents are identical to the contents of the certificate signature field. Refer to Signature in
section 3.1.1 for information about this field. The CRL may be signed with any of the algorithms

Second CRADA Draft, Version 2

 3-24

identified in section 3.1.2.2; in general, the CA should sign the CRL with the same algorithm
used to sign the certificates. Refer to section 3.1.2.2 for the signature algorithm object
identifiers. The parameters subfield of the CRL signature field shall not be used to pass DSA or
ECDSA parameters. DSA or ECDSA parameters shall be obtained from the
subjectPublicKeyInfo field of the certificate of the issuer.

Issuer Name

The issuer field provides a globally unique identifier of the CA signing the CRL. The issuer
name is an X.500 distinguished name. CRL issuer names with empty sequences are not
supported by implementations conforming to this interoperability specification.

This Update

The thisUpdate field indicates the date of the CRL. This field may be represented as UTCTime or
GeneralizedTime. For this specification, thisUpdate follow the rules for the certificate validity
field (see sec. 3.1.1 above).

Next Update

The nextUpdate field indicates the date by which the next CRL will be issued. The next CRL
could be issued before the indicated date, but it will not be issued any later than the indicated
date. This field may be represented as UTCTime or GeneralizedTime. For this specification,
nextUpdate shall follow the rules for the certificate validity field (see sec. 3.1.1 above).

Revoked Certificates

The revokedCertificates field is a list of the certificates that have been revoked. Each revoked
certificate listed contains:

• the certificate serial number, stated in the userCertificate field. This element contains the
value of serialNumber of the revoked certificate. This must be used in conjunction with
the name of the issuing CA to identify an unexpired certificate that has been revoked.

• the revocationDate field that contains the date of the revocation. The value included in
this field shall follow the rules for the certificate validity field (see sec. 3.1.1 above).

• optional CRL entry extensions, that are specified in section 3.2.3 below. The CRL entry
extensions may give the reason that the certificate was revoked, state the date that the
invalidity is believed to have occurred, and may state the name of the CA that issued the
revoked certificate, which may be a different CA from the CA issuing the CRL. Note
that the CA that issued the CRL is assumed to be the CA that issued the revoked
certificate unless the certificateIssuer CRL entry extension is included.

3.2.2 CRL Extensions
The extensions defined by ISO/ITU for X.509 v2 CRLs provide methods for associating
additional information with entire CRLs. Each CRL extension may be designated as critical or
noncritical. A CRL validation shall fail if a client encounters a critical extension that it cannot
process.

Second CRADA Draft, Version 2

 3-25

This section describes CRL extensions that shall be supported. A CRL extension is supported
when: the CA is able to generate the extensions in a CRL and the clients are able to process the
extension.

Authority Key Identifier

The authorityKeyIdentifier is a noncritical CRL extension that identifies the CA's key used to sign
the CRL. This extension is useful when a CA uses more than one key; it allows distinct keys to
be differentiated (e.g., as key updating occurs). The identification can be based on either the key
identifier or on the issuer name and serial number. The key identifier method shall be used, and
the keyIdentifier shall be generated for all CRLs. This extension is useful where an issuer has
multiple signing keys (either due to multiple concurrent key pairs or due to changeover). This
extension shall be included in all CRLs, and clients shall be able to find and validate CRL
certification paths where the issuing CA has multiple signing keys. Clients shall be able to
process either the key identifier or the certificate issuer plus serial number form of
authorityKeyIdentifier if they use this extension to find certification paths.

Issuer Alternative Name

The issuerAltName is a noncritical CRL extension that contains one or more alternative CA
names. Whenever such alternative names are present in a CRL, they shall be placed in the issuer
alternative name field. Implementations which recognize this extension need not be able to
process all the alternative name formats. Unrecognized alternative name formats may be
ignored by an implementation. CAs shall be capable of generating this extension in CRLs,
however clients are not required to process it.

CRL Number

The cRLNumber field is a noncritical CRL extension which conveys a monotonically increasing
sequence number for each CRL issued by a given CA through a specific CA directory entry or
CRL distribution point. This extension can be used to alert certificate users to unscheduled
issuance of full CRLs, or to easily determine when a particular CRL supersedes another CRL.
This extension shall be included in CRLs.

Issuing Distribution Point

The issuingDistributionPoint field is a critical CRL extension that identifies the CRL distribution
point for this particular CRL. A distribution point is a directory entry that may be used to
retrieve a CRL, and that may differ from the directory entry of the issuing CA. The CRL is
signed by the CA's key. CRL distribution points do not have their own key pairs.

In addition, the issuingDistributionPoint field specifies CRLs that may contain only end entity
certificates, or only CA certificates, or only certificates that have been revoked for a particular
reason. Finally, this extension can identify an “indirect CRL,” that is a CRL that is issued by a
different CA than the CA(s) that issued the revoked certificates. It contains the following
components:

• distributionPoint, which gives the distribution point name. If used, distributionPoint shall
be an X.500 distinguished name;

Second CRADA Draft, Version 2

 3-26

• onlyContainsUserCerts, a Boolean value that indicates that the CRL contains only end
entity certificates;

• onlyContainsCACerts, a Boolean value that indicates that the CRL contains only CA
certificates;

• onlySomeReasons, a ReasonsFlag bit string that indicates the reasons for which
certificates are listed in the CRL. Only the following reason flags shall be included in
CRLs:
− keyCompromise shall be used to indicate compromise or suspected compromise;
− cACompromise shall be used to indicate that the certificate has been revoked because

of a CA key compromise. It shall only be used to revoke CA certificates;
− affiliationChanged shall be used to indicate that the certificate was revoked because

of a change of affiliation of the certificate subject;
− superseded shall be used to indicate that the certificate has been superseded;
− certificateHold shall be used to indicate that the certificate’s status is questionable and

may be revoked;
− cessationOfOperation shall be used to indicate that the certificate is no longer needed

for the purpose for which it was issued, but there is no reason to suspect that the
private key has been compromised.

• indirectCRL, a Boolean value that indicates that this is an indirect CRL.

Clients shall be able to process this field.

Delta CRL Indicator

The deltaCRLIndicator is a critical CRL extension that identifies a delta-CRL. The use of
delta-CRLs can significantly improve processing time for applications which store revocation
information in a format other than the CRL structure. This allows changes to be added to the
local database while ignoring unchanged information that is already in the local database.

The value of BaseCRLNumber identifies the CRL number of the base CRL that was used as the
starting point in the generation of this delta-CRL. The delta-CRL contains the changes between
the base CRL and the current CRL. It is the decision of a CA as to whether to provide delta-
CRLs.

A client constructing a CRL from a locally held CRL and a delta-CRL shall consider the
constructed CRL incomplete and unusable if the CRL number of the locally held CRL is less
than the BaseCRLNumber in the delta-CRL.21 If the delta CRL contains a CRL number
extension, the CRL number of the constructed CRL is the value of the CRL number extension.
Otherwise, the CRL number associated with the locally held CRL is maintained. Support of
delta-CRLs by clients and CAs is optional.

Summary of CRL Extension Use

Table 3-3 summarizes the standardized CRL extensions, while Table 3-4 summarizes the use of

21 Note that use of delta CRLs imposes an additional security requirement on clients; they must be capable of
securely maintaining the composite CRL.

Second CRADA Draft, Version 2

 3-27

the standardized CRL extensions for the MISPC.

3.2.3 CRL Entry Extensions
The CRL entry extensions defined for X.509 v2 CRLs provide methods for associating additional
information with CRL entries. Each extension in a CRL entry is designated as critical or
noncritical. A CRL validation shall fail if it encounters a critical CRL entry extension which it
does not know how to process. However, an unrecognized noncritical CRL entry extension may
be ignored.

Table 3-3 Summary of CRL Extensions

Extension Use Critical
 authorityKeyIdentifier identifies the CA key used to sign CRL. No
 KeyIdentifier unique key identifier; alternative to certIssuer &

authorityCertSerialNumber

 CertIssuer name of CA’s cert. issuer
 authorityCertSerialNumber used with certIssuer; combination must be unique
 IssuerAltName alternate name of CRL issuer No*
 CRLNumber sequence number for CRL No
 IssuingDistributionPoint name of CRL distribution point; also gives reasons

for revocations contained in CRL.
Yes

 DeltaCRLIndicator indicates delta CRL (lists certificates. revoked since
last full CRL) & gives sequence number

Yes

NOTES:
* Standard allows either critical or noncritical. Indication is for use in interoperable implementations.

Table 3-4 Summary of CRL Extensions and their use in the MISPC

Extension CRL Clients
 authorityKeyIdentifier
 keyIdentifier included in all CRLs issued optional - used to help find correct

CA certificate to validate CRL (1)
 certIssuer not generated optional - issuer/serial number pair

used to help find correct authority
certificate to validate CRL (1)

 certSerialNumber not generated
 issuerAltName supported optional
 cRLNumber supported: included in all CRLs optional
 issuingDistributionPoint supported supported
 deltaCRLIndicator optional optional

NOTES:
• For CRLs, “supported” means that the CA is capable of issuing CRLs that contain this extension.

• For Clients, “supported” means that the client is capable of processing this extension in CRLs.

(1) Clients shall be capable of finding the certificate corresponding to the private key used to sign a CRL,
when the CA has multiple certificates, and the certificates are accessible in the appropriate directory,
whether or not they use this extension to do so, and whether or not the CRL contains this extension.

Second CRADA Draft, Version 2

 3-28

Reason Code

The reasonCode is a noncritical CRL entry extension that identifies the reason for the certificate
revocation. CAs shall be capable of generating this extension in CRL entries. Processing of the
reasonCode extension by clients is optional, that is clients shall not validate a certificate if any
certificate in the certification path is listed in a current CRL, regardless of the reasonCode, and
need not provide operator information about the reason for failure. The following enumerated
reasonCode values are defined:

• unspecified; this value shall not be used;
• keyCompromise indicates compromise or suspected compromise;
• cACompromise indicates that the certificate has been revoked because of a CA key

compromise. It shall only be used to revoke CA certificates;
• affiliationChanged indicates that the certificate was revoked because of a change of

affiliation of the certificate subject;
• superseded indicates that the certificate has been replaced by a more recent certificate;
• cessationOfOperation indicates that the certificate is no longer needed for the purpose for

which it was issued, but there is no reason to suspect that the private key has been
compromised.

• certificateHold indicates that the certificate shall not be used at this time. When clients
process a certificate that is listed in a CRL with a reasonCode of certificateHold, they
shall fail to validate the certification path.

• removeFromCRL, which is used only with delta-CRLs and indicates that an existing CRL
entry should be removed.

Expiration Date

The expirationDate is a noncritical CRL entry extension that indicates the expiration of a hold
entry in a CRL. This extension shall not be used in CRLs or by clients.

Instruction Code

The instructionCode is a noncritical CRL entry extension that provides a registered instruction
identifier which indicates the action to be taken after encountering a certificate that has been
placed on hold. This extension shall not be used in CRLs.

Invalidity Date

The invalidityDate is a noncritical CRL entry extension that provides the date on which it is
known or suspected that the private key was compromised or that the certificate otherwise
became invalid. This date may be earlier than the revocation date in the CRL entry. The
revocation date in the CRL entry specifies the date that the CA revoked the certificate.
Whenever this information is available, CAs are encouraged to share it with CRL users. CAs
shall be capable of generating this extension in CRLs. This value is represented as
GeneralizedTime.

Certificate Issuer

The certificateIssuer CRL entry extension is used with an indirect CRL (a CRL that has the

Second CRADA Draft, Version 2

 3-29

indirectCRL indicator set in its issuingDistributionPoint extension). If this extension is not
present in the first entry of an indirect CRL, the certificate issuer defaults to the CRL issuer. In
subsequent entries in an indirect CRL, when the certificateIssuer extension is not present, the
certificate issuer is the same as the issuer of the preceding CRL entry.

Summary of CRL Entry Extension Use

Table 3-5 summarizes the CRL entry extensions while Table 3-6 summarizes the use of CRL
entry extensions for the MISPC.

3.3 Certification Path Validation
The procedure specified in section 6 of the [RFC2459], Certification Path Validation, shall be
implemented by clients.

3.4 Transaction Message Formats
This section presents a set of message formats to support the minimal set of PKI transactions.
Systems that implement these transactions shall support these message formats, generating and

Table 3-5 Summary of CRL Entry Extensions

Extension Use Critical
 reasonCode identifies the reason for the revocation of this

certificate
No

 instructionCode used with certificateHold reasonCode;
indicates action to be taken when encountering a
held certificate

No

 invalidityDate date certificate became invalid No
 certificateIssuer Issuer of revoked certificate in an indirect CRL Yes

Table 3-6 Summary of CRL Entry Extensions Use for MISPC

Extension CRL Clients
 reasonCode supported; included for all

entries
optional - may be used to provide
information about validation
failure

 instructionCode not used optional
 invalidityDate supported optional - may be used to provide

information about validation
failure

 certificateIssuer optional optional - necessary to support
processing of indirect CRLs

NOTES
For CRLs, “supported” means that CAs are capable of issuing CRLs that contain this CRL entry extension.
For clients, “supported” means that the client is capable of processing this entry extension in CRLs.

Second CRADA Draft, Version 2

 3-30

recognizing them as appropriate. The message formats are specified in ASN.1; messages shall be
encoded and transmitted using the Distinguished Encoding Rules (DER).

These message formats are used to implement transactions described in section 3.5.

3.4.1 Overall PKI Message Components

PKI Message

Each message has four components
PKIMessage ::= SEQUENCE {
 header PKIHeader,
 body PKIBody,
 protection [0] PKIProtection OPTIONAL,
 extraCerts [1] SEQUENCE OF Certificate OPTIONAL
 }

The extraCerts field is not used within this specification.

PKI Message Header

All PKI messages require some header information for addressing and transaction identification.
Some of this information will also be present in a transport specific envelope, however, if the
PKI message is signed then this information is also protected (i.e., we make no assumption about
secure transport).

The following data structure is used to contain this information:
PKIHeader ::= SEQUENCE {
 pvno INTEGER { ietf-version2 (1) },
 sender GeneralName, -- identifies the sender
 recipient GeneralName, -- identifies the intended recipient
 messageTime [0] GeneralizedTime OPTIONAL,
 -- time of production of this message (used when sender)
 -- that the time will still be meaningful upon receipt)
 protectionAlg [1] AlgorithmIdentifier OPTIONAL,
 -- algorithm used for calculation of protection bits
 senderKID [2] KeyIdentifier OPTIONAL,
 recipKID [3] KeyIdentifier OPTIONAL,
 -- to identify specific keys used for protection
 transactionID [4] OCTET STRING OPTIONAL,
 -- identifies the transaction, i.e., this will be the same in corresponding
 -- request, response and confirmation messages
 senderNonce [5] OCTET STRING OPTIONAL,
 recipNonce [6] OCTET STRING OPTIONAL,
 -- nonces used to provide replay protection, senderNonce is inserted by the creator
 -- of this message; recipNonce is a nonce previously inserted in a related message by
 -- the intended recipient of this message
 freeText [7] PKIFreeText OPTIONAL,
 -- this may be used to indicate context-specific instructions (this field is intended for
 -- human consumption)
 generalInfo [8] SEQUENCE SIZE (1..MAX) OF InfoTypeAndValue OPTIONAL
 -- this may be used to convey context-specific information

Second CRADA Draft, Version 2

 3-31

 -- (this field not primarily intended for human consumption)
 }

 PKIFreeText ::= UTF8String

The transactionID field within the message header allows the recipient of a response message to
correlate this with the request. In the case of an RA there may be many requests "outstanding" at
a given moment. The value of this field should be unique from the sender's perspective in order
to be useful.

The messageTime field indicates the time the message was generated. The value included in this
field shall be expressed in Greenwich Mean Time (Zulu) and shall include seconds (i.e., times
are YYYYMMDDHHMMSSZ), even where the number of seconds is zero. The messageTime values
shall not include fractional seconds.

The sender and recipient fields within the message header are defined as GeneralName. Systems
are required to support X.500 distinguished names and RFC 822 (Internet electronic mail) names.

The freetext field is defined as PKIFreeText, which is defined as the ASN.1 type UTF8String.
UTF8String is a representation of the Universal Character Set whose encoding preserves full US-
ASCII range. For this specification, PKIFreeText only includes characters in the US-ASCII range.

The protectionAlg is required for all signed messages, and for messages protected by a message
authentication code. When a message is not protected (i.e., the protection field does not appear
in the PKIMessage containing this PKIHeader), protectionAlg must be omitted.

The senderNonce and recipNonce are not required by client and RA implementations; CAs that
receive PKIMessages with a senderNonce must, at a minimum, be able to return that value as the
recipNonce in the following message. The senderKID, recipKID, and generalInfo fields are not
required to implement this specification.

PKI Message Body

PKIBody ::= CHOICE {
 -- message-specific body elements
 ir [0] CertReqMessages,
 ip [1] CertRepMessage,
 cr [2] CertReqMessages,
 cp [3] CertRepMessage,
 p10cr [4] PKCS10CertReqMessages,
 popdecc [5] POPODecKeyChallContent,
 popdecr [6] POPODecKeyRespContent,
 rr [11] RevReqContent,
 rp [12] RevRepContent,
 conf [19] PKIConfirmContent,
 }

Additional message-specific body elements are defined by [RFC2510], [RFC2511]. The
additional elements are not required to implement this specification, so they were omitted for
clarity. The complete list of message-specific body elements appears in Appendix C.

Second CRADA Draft, Version 2

 3-32

Other sections of this document refer to InitReq, InitRep, CertReq, CertRep, RevReq, and RevRep
messages. These terms refer to PKIMessages with body elements ir, ip, cr, cp, rr, and rp,
respectively. A PKCS #10 request refers to a message with a p10cr body element. A
confirmation message will have body element conf.

PKI Message Protection

All PKI messages will be protected for integrity using the following structure:22
 PKIProtection ::= BIT STRING

The input to the calculation of the PKIProtection is the DER encoding of the following data
structure:
 ProtectedPart ::= SEQUENCE {
 header PKIHeader,
 body PKIBody }

In most cases, the PKIProtection field will contain a digital signature and the protectionAlg field
in the PKIHeader will contain an AlgorithmIdentifier specifying the digital signature algorithm
(e.g., dsaWithSha-1) used to protect the message.

In some cases, such as key update, it may be necessary to attach multiple signatures. In this case,
signed messages are nested - each signed message becomes a PKIBody element nested; the next
signature is applied to this message. This process is repeated until all signatures have been
applied.

Where symmetric techniques are needed for message authentication, the algorithm id shall be one
of those identified in section 3.1.2.5 and the PKIProtection value shall contain the message
authentication code using the DER encoded header and body as input (and the shared secret as
the key.) The PKIHeader will contain an AlgorithmIdentifier specifying a message authentication
code algorithm (e.g., SHA1-HMAC).

3.4.2 Common Data Structures
The following data types are common to several message formats.

Certificate Templates

In various PKI management messages, the originator may provide certain values to identify an
existing certificate or request certain values be used in the generation of a certificate. The
CertTemplate structure allows entities to indicate those values. CertTemplate includes all the
same information as a certificate.
CertTemplate ::= SEQUENCE {
 version [0] Version OPTIONAL,
 -- used to ask for a particular syntax version
 serial [1] INTEGER OPTIONAL,

22 There is one exception to this rule: an end entity that is not a current certificate holder will not protect the initial
message in an RA-Generated request (sec. 3.5.1). This message is delivered to the RA out-of-band; no protection
mechanism is required. In this case, protectionAlg is omitted from the header.

Second CRADA Draft, Version 2

 3-33

 -- used to ask for a particular serial number or to indicate request
 -- is on behalf of a previous certificate holder
 signingAlg [2] AlgorithmIdentifier OPTIONAL,
 subject [3] Name OPTIONAL,
 validity [4] OptionalValidity OPTIONAL,
 issuer [5] Name OPTIONAL,
 publicKey [6] SubjectPublicKeyInfo OPTIONAL,
 issuerUID [7] UniqueIdentifier OPTIONAL, -- not supported
 subjectUID [8] UniqueIdentifier OPTIONAL, -- not supported
 extensions [9] Extensions OPTIONAL,
 -- contains the extensions which the requester
 -- would like in the cert.
 }

 OptionalValidity ::= SEQUENCE {
 notBefore [0] Time OPTIONAL,
 notAfter [1] Time OPTIONAL
 }

 CertTemplates ::= SEQUENCE OF CertTemplate

If it appears, the validity field contains the requested issuance date (in the notBefore field) and
expiration date (notAfter) for the requested certificate. The values in the CertTemplate validity
field shall be interpreted as specified for the certificate validity field (see sec. 3.1.1).

Proving Possession of a New Signature Key

Conforming CAs verify that the prospective subject of a certificate request holds the private key
corresponding to the public key provided in a certificate request. This is performed with the
signature field in ProofOfPossession, which is a POPOSigningKey structure. The
POPOSigningKey structure includes input data, an algorithm identifier, and a signature.

The input data is generated as the DER-encoded popInput, and is generated from the data in the
certificate request. In general, it contains the subject name and the public key from the
CertTemplate. When a new subject’s request is authenticated through use of a public key mac
value, or the RA modifies the subject name, the popInput must be constructed from optional data
in the POPOSigningKey structure and the public key from the CertTemplate. This permits an RA
to pass proof-of-possession to the CA despite changing the CertTemplate.
ProofOfPossession ::= CHOICE {
 raVerified [0] NULL,
 -- used if the RA has already verified that the requester is in
 -- possession of the private key
 signature [1] POPOSigningKey,
 keyEncipherment [2] POPOPrivKey,
 keyAgreement [3] POPOPrivKey }

POPOSigningKey ::= SEQUENCE {
 poposkInput [0] POPOSKInput OPTIONAL,
 algorithmIdentifier AlgorithmIdentifier,
 signature BIT STRING }

 -- The signature (using "algorithmIdentifier") is on the

Second CRADA Draft, Version 2

 3-34

 -- DER-encoded value of popInput. NOTE: If poposkInput is present
-- in the pop field, popInput is constructed
-- with otherinput. If poposkInput is not present, subject is the name
-- from CertTemplate. Note that the encoding of PopInput is
 intentionally ambiguous.

PoposkInput ::= CHOICE {
 Subject name,
 Sender [0] generalName,
 publicKeyMAC [1] PKMACValue
 }

-- The pop is calculated upon the structure popInput, which is defined
-- as follows:

 PopInput ::= SEQUENCE {
 CHOICE {
 otherinput popskInput,
 subject name },
 publicKey subjectpublicKey
 }

-- If poposkInput is present
-- in the pop field, popInput is constructed
-- with otherinput. If poposkInput is not present, subject is the name
-- from CertTemplate. Note that the encoding of PopInput is
-- intentionally ambiguous.

CertReqMessage

The CertReqMsg is the basic structure for certificate requests. CertReqMsg is a SEQUENCE of
three fields, a certReq; pop; and, optionally, regInfo. certReq is of type CertRequest, pop
includes information demonstrating proof-of-possession of the private key; and regInfo contains
information specific to the registration procedures for this PKI. The regInfo field is not required
to implement this specification.
CertReqMsg ::= SEQUENCE {
 certReq CertRequest,
 pop ProofOfPossession OPTIONAL,
 -- content depends upon key type
 regInfo SEQUENCE SIZE(1..MAX) of AttributeTypeAndValue OPTIONAL }

CertRequest

The CertRequest syntax consists of a request identifier, a template of certificate content, and an
optional sequence of control information.
CertRequest ::= SEQUENCE {
 certReqId INTEGER, -- ID for matching request and reply
 certTemplate CertTemplate, -- Selected fields of cert to be issued
 controls Controls OPTIONAL } -- Attributes affecting issuance

certReqId is an INTEGER, certTemplate is a CertTemplate (see above), and controls are defined
below.

Second CRADA Draft, Version 2

 3-35

CertReqMessages

CertReqMessages is a sequence of one or more CertReqMessage structures.
CertReqMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqMessage

For this specification, CertReqMessages may be assumed to be a SEQUENCE of exactly one
CertReqMessage. That is, MAX may be defined as one.

Controls

The generator of a CertRequest may include one or more control values pertaining to the
processing of the request.

Controls ::= SEQUENCE SIZE (1..MAX) OF AttributeTypeAndValue

The following controls were defined in CMP (it is recognized that this list may expand over
time): regToken; authenticator; pkiPublicationInfo; pkiArchiveOptions; oldCertId;
protocolEncrKey. This specification requires support for protocolEncrKey is needed when
issuing key management certificates; these transactions are optional to implement for this
specification. OIDs for these controls are provided below. The remaining controls (oldCertId,
regToken, authenticator, pkiPublicationInfo, and pkiArchiveOptions) are not required for this
specification and are not described here.

id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
dod(6) internet(1) security(5) mechanisms(5) pkix(7) }

-- arc for Internet X.509 PKI protocols and their components
id-pkip OBJECT IDENTIFIER :: { id-pkix pkip(5) }

-- Registration Controls in CRMF
id-regCtrl OBJECT IDENTIFIER ::= { id-pkip regCtrl(1) }
id-regCtrl-oldCertId OBJECT IDENTIFIER ::= { id-regCtrl 5 }
id-regCtrl-protocolEncrKey OBJECT IDENTIFIER ::= { id-regCtrl 6 }

Protocol Encryption Key Control

If present, the protocol encryption key control specifies a key the CA is to use in encrypting a
response to CertReqMessages.

This control can be used when a CA has information to send to the subscriber that needs to be
encrypted. Such information includes a private key generated by the CA for use by the
subscriber.

The protocolEncrKey control is indicated by the OID id-reg-protocolEncrKey in the attribute type;
the syntax of its value is SubjectPublicKeyInfo.

Status codes for PKI messages

All response messages will include some status information. The following values are defined:
PKIStatus ::= INTEGER {
 granted (0),
 -- request granted without change
 grantedWithMods (1),

Second CRADA Draft, Version 2

 3-36

 -- request granted, with modifications; the requester
 -- is responsible for ascertaining the differences
 rejection (2),
 -- request rejected
 waiting (3),
 -- the request has been received but has not been processed,
 -- an additional response will follow after processing
 revocationWarning (4),
 -- this message contains a warning that a revocation has
 -- been requested and is under consideration
 revocationNotification (5),

-- notification that a revocation has occurred
 keyUpdateWarning (6)

--
 }

This specification does not use the status code keyUpdateWarning.

Failure Information

Responders use the following syntax to provide more information about failure cases.
 PKIFailureInfo ::= BIT STRING { -- since we can fail in more than
 -- one way!
 badAlg (0), -- unrecognized or unsupported algorithm identifier
 badMessageCheck (1), -- integrity check failed (e.g., signature did not verify)
 badRequest (2), -- transaction not permitted or supported
 badTime (3), -- messageTime field was not sufficiently close
 -- to the system time, as defined by local policy
 badCertId (4), -- no certificate could be identified matching the
 -- provided criteria
 badDataFormat (5), -- the data submitted has the wrong format
 wrongAuthority (6), -- the authority indicated in the request is different from the
 -- one creating the response token
 incorrectData (7), -- the requester's data is incorrect (used for notary services)
 missingTimeStamp (8), -- when the timestamp is missing but is required by policy
 badPoP (9) -- proof of possession field did not verify
 -- need more failure information
 }

 PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,
 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL
 }

Protocol Confirmation

Confirmation messages shall carry all the required information in the PKIHeader. As a result, this
data structure has a NULL content.
 PKIConfirmContent ::= NULL

Second CRADA Draft, Version 2

 3-37

Certificate Identification

In order to identify particular certificates the CertId structure is used.
 CertId ::= SEQUENCE {
 issuer GeneralName,
 serialNumber INTEGER
 }

Proof Of Possession for Key Management Keys

Certificate Request transactions for Key Management certificates may include challenge and
response messages to verify the requester’s possession of the private key. The following
structures form the PKIBody of these messages.

 POPODecKeyChallContent ::= SEQUENCE OF Challenge
 -- One Challenge per encryption key certification request (in the
 -- same order as these requests appear in FullCertTemplates).

 Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier OPTIONAL,
 -- must be present in the first Challenge; may be omitted in any
 -- subsequent Challenge in POPODecKeyChallContent (if omitted,
 -- then the owf used in the immediately preceding Challenge is
 -- to be used).
 witness OCTET STRING,
 -- the result of applying the one-way function (owf) to a
 -- randomly-generated INTEGER, A. [Note that a different
 -- INTEGER must be used for each Challenge.]
 challenge OCTET STRING
 -- the encryption (under the public key for which the cert.
 -- request is being made) of Rand, where Rand is specified as
 -- Rand ::= SEQUENCE {
 -- int INTEGER,
 -- - the randomly-generated INTEGER A (above)
 -- sender GeneralName
 -- - the sender's name (as included in PKIHeader)
 -- }
 }

 POPODecKeyRespContent ::= SEQUENCE OF INTEGER
 -- One INTEGER per encryption key certification request (in the
 -- same order as these requests appear in FullCertTemplates). The
 -- retrieved INTEGER A (above) is returned to the sender of the
 -- corresponding Challenge.

Centrally Generated Keys

When a CA generates an encryption key pair on behalf of a certificate holder, it uses the
CertifiedKeyPair structure to return the certificate.

 CertifiedKeyPair ::= SEQUENCE {
 certificate [0] Certificate OPTIONAL,

Second CRADA Draft, Version 2

 3-38

 encryptedCert [1] EncryptedValue OPTIONAL,
 privateKey [2] EncryptedValue OPTIONAL,
 publicationInfo [3] PKIPublicationInfo OPTIONAL
 }

EncryptedValue ::= SEQUENCE {
 intendedAlg [0] AlgorithmIdentifier OPTIONAL,
 -- the intended algorithm for which the value will be used
 symmAlg [1] AlgorithmIdentifier OPTIONAL,
 -- the symmetric algorithm used to encrypt the value
 encSymmKey [2] BIT STRING OPTIONAL,
 -- the (encrypted) symmetric key used to encrypt the value
 keyAlg [3] AlgorithmIdentifier OPTIONAL,
 -- algorithm used to encrypt the symmetric key
 valueHint [4] OCTET STRING OPTIONAL,
 -- a brief description or identifier of the encValue content
 -- (may be meaningful only to the sending entity, and used only
 -- if EncryptedValue might be re-examined by the sending entity
 -- in the future)
 encValue BIT STRING }
 -- the encrypted value itself

Out-of-band Information

To convey a CA’s public key out of band, OOBCert structure is used. OOBCert is simply the
CA’s certificate.
 OOBCert ::= Certificate

3.4.3 Operation-Specific Data Structures

Registration/Certification Request

Registration/Certification request (cr) messages and initialization requests (ir) messages contain a
CertReqMessages data structure which specifies values for one or more requested certificates.

CertReqMessages is a sequence of one or more CertReqMsg structures.
CertReqMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqMsg

With one exception, transactions defined in this specification assume CertReqMessages is a
SEQUENCE of exactly one CertReqMsg. The optional transaction requesting a signature
certificate and a key management certificate simultaneously requires that CertReqMessages be a
SEQUENCE of size two.

Registration/Certification Response

The registration response message (cp) and initialization response message (ip) contain a
CertRepMessage structure which is an optional CA public key and a response. With one
exception, transactions defined in this specification assume the response is a sequence of exactly
one CertResponse. The exception is a transaction combining a signature certificate and a key
management certificate request; the response to this transaction may be a combined response
message, with a sequence of two CertResponse fields.

Second CRADA Draft, Version 2

 3-39

The CertResponse includes a request id, status information and optionally a CertifiedKeyPair.
The CertifiedKeyPair is a sequence of four optional fields: a certificate, an encrypted certificate,
an encrypted private key, and publication information. In this specification, the certificate field
will always appear in CertifiedKeyPair. PrivateKey is used only for centrally generated key
management keys; the other fields are never used in this specification.
 CertRepMessage ::= SEQUENCE {
 caPub [1] Certificate OPTIONAL,
 response SEQUENCE OF CertResponse
 }

 CertResponse ::= SEQUENCE {
 certReqId INTEGER, -- to match this response with corresponding request
 certRepStatus PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair OPTIONAL, -- present if status is granted

-- or grantedWithMods
 rspInfo OCTET STRING OPTIONAL
 -- analogous to the id-regInfo-asciiPairs OCTET STRING defined
 -- for regInfo in CertReqMsg [CRMF]

 }

If certRepStatus contains a failInfo field, the CertResponse shall not include a certifiedKeyPair
and the value in the certRepStatus field shall be rejection on the value of status. For the status
value waiting none of the optional fields may be present. The status values revocationWarning
and revocationNotification should not appear in this message.

The caPub and rspInfo fields are not required, and may be ignored if present. This
interoperability specification does not use the encryptedCert and publicationInfo fields in
CertifiedKeyPair.

Revocation Request Content

When requesting revocation of a certificate the following data structure is used. The name of the
requester is present in the PKIHeader structure.
RevReqContent ::= SEQUENCE OF RevDetails

RevDetails ::= SEQUENCE OF {
 certDetails CertTemplate,
 -- allows requester to specify as much as they can about
 -- the cert. for which revocation is requested
 -- (e.g. for case serialNumber not available)
 revocationReason ReasonFlags,
 -- from the DAM, so that CA knows which Dist. point to use
 badSinceDate GeneralizedTime OPTIONAL,
 -- indicates best knowledge of sender
 crlEntryDetails Extensions}
 -- requested crlEntryExtensions

ReasonFlags are defined in Appendix B, but are reproduced here for clarity.
ReasonFlags ::= BIT STRING {

Second CRADA Draft, Version 2

 3-40

 unused (0),
 keyCompromise (1),
 caCompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6),
 removeFromCRL (8) }

The same information represented by badSinceDate and revocationReason can be represented in
crlEntryDetails using the standard X.509 CRL entry extensions invalidityDate and reasonCode.
The preferred location is crlEntryDetails, but this specification recommends that CAs process the
information in either location. Where there is a conflict, the earlier date should be used. When
revocation reasons don’t match, the CA should logically OR the values.

Revocation Response Content

When responding to a revocation request the following data structure is used. If produced this is
sent to the requester of the revocation.
RevRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 revCerts [0] SEQUENCE OF CertId OPTIONAL,
 -- identifies the cert for which revocation
 -- was requested
 crls [1] SEQUENCE OF CertificateList OPTIONAL}
 -- the resulting CRL

For the purposes of this specification, revCerts shall be a SEQUENCE of one or more CertId
fields, and the crls field does not appear.

PKCS #10 Certification Request

This alternative certification request syntax is defined in [PKCS#10]. It is reproduced here for
clarity.
PKCS10CertReqMessages ::= SEQUENCE {
 certificationRequestInfo CertificationRequestInfo
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature Signature
 }

SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

Signature ::= BIT STRING

CertificationRequestInfo::= SEQUENCE {
 version Version,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 attributes [0] IMPLICIT Attributes
 }

Second CRADA Draft, Version 2

 3-41

Version ::= INTEGER

Attributes ::= SET OF Attribute

Attributes are specified in [PKCS#9]. Support for attributes is optional for conforming
implementations. If present, they may be ignored.

3.5 PKI Transactions
This section describes PKI specific functions to request, renew, and revoke certificates. This
section also provides a brief description of transactions for accessing the directory service.

Compliant CAs shall implement all of the transactions identified in this section. Compliant RAs
shall implement the RA-Generated Registration (sec. 3.5.1) and Revocation (sec. 3.5.6)
transactions. Compliant certificate holders shall implement the Revocation (sec. 3.5.6) and RA-
Generated Registration (sec. 3.5.1) transactions. Self Registration (secs. 3.5.3 and 3.5.5) and
Certificate Renewal (sec. 3.5.2) transactions are optional for certificate holders.

Where the product collocates the CA and RA, and does not support remote RAs, messages
between the CA and RA are omitted. In this case, the functionality of the RA-generated
revocation request must be supported, but there are no protocol or interface requirements. All
other transactions must be supported, accepting requests from clients and generating appropriate
responses.

3.5.1 RA-Generated Registration Requests
An RA may request that a CA issue a certificate for an end entity. This transaction is performed
in five steps. In the first step, the end entity provides a public key to the RA in a signed message
in an out-of-band transaction (e.g., by physically presenting a diskette). In the second step, the
RA requests a certificate from the CA in a signed message. The CA replies to the RA with a
signed message containing either a certificate or an error message. The RA provides the end
entity with the CA’s public key out-of-band. The end entity may receive the certificate from the
RA out-of-band, or from the CA electronically.

The final two messages in the transaction are optional; upon request from the CA, the RA will
generate a confirmation message. Where the CA receives a confirmation message, it shall
respond in kind. For these specifications, messages are not generated unless the CA generates a
certificate.

Certificate Request from an End Entity to the RA

The end entity creates a PKIMessage with PKIBody element cr. The PKIHeader includes the
following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the end entity, or null;
• recipient is the distinguished name of the RA, or null; and
• if the end entity is a current certificate holder, protectionAlg is the algorithm identifier for

Second CRADA Draft, Version 2

 3-42

the signature algorithm used to protect the message; otherwise protectionAlg is omitted.

The message body is CertReqMessages, which is a sequence of one or more CertReqMessage
fields. For this transaction, CertReqMessages is a sequence of one CertReqMessage. The
CertReqMessage will include the following information:

• certReq contains the information that the requester would like included in the certificate;
and

• pop provides proof of possession of the private key for the new certificate.

The pop field shall be generated using the private key corresponding to the public key in the
publicKey field.

The certReq is a CertRequest, which is a sequence of a certReqID, a CertTemplate, and controls.
For this transaction:

• certReqID is any integer;
• certTemplate is a CertTemplate including, at a minimum, the publicKey field which

provides the public key for the new certificate.

The following information may be included in the CertTemplate:

• signingAlg specifies the preferred signature algorithm; and
• subject specifies the distinguished name for the prospective certificate holder.

If the end entity is a current certificate holder, the PKIProtection field contains the end entity’s
signature, calculated on the DER encoded sequence of the header and body with private key
material corresponding to the current certificate. If the end entity is not a current certificate
holder, the PKIProtection field shall be omitted.

Certificate Request from RA to CA

The RA creates a PKIMessage with PKIBody element cr. The PKIHeader includes the following
information:

• pvno is one;
• transactionID is an integer unique to this transaction for this RA;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the RA;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The message body is CertReqMessages, which is a sequence of one or more CertReqMessage
fields. For this transaction, CertReqMessages is a sequence of one CertReqMessage. The
CertReqMessage will include the following information:

• certReq contains the information that the requester would like included in the certificate;
and

• pop provides proof of possession of the private key for the new certificate.

If the RA did not modify the subject name, the pop field shall be the same as provided by the

Second CRADA Draft, Version 2

 3-43

requester. If the RA modified, the subject name, popoSKInput shall be present and will contain
the original subject name.

The certReq is a CertRequest, which is a sequence of a certReqID, a CertTemplate, and controls.
For this transaction certReqID may be any integer.

The CertTemplate will include the following information:

• version is v3 (2);
• publicKey provides the public key for the new certificate; and
• extensions specifies, at a minimum, the certificate policy OID to be associated with the

certificate.

The following information may be included in the CertTemplate:

• signingAlg specifies the preferred signature algorithm; and
• subject specifies the distinguished name for the prospective certificate holder.

The request shall not include the following information:

• issuerUID; and
• subjectUID.

The PKIProtection field contains the RA’s signature, calculated on the DER encoded sequence of
the header and body.

Certificate Response from CA to RA

The CA will return a PKIMessage with PKIBody element cp to the RA.

The PKIHeader includes the following information:

• pvno is one;
• transactionID is the same as the transactionID field in the cr message;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the CA;
• recipient is the distinguished name of the RA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a senderNonce was supplied in the certificate request message, the header of the response shall
include it as recipNonce.

The PKIBody element cp is of type CertRepMessage. For this transaction, CertRepMessage will
contain a single response field. The response field is a SEQUENCE of a certReqId, status and
certifiedKeyPair. If the CA issued a certificate, the body will contain the following information:

• certReqId will match the certReqId in the request;
• status will be granted or grantedWithMods; and
• The certifiedKeyPair sequence will contain one field, certificate, which will contain the

X.509 version 3 certificate.

The certificate must meet the following properties:

Second CRADA Draft, Version 2

 3-44

• version number shall be v3 (2);
• The publicKey field shall be the same as in the certificate request;
• the subject distinguished name shall be the same as in the certificate request;
• the issuer name shall be the CA’s distinguished name;
• if notBefore was present in the certificate request, the certificate shall be valid from the

issuance date or the notBefore date, whichever is later; and
• if notAfter was present in the certificate request, the certificate shall expire on or before

that date.

The certificate shall contain the following extensions:

• a subjectKeyIdentifier field;
• at least one certificate policy OID in the certificatePolicies field; and
• an authority key identifier including a KeyIdentifier field.

If a specific key identifier was specified in the certificate request message, the certificate shall
contain that key identifier as the subjectKeyIdentifier field. If no key identifier was supplied, the
CA shall use the 96-bit SHA-1 hash of the subject public key as the keyIdentifier in the
subjectKeyIdentifier field. The hash shall be calculated over the value (excluding tag and length)
of the subject public key field in the certificate.

The certificate shall include URLs in the issuerAltName extension and distributionPoint field of
the CRLDistributionPoints extension if the issuer’s certificates or CRLs are not available from a
well known X.500 directory.

The failInfo field may not be present if status is granted or grantedWithMods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and
• failInfo will contain the appropriate failure codes:

− badAlg indicates that the CA cannot validate the signature because the algorithm
identifier is unrecognized or unsupported;

− badMessageCheck indicates that the signature in the PKIProtection field was checked
but did not match;

− badPoP indicates that the signature in the popoSigningKey field was checked but did
not match;

− badRequest indicates that the responder does not permit or support the transaction;
− badTime indicates that the messageTime field in the message header was not

sufficiently close to the responder’s system time.23

The certificate field may not be present if status is rejected.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

23 This error code assumes a locally defined window of time for responding to a PKI message. The MISPC does not
require such a policy, but defines this error code to support such policies.

Second CRADA Draft, Version 2

 3-45

Confirmation Messages

Upon receipt of the cp, the RA shall generate a PKIConfirm message. PKIHeader data shall be
identical to the certificate request, with the exception of messageTime.

The PKIProtection field contains the RA’s signature, calculated on the DER encoded sequence of
the header and body.

Upon receipt of the PKIConfirm, the CA shall generate a PKIConfirm message. PKIHeader data
shall be identical to the cr, with the exception of messageTime.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

3.5.2 Certificate Renewal Request
An entity that is a current certificate holder may request issuance of a new certificate directly
from the CA that issued the current certificate. The requesting entity creates a PKI kr (key update
request) message requesting a certificate and includes proof of possession of the private key
corresponding to the public key in the certificate request. The entity then signs the message with
the private key corresponding to the entity’s unexpired, unrevoked certificate.

If the CA’s Certificate Practice Statement permits certificate renewal,24 it will return a kp (key
update response) message to the certificate holder. This message will contain the certificate or a
reason code for the transaction failure.

The final two messages in the transaction are optional; upon request from the CA, the certificate
requester will generate a confirmation message. Where the CA receives a confirmation message,
it shall respond in kind. For these specifications, messages are not generated unless the CA
generates a certificate.

Certificate Renewal Request from Certificate Holder to CA

The certificate holder creates a key update request: a PKIMessage with PKIBody element kr. The
PKIHeader includes the following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the certificate holder;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The message body is CertReqMessages, which is a sequence of one or more CertReqMessage
fields. For this transaction, CertReqMessages is a sequence of one CertReqMessage. The
CertReqMessage will include the following information:

• certReq contains the information that the requester would like included in the certificate;
and

24 Conforming CA implementations shall support certificate renewal. However, a particular CA may choose not to
support this transaction as a matter of policy.

Second CRADA Draft, Version 2

 3-46

• pop provides proof of possession of the private key for the new certificate.

The pop field shall be generated using the private key corresponding to the public key in the
publicKey field.

The certReq is a CertRequest, which is a sequence of a certReqID, a CertTemplate, and controls.
For this transaction:

• certReqID is any integer; and
• certTemplate is a CertTemplate including the public key for the new certificate.

The CertTemplate will include the following information:

• version is v3 (2); and
• publicKey provides the public key for the new certificate.

The following information may be included in the CertTemplate:

• signingAlg specifies the preferred signature algorithm;
• subject specifies the distinguished name for the prospective certificate holder;

If signingAlg does not appear, the CA should sign with the algorithm corresponding to the
entity’s public key.

The request shall not include the following information:

• issuerUID; and
• subjectUID.

The PKIProtection field contains a signature generated using the private key associated with the
current unexpired, unrevoked certificate and calculated upon the DER encoded sequence of the
header and body.

Certificate Renewal Response from CA to Certificate Holder

The CA will return a key update response (a PKIMessage with PKIBody element kp) message to
the certificate holder.

The PKIHeader includes the following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the CA;
• recipient is the distinguished name of the certificate holder and the sender of the cr

message; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transactionID was supplied in cr message, the header of the response will include the same
transactionID. If a senderNonce was supplied in the senderNonce message, the header of the
response shall include it as recipNonce.

The PKIBody is the element kp and is of type CertRepMessage. If the CA issued a certificate, the
body will contain the following information:

Second CRADA Draft, Version 2

 3-47

• status will be granted or grantedWithMods; and
• certificate will contain the new X.509 version 3 certificate.

The certificate shall contain the following extensions:

• a subjectKeyIdentifier field;
• at least one certificate policy OID in the certificatePolicies field; and
• an authority key identifier including a KeyIdentifier field.

The certificatePolicies extension shall be identical to that found in the currently valid certificate.
If a specific key identifier was specified in the cr message, the certificate shall contain that key
identifier as the subjectKeyIdentifier field. If no key identifier was supplied, the CA shall use the
96-bit SHA-1 hash of the subject public key as the keyIdentifier in the subjectKeyIdentifier field.
The hash shall be calculated over the value (excluding tag and length) of the subject public key
field in the certificate.

If the kr message included extensions other than the subjectKeyIdentifier, the CA may modify or
ignore the requested extensions.

The certificate shall include URLs in the issuerAltName extension and distributionPoint field of
the CRLDistributionPoints extension if the issuer’s certificates or CRLs are not available from a
well known X.500 directory.

The failInfo field may not be present if status is granted or grantedWithMods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and
• failInfo will contain the appropriate failure codes:

− badAlg indicates that the CA cannot validate the signature because the algorithm
identifier is unrecognized or unsupported;

− badPoP indicates the signature in the popoSigningKey field was checked but did not
match;

− badMessageCheck indicates that the signature in the PKIProtection field was checked
but did not match;

− badRequest indicates that the responder does not permit or support the transaction;
− badTime indicates that the messageTime field in the message header was not

sufficiently close to the responder’s system time; and
− badCertId indicates that no certificate could be identified matching the nonzero serial

field.

The certificate field may not be present if status is rejected.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

Confirmation Message

Upon receipt of the kp, the certificate holder shall generate a PKIConfirm message. PKIHeader

Second CRADA Draft, Version 2

 3-48

data shall be identical to the certificate request from the RA to the CA, with the exception of
messageTime.

If the request was accepted, the PKIProtection field contains the certificate holder’s signature,
calculated on the DER encoded sequence of the header and body using the private key
corresponding to the new signature certificate. If the request was rejected, the PKIProtection field
contains the certificate holder’s signature, calculated on the DER encoded sequence of the header
and body using the private key corresponding to the currently valid signature certificate.

Upon receipt of the PKIConfirm, the CA shall generate a PKIConfirm message. PKIHeader data
shall be identical to the kr, with the exception of messageTime.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

3.5.3 Self-Registration Request (New Subject)
An entity that has never obtained a certificate from a particular CA may request issuance of a
new certificate directly from that CA. The requesting entity creates a PKIMessage with body type
ir requesting a certificate and includes proof of possession of the private key corresponding to the
public key in the certificate request. The entity protects the message with a SHA-1 HMAC using
a secret key provided by the RA.

If the CA accepts self-registration requests, it will return an ip message to the certificate holder.
This message will contain the certificate or a reason code for the transaction failure.

RA-Entity Out-of-Band Transaction

The self-registration request for a certificate begins with the exchange of a secret known to the
RA to the entity requesting a certificate. This information will allow the entity to authenticate
themselves to the CA through generation of a message authentication code from the shared
secret.

The precise content and format of this out-of-band transaction is not specified. However, it
should be noted that both the secret key and the public key material for the trusted CA must be
conveyed to the entity in a trusted fashion. So, this transaction should include authentication
information for the CA from which the certificate will be requested and the public key material
for the trusted CA.

Self-Registration Request from Certificate Holder to CA

The requester creates a PKIMessage with a PKIBody element ir. The PKIHeader includes the
following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the (proposed) distinguished name of the requester or an electronic mail

address;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

Second CRADA Draft, Version 2

 3-49

message.

The message body is CertReqMessages, which is a sequence of one or more CertReqMessage
fields. For this transaction, CertReqMessages is a sequence of one CertReqMessage. The
CertReqMessage will include the following information:

• certReq contains the information that the requester would like included in the certificate;
• popoSKInput contains the public key mac value; and
• pop provides proof of possession of the private key for the new certificate.

The pop field shall be generated using the private key corresponding to the public key in the
CertTemplate. The input data (popInput) for generating pop shall be constructed from the public
key mac value in popSKInput and the public key in the CertTemplate.

The certReq is a CertRequest, which is a sequence of a certReqID, a CertTemplate, and controls.
For this transaction:

• certReqID is any integer;
• certTemplate is a CertTemplate including the public key for the new certificate; and
• controls is omitted.

The CertTemplate will include the following information:

• version is v3 (2); and
• publicKey provides the public key for the new certificate.

The following information may be included in the CertTemplate:

• signingAlg specifies the preferred signature algorithm;
• subject is present if and only if serial equals zero, and specifies the distinguished name

for the prospective certificate holder; and
• extensions requests a particular certificate policy OID be specified in the certificate.

The request shall not include the following information:

• issuerUID; and
• subjectUID.

The PKIProtection field contains a value that is generated by the requester using the secret value
obtained from the RA. The entity generates a 96 bit SHA1-HMAC using the secret key provided
by the RA. The protectionAlg field shall be set to SHA1-HMAC, and the value of PKIProtection
shall be the 96 bit message authentication code. The input to the calculation of the PKIProtection
is the DER encoding of the following data structure:
 ProtectedPart ::= SEQUENCE {
 PKIHeader,
 PKIBody}

Self-Registration Request Response from CA to Certificate Requester

The CA will return a PKIMessage with a PKIBody element ip to the certificate holder.

The PKIHeader includes the following information:

Second CRADA Draft, Version 2

 3-50

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the CA;
• recipient is the value of sender in the certificate request header; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transactionID was supplied in cr message, the header of the response will include the same
transactionID. If a senderNonce was supplied in the senderNonce message, the header of the
response shall include it as recipNonce.

The PKIBody is an ip element and is of type CertRepMessage. If the CA issued a certificate, the
body will contain the following information:

• status will be granted or grantedWithMods; and
• certificate will contain the new X.509 version 3 certificate;

The failInfo field may not be present if status is granted or grantedWithMods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and
• failInfo will contain the appropriate failure codes:

− badAlg indicates that the CA cannot validate the signature because the algorithm
identifier is unrecognized or unsupported;

− badPoP indicates the signature in the popoSigningKey field was checked but did not
match;

− badMessageCheck indicates the mac in the PKIProtection field was rejected;
− badRequest indicates that the responder does not permit or support the transaction;
− badTime indicates that the messageTime field in the message header was not

sufficiently close to the responder’s system time; and
− badCertId indicates that no certificate could be identified matching the nonzero serial

field.

The certificate field may not be present if status is rejected. If present, the certificate shall
conform to the profile presented in section 3.1.1.

The certificate shall contain the following extensions:

• a subjectKeyIdentifier field;
• at least one certificate policy OID in the certificatePolicies field; and
• an authority key identifier including a KeyIdentifier field.

If a specific key identifier was specified in the ir message, the certificate shall contain that key
identifier as the subjectKeyIdentifier field. If no key identifier was supplied, the CA shall use the
96-bit SHA-1 hash of the subject public key as the keyIdentifier in the subjectKeyIdentifier field.
The hash shall be calculated over the value (excluding tag and length) of the subject public key
field in the certificate.

Second CRADA Draft, Version 2

 3-51

If the ir message included extensions other than the subjectKeyIdentifier, the CA may modify or
ignore the requested extensions.

The certificate shall include URLs in the issuerAltName extension and distributionPoint field of
the CRLDistributionPoints extension if the issuer’s certificates or CRLs are not available from a
well known X.500 directory.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

Confirmation Message

Upon receipt of the ip, the certificate holder shall generate a PKIConfirm message. PKIHeader
data shall be identical to the certificate request from the requester to the CA, with the exception
of messageTime.

If the request was accepted, the PKIProtection field contains the certificate holder’s signature,
calculated on the DER encoded sequence of the header and body using the private key
corresponding to the new signature certificate. If the request was rejected, the PKIProtection field
contains the SHA-1 HMAC, calculated on the DER encoded sequence of the header and body
using the shared secret that authenticated the certificate request. (If the request was rejected for
badMessageCheck, the PKIConfirm message need not be generated.)

Upon receipt of the PKIConfirm, the CA shall generate a PKIConfirm message. PKIHeader data
shall be identical to the ir, with the exception of messageTime.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

3.5.4 Self-Registration Request (Known Subject)
An entity that is not a current certificate holder but has previously obtained a certificate from a
particular CA may request issuance of a new certificate directly from that CA. The requesting
entity creates a PKIMessage with body type cr requesting a certificate. This message includes
proof of possession of the private key corresponding to the public key in the certificate request.
The entity protects the message with a mac using a secret key provided by the RA.

If the CA accepts self registration requests, it will return a cp message to the certificate holder.
This message will contain the certificate or a reason code for the transaction failure.

RA-Entity Out-of-Band Transaction

The self-registration request for a certificate begins with the delivery of a secret known to the RA
to the entity requesting a certificate. This information allows the entity to authenticate themselves
to the CA through generation of a message authentication code from the shared secret.

The precise content and format of this out-of-band transaction is not specified. However, it
should be noted that both the secret key and the public key material for the trusted CA must be
conveyed to the entity in a trusted fashion. So, this transaction should include authentication
information for the CA from which the certificate will be requested and the public key material
for the trusted CA.

Second CRADA Draft, Version 2

 3-52

Self-Registration Request from Certificate Holder to CA

The requester creates a PKIMessage with a PKIBody element cr. The PKIHeader includes the
following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the (proposed) distinguished name of the requester or an electronic mail

address;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The message body is CertReqMessages, which is a sequence of one or more CertReqMessage
fields. For this transaction, CertReqMessages is a sequence of one CertReqMessage. The
CertReqMessage will include the following information:

• certReq contains the information that the requester would like included in the certificate;
• popoSKInput contains the mac value; and
• pop provides proof of possession of the private key for the new certificate.

The pop field shall be generated using the private key corresponding to the public key in the
CertTemplate. The input data (popInput) for generating pop shall be constructed from the public
key mac value in popSKInput and the public key in the CertTemplate.

The certReq is a CertRequest, which is a sequence of a certReqID, a CertTemplate, and controls.
For this transaction:

• certReqID is any integer; and
• certTemplate is a CertTemplate including the public key for the new certificate.

The CertTemplate will include the following information:

• version is v3 (2); and
• publicKey provides the public key for the new certificate.

The following information may be included in the CertTemplate:

• signingAlg specifies the preferred signature algorithm;
• subject is present if and only if serial equals zero, and specifies the distinguished name

for the prospective certificate holder; and
• extensions requests a particular certificate policy OID be specified in the certificate.

The request shall not include the following information:

• issuerUID; and
• subjectUID.

The PKIProtection field contains a value that is generated by the requester using the secret value
obtained from the RA. The entity generates a mac using the secret key provided by the RA. The
protectionAlg field shall be set to the OID of the algorithm used to generate the mac, and the
value of PKIProtection shall be the message authentication code. The input to the calculation of

Second CRADA Draft, Version 2

 3-53

the PKIProtection is the DER encoding of the following data structure:
 ProtectedPart ::= SEQUENCE {
 PKIHeader,
 PKIBody}

Self-Registration Request Response from CA to Certificate Requester

The CA will return a PKIMessage with a PKIBody element cp to the certificate holder.

The PKIHeader includes the following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the CA;
• recipient is the value of sender in the certificate request header; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transactionID was supplied in cr message, the header of the response will include the same
transactionID. If a senderNonce was supplied in the request, the header of the response shall
include it as recipNonce.

The PKIBody is a cp element and is of type CertRepMessage. If the CA issued a certificate, the
body will contain the following information:

• status will be granted or grantedWithMods; and
• certificate will contain the new X.509 version 3 certificate;

The failInfo field may not be present if status is granted or grantedWithMods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and
• failInfo will contain the appropriate failure codes:

− badAlg indicates that the CA cannot validate the signature because the algorithm
identifier is unrecognized or unsupported;

− badPoP indicates the signature in the popoSigningKey field was checked but did not
match;

− badMessageCheck indicates the mac in the PKIProtection field was rejected;
− badRequest indicates that the responder does not permit or support the transaction;
− badTime indicates that the messageTime field in the message header was not

sufficiently close to the responder’s system time; and
− badCertId indicates that no certificate could be identified matching the nonzero serial

field.

The certificate field may not be present if status is rejected. If present, the certificate shall
conform to the profile presented in section 3.1.1.

The certificate shall contain the following extensions:

Second CRADA Draft, Version 2

 3-54

• a subjectKeyIdentifier field;
• at least one certificate policy OID in the certificatePolicies field; and
• an authority key identifier including a KeyIdentifier field.

If a specific key identifier was specified in the cr message, the certificate shall contain that key
identifier as the subjectKeyIdentifier field. If no key identifier was supplied, the CA shall use the
first 96 bits of the SHA-1 hash of the subject public key as the keyIdentifier in the
subjectKeyIdentifier field. The hash shall be calculated over the value (excluding tag and length)
of the subject public key field in the certificate.

If the cr message included extensions other than the subjectKeyIdentifier, the CA may modify or
ignore the requested extensions.

The certificate shall include URLs in the issuerAltName extension and distributionPoint field of
the CRLDistributionPoints extension if the issuer’s certificates or CRLs are not available from a
well known X.500 directory.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

Confirmation Message

Upon receipt of the cp, the certificate holder shall generate a PKIConfirm message. PKIHeader
data shall be identical to the certificate request from the RA to the CA, with the exception of
messageTime.

If the request was accepted, the PKIProtection field contains the certificate holder’s signature,
calculated on the DER encoded sequence of the header and body using the private key
corresponding to the new signature certificate. If the request was rejected, the PKIProtection field
contains the mac, calculated on the DER encoded sequence of the header and body using the
shared secret that authenticated the certificate request. (If the request was rejected for
badMessageCheck, the PKIConfirm message need not be generated.)

Upon receipt of the PKIConfirm, the CA shall generate a PKIConfirm message. PKIHeader data
shall be identical to the cr, with the exception of messageTime.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

3.5.5 PKCS #10 Self-Registration Request
An entity that is not a current certificate holder may request issuance of a certificate directly from
the CA using the certificate request syntax defined in PKCS #10. The requesting entity creates a
PKIMessage of type PKCSReq requesting a certificate and includes proof of possession of the
private key corresponding to the public key in the body of the certificate request, and protects the
PKIMessage using a secret key provided by the RA in an out-of-band transaction.

The CA will return a certificate request response message to the certificate requester. This
message will contain the certificate or a reason code for the transaction failure.

Second CRADA Draft, Version 2

 3-55

The out-of-band transaction with the RA and the CA response are identical to the corresponding
steps in the Self-Registration Request defined in section 3.5.3.

Self registration Request from Certificate Holder to CA

The requester creates a PKIMessage with a PKIBody element p10cr. The PKIHeader includes the
following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the (proposed) distinguished name of the requester or an electronic mail

address;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The PKIBody is a PKIBody element p10cr which is of type PKCS10CertReqMessages. This type is
a sequence of a certificationRequestInfo, a signatureAlgorithm and a signature. The
certificationRequestInfo will include the following information:

• version is v3 (2);
• subject is present if and only if serial equals zero, and specifies the distinguished name

for the prospective certificate holder; and
• subjectPublicKeyInfo provides the public key and corresponding algorithm identifier for

the new certificate.

The signatureAlgorithm field contains the algorithm identifier associated with the private key
used to generate the signature field; the signature is generated using the DER-encoded
certificationRequestInfo as input.

The PKIProtection field contains a value that is generated by the requester using the secret value
obtained from the RA. The entity generates a mac using the secret key provided by the RA. The
protectionAlg field shall be set to the OID of the message authentication algorithm used, and the
value of PKIProtection shall be the message authentication code. The input to the calculation of
the PKIProtection is the DER encoding of the following data structure:
 ProtectedPart ::= SEQUENCE {
 header PKIHeader,
 body PKIBody}

PKCS Certificate Request Response from CA to Certificate Requester

The CA will return a PKIMessage with a PKIBody element cp to the certificate holder.

The PKIHeader includes the following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the CA;
• recipient is the value of sender in the certificate request header; and

Second CRADA Draft, Version 2

 3-56

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the
message.

If a transactionID was supplied in PKCSReq message, the header of the response will include the
same transactionID.

The PKIBody element is a cp, which is of type CertRepMessage. If the CA issued a certificate,
the body will contain the following information:

• status will be granted or grantedWithMods; and
• certificate will contain the new X.509 version 3 certificate.

If a specific key identifier was specified in the p10cr message, the certificate shall contain that
key identifier as the subjectKeyIdentifier field. If no key identifier was supplied, the CA shall use
the 96-bit SHA-1 hash of the subject public key as the keyIdentifier in the subjectKeyIdentifier
field. The hash shall be calculated over the value (excluding tag and length) of the subject public
key field in the certificate.

The failInfo field may not be present if status is granted or grantedWithMods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and
• failInfo will contain the appropriate failure codes:

− badAlg indicates that the CA cannot validate the signature because the algorithm
identifier is unrecognized or unsupported;

− badPoP indicates the signature in the pk10cr’s signature field was checked but did not
match;

− badMessageCheck indicates the mac in the PKIMessage’s PKIProtection field was
rejected;

− badRequest indicates that the responder does not permit or support the transaction;
and

− badTime indicates that the messageTime field in the message header was not
sufficiently close to the responder’s system time.

The certificate field shall not be present if status is rejected.

The certificate shall contain the following extensions:

• a subjectKeyIdentifier field;
• at least one certificate policy OID in the certificatePolicies field; and
• an authority key identifier including a KeyIdentifier field.

If the cr message included extensions other than the subjectKeyIdentifier, the CA may modify or
ignore the requested extensions.

The certificate shall include URLs in the issuerAltName extension and distributionPoint field of
the CRLDistributionPoints extension if the issuer’s certificates or CRLs are not available from a
well known X.500 directory.

Second CRADA Draft, Version 2

 3-57

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

3.5.6 Revocation Request
Certificate holders may request revocation of their own certificates. To perform this function the
certificate holder generates a RevReq message, signs it and sends it to the CA that issued the
certificates. The signature must be generated with the private key corresponding to an unexpired,
unrevoked signature certificate issued by the same CA. The RevReq message shall identify the
certificate(s) to be revoked and the reason for the revocation. The CA responds with a RevRep
message.

RAs may request revocation of a certificate issued to an entity on behalf of the certificate holder
or the certificate holder’s organization. To perform this function, the RA generates a RevReq
message, signs it with the RA’s private key, and sends it to the CA. The RA shall generate a
pseudo-random number and shall place it in the transactionID field. The RevReq message shall
identify the certificate(s) to be revoked and the reason for the revocation.

The CA will respond to the revocation requester with an rp (RevRep) message. If the rr (RevReq)
message included a transactionID, the CA shall include its contents as the transactionID in the rp
message. The rp message shall contain, at a minimum, the status of the request in the status field
and identify the certificate(s) for which revocation is requested in the revDetails field.

Revocation Request from RA or Certificate Holder to CA

The RA or the certificate holder creates a PKIMessage with a PKIBody element rr. The PKIHeader
 includes the following information:

• pvno is one;
• transactionID is an integer unique to this transaction for this RA or any integer for the end

entity;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the RA or the certificate holder;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The PKIBody is RevReqContent, which is a sequence of RevDetails. RevDetails is a sequence of
CertDetails and three optional fields: reason flags; and date and time of compromise or loss; and
crlEntryDetails (a sequence of CRL entry extensions). CertDetails is defined as a CertTemplate.
For this interoperability specification, RevReqContent is a sequence of one RevDetails.
CertDetails, at a minimum, includes the following information:

• serial, which contains the serial number of the certificate; and
• issuer, which contains the distinguished name of the certificate issuer.

or
• subject, which contains the distinguished name of the certificate holder; and
• issuer, which contains the distinguished name of the certificate issuer.

Second CRADA Draft, Version 2

 3-58

CertDetails may also include a subjectKeyIdentifier in the extensions field.

(If the requester intends to revoke all certificates issued to a particular subject, CertDetails shall
include only the subject and issuer. That is, a revocation request specifying either the serial
number or subjectKeyIdentifier applies to that single certificate.)

The RevDetails shall include crlEntryDetails with a reasonCode extension, and may include the
invalidityDate extension to specify the time after which the certificate(s) should not be trusted.
The reason code may not be removeFromCRL.

The PKIProtection field contains the requester’s signature, calculated on the DER encoded
sequence of the header and body. The end-entity shall generate the signature with a private key
corresponding to a currently valid signature certificate issued by recipient.

Revocation Response from CA to Requester

The CA will return a PKIMessage with a PKIBody element rp to the requester. 25

The PKIHeader includes the following information:

• pvno is one;
• transactionID is the same as the transactionID field in the CertReq message;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the CA;
• recipient is the distinguished name of the RA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a senderNonce was supplied in the request message, the header of the response shall include it
as recipNonce.

The PKIBody is RpContent. If the CA revoked the certificate, the body will contain the following
information:

• status will be granted or grantedWithMods; and
• revDetails will contain the CertId(s) of the revoked certificate(s);

The failInfo field may not be present if status is granted or grantedWithMods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and
• failInfo will contain the appropriate failure codes:

− badAlg indicates that the CA cannot validate the signature because the algorithm
identifier is unrecognized or unsupported;

− badMessageCheck indicates that the signature in the PKIProtection fields was checked
but did not match;

− badRequest indicates that the responder does not permit or support the transaction;
− badTime indicates that the messageTime field in the message header was not

25 If the requester is an RA, the CA may optionally send the RevRep message to the certificate holder as well.

Second CRADA Draft, Version 2

 3-59

sufficiently close to the responder’s system time; or
− badCertId indicates that the information in CertDetails did not identify an unexpired,

unrevoked certificate.
If the certificate in question can be determined, revDetails will contain the CertId of the certificate
whose revocation was rejected.

The PKIProtection field shall contain the CA’s signature, calculated on the DER encoded
sequence of the header and body.

If the CA generates CRLs, and the revocation request was accepted, the CRL entry shall have the
following values:

• the serial number of the revoked certificate in the userCertificate field;
• the revocationDate shall be the day and time the revocation request was received;
• the crlEntryExtensions shall be present and include:

− the reasonCode shall be the reasonCode found in the RevDetails field, unless
otherwise specified in the CA’s policy;

− optionally, the invalidityDate extension may be the badSinceDate found in the
RevDetails field, if provided.

3.5.7 Encryption Certificate Request for End-Entity Generated Key Pairs
An entity that is a current signature certificate holder may request issuance of a new certificate
for encryption keys directly from the CA that issued the current signature certificate. The
requesting entity:

• generates a key management key pair;

• creates a PKI cr (certificate request) message requesting a key transport or key agreement
certificate and includes the public key;

• signs the message with the private key corresponding to the entity’s unexpired, unrevoked
signature certificate; and

• transmits it to the CA.

If the CA’s Certificate Practice Statement requires proof of possession for encryption key pairs,
the CA generates a challenge message.26 If challenged, the requester must demonstrate that it
possesses the private key that corresponds to the public key in the certificate request message.

The CA will generate and return a cp (certificate response) message to the certificate holder. This
message will contain the certificate or a reason code for the transaction failure.

If the CA’s Certificate Practice Statement does not require proof of possession for encryption key
pairs, the CA will generate and return the cp (certificate response) message to the certificate
holder. As above, this message will contain the certificate or a reason code for the transaction
failure.

26 If the CA can determine from the request that a certificate will not be issued, the CA does not generate a challenge
message. Instead, the CA returns a cp message with a reason code for the transaction failure.

Second CRADA Draft, Version 2

 3-60

Certificate Request from Certificate Holder to CA

The certificate holder creates a certificate request message: a PKIMessage with PKIBody element
cr. The PKIHeader includes the following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the certificate holder;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The message body is CertReqMessages, which is a sequence of one or more CertReqMessage
fields. For this transaction, CertReqMessages is a sequence of one CertReqMessage. The
CertReqMessage will include the following information:

• certReq contains the information that the requester would like included in the certificate.

The certReq is a CertRequest, which is a sequence of a certReqID, a CertTemplate, and controls.
For this transaction:

• certReqID is any integer; and
• certTemplate is a CertTemplate.

The CertTemplate will include at a minimum, the following information:

• version is v3 (2); and
• publicKey provides the public key for the new certificate.

The following information may be included in the CertTemplate:

• signingAlg specifies the preferred signature algorithm for the CA to sign the certificate.

If signingAlg does not appear, the CA should sign with the algorithm identified in the
protectionAlg field in the PKIHeader.

The request shall not include the following information:

• issuerUID; and
• subjectUID.

The PKIProtection field contains a signature generated using the private key associated with the
current unexpired, unrevoked certificate and calculated upon the DER encoded sequence of the
header and body.

Challenge and Response (Proof-of-Possession)

The CA may, optionally, generate a challenge message to verify that the requester possesses the
decryption key corresponding to the encryption key. The requester must … [Need to complete
this thought, whatever it was.]

The specific details of the challenge-response protocol differ according to the key management
algorithm associated with the public key. For Diffie-Hellman and Elliptic Curve Diffie-Hellman
keys, the challenge response messages are specified in (sec. 3.5.8). For RSA key transport keys,
the challenge response messages are specified in (sec. 3.5.9).

Second CRADA Draft, Version 2

 3-61

Certificate Response from CA to Certificate Holder

The CA will return a certificate response message (a PKIMessage with PKIBody element cp) to
the certificate holder.

The PKIHeader includes the following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the CA;
• recipient is the distinguished name of the certificate holder and the sender of the previous

(popdecr or cr) message; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transactionID was supplied in the previous message, the header of the response will include
the same transactionID. If a senderNonce was supplied in the cp or popdecr message, the header
of the response shall include it as recipNonce.

The PKIBody is the element cp and is of type CertRepMessage. If the CA issued a certificate, the
body will contain the following information:

• status will be granted or grantedWithMods; and
• certificate will contain the new X.509 version 3 certificate.

The certificate shall contain the following extensions:

• a subjectKeyIdentifier field;
• at least one certificate policy OID in the certificatePolicies field; and
• an authority key identifier including a KeyIdentifier field.

If a specific key identifier was specified in the cr message, the certificate shall contain that key
identifier as the subjectKeyIdentifier field. If no key identifier was supplied, the CA shall use the
96-bit SHA-1 hash of the subject public key as the keyIdentifier in the subjectKeyIdentifier field.
The hash shall be calculated over the value (excluding tag and length) of the subject public key
field in the certificate.

If the cr message included extensions other than the subjectKeyIdentifier, the CA may modify or
ignore the requested extensions.

The certificate shall include URLs in the issuerAltName extension and distributionPoint field of
the CRLDistributionPoints extension if the issuer’s certificates or CRLs are not available from a
well-known X.500 directory.

The failInfo field may not be present if status is granted or grantedWithMods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and
• failInfo will contain the appropriate failure codes:

− badAlg indicates that the CA cannot validate the signature because the algorithm

Second CRADA Draft, Version 2

 3-62

identifier is unrecognized or unsupported;
− badPoP indicates the CA generated a challenge but the end-entity’s response message

did not demonstrate possession of the private key;
− badMessageCheck indicates that the signature in the PKIProtection field was checked

but did not match;
− badRequest indicates that the responder does not permit or support the transaction;
− badTime indicates that the messageTime field in the message header was not

sufficiently close to the responder’s system time; and
− badCertId indicates that no current valid, unrevoked signature certificate could be

identified for the requester.

The certificate field may not be present if status is rejected.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

Confirmation Message

Upon receipt of the cp message, the certificate holder shall generate a PKIConfirm message.
PKIHeader data shall be identical to the certificate request from the RA to the CA, with the
exception of messageTime.

The PKIProtection field contains the certificate holder’s signature, calculated on the DER
encoded sequence of the header and body using the private key corresponding to the currently
valid signature certificate.

3.5.8 Proof of Possession for Diffie-Hellman and Elliptic Curve Key Agreement Keys
If the CA’s Certificate Practice Statement requires proof of possession for key agreement key
pairs, the CA generates a challenge message.27 To generate the challenge, the CA will perform
the following functions:

1. Generate a random number A;
2. Generate a witness, R, from the random number A using a one-way function (e.g., SHA-1);
3. Identify or generate a key pair for use with the requested public key;28
4. Derive a symmetric (e.g., triple DES) key through a key agreement algorithm using the

requester’s public key and the key pair identified in (4.);
5. Construct the challenge Rand from the random number A and requester’s distinguished name

(the sender field) in the cr message and DER encode the SEQUENCE of these values;
6. Encrypt the sequence Rand under the derived symmetric key. The first byte of Rand shall be

the first byte of the input stream. (If necessary, pad the input stream with random data to
complete the last block);

7. Construct an encryptedValue structure containing the symmetric algorithm in the symmalg

27 If the CA can determine from the request that a certificate will not be issued, the CA does not generate a challenge
message. Instead, the CA returns a cp message with a reason code for the transaction failure.
28 If the CA generates a key pair, it will need to issue a certificate containing the public key for inclusion in the
extraCerts field.

Second CRADA Draft, Version 2

 3-63

field, and the encrypted value of the sequence Rand in the encValue field;
8. Generate and return a POPODecKeyChallContent (proof of possession challenge) message to

the certificate holder. This message contains the OID for the hash function, the witness R,
and the encryptedValue structure (which contains the encrypted sequence Rand containing the
challenge A and requester’s name). The message body and header are protected with the
CA’s signature. The CA’s certificate with the public key from (4.) is appended in the
extraCerts field.

9. The CA transmits this message to the requester as a challenge.
The requester must send a response to the challenge to demonstrate possession of the
corresponding private key. The requester decrypts the challenge and returns A to the CA in a
signed message if the hash of the random number A recovered from the decrypted challenge
matches R, the witness value.

The requester performs the following steps:

1. Derive a symmetric key for the algorithm specified in the symmAlg field of the
encryptedValue structure using its private key and the public key in the CA’s certificate from
the extraCerts field;

2. Decrypt the encValue field (and recover the sequence Rand) using the derived symmetric key
and the symmetric algorithm specified in the symmAlg field of the encryptedValue structure;

3. Generate a hash of the random number A using the one-way function specified in owf and
verify that it matches the witness, R;

4. Create a PKI POPODecKeyRespContent message containing the random number A;
5. Sign the message with the private key corresponding to the entity’s unexpired, unrevoked

signature certificate; and
6. Transmit the message to the CA.

The remainder of this section describes the contents of challenge-response messages for Diffie-
Hellman and Elliptic Curve Diffie-Hellman Key Agreement keys in detail. It assumes SHA-1 as
the hash function and the Triple Data Encryption Algorithm in ecb mode with two keys for
symmetric encryption.

Challenge (Proof-of-Possession)

The CA may, optionally, generate a challenge message to verify that the requester possesses the
decryption key corresponding to the encryption key. The challenge message is a PKIMessage
with PKIBody element popdecc.

The PKIHeader includes the following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the CA;
• recipient is the distinguished name of the certificate holder and the sender of the cr

message; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transactionID was supplied in the cr message, the header of the response will include the

Second CRADA Draft, Version 2

 3-64

same transactionID. If a senderNonce was supplied in the cr message, the header of the response
shall include it as recipNonce.

The PKIBody is the element popdecc and is of type POPODecKeyChallContent.
POPODecKeyChallContent shall be a SEQUENCE of exactly one Challenge, which shall include
the following information:

• owf will contain the algorithm identifier for the SHA-1 hash function;
• witness will contain the result of applying the one-way function specified by owf to an

integer value A randomly generated for this transaction; and
• challenge, an OCTET STRING , shall contain the ASN.1 DER-encoded structure

encryptedValue and contain the following fields:

- symmAlg shall contain the object identifier tDEA-ecb and the keyingOption shall be
option-2 (indicating two independent keys, K1 and K2, with K3 = K1);

- encValue shall contain the encrypted structure Rand, encrypted with tDEA in
ecbmode using the two key option. The result shall be encoded as the value of the BIT
STRING where the most significant bit of the BIT STRING is the most significant bit of
the encrypted data. The symmetric key used to perform the encryption shall be
derived using from the CA’s private key and the requester’s public key using the
specified key agreement algorithm.
· For Diffie-Hellman keys, the shared secret shall be generated using the dHStatic

mode. The tDEA key shall be derived from the shared secret using the “Key
Derivation Method Based on ASN.1” specified in [X9.42]. The key derivation
input AlgorithmID shall be the tDEA-ecb object identifier. The optional key
derivation inputs PartyUInfo, PartyVInfo, SuppPrivInfo, and SuppPubInfo shall
be omitted.

· For elliptic curve Diffie-Hellman, the shared secret shall be generated using the
“Static Unified Model Scheme”, as specified in [X9.63]. The tDEA key shall be
derived using the key derivation method specified in [X9.63] for the “Static
Unified Model Scheme”; the optional key derivation input SharedInfo shall be
omitted.

Rand shall be a sequence of the following fields:

• the integer value A in the field int; and
• the requester’s distinguished name in the field sender.

The PKIProtection field shall contain the CA’s signature, calculated on the DER encoded
sequence of the header and body.

The extraCerts field shall contain the certificate for the public key of the key pair used by the CA
to perform key agreement and derive the symmetric key.

Response to Challenge (Proof-of-Possession)

If the requester receives a challenge message from the CA, it is required to generate a response to
prove possession of the private key. The response message is a PKIMessage with PKIBody
element popdecr.

The PKIHeader includes the following information:

Second CRADA Draft, Version 2

 3-65

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the entity requesting the key management certificate;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transactionID was supplied in the popdecc message, the header of the response will include
the same transactionID. If a senderNonce was supplied in the popdecc message, the header of the
response shall include it as recipNonce.

The PKIBody is the element popdecr and is of type POPODecKeyRespContent. The
POPODecKeyRespContent shall be a sequence of exactly one INTEGER; the INTEGER’s value
shall be the retrieved random number. The symmetric key used to perform the decryption shall be
derived using from the requester’s private key and the CA’s public key (from the extraCerts
field) using the specified key agreement algorithm as specified above.

The PKIProtection field contains a signature generated using the private key associated with a
current unexpired, unrevoked certificate and calculated upon the DER encoded sequence of the
header and body.

3.5.9 Proof of Possession for RSA Key Transport keys
If the CA’s Certificate Practice Statement requires proof of possession for encryption key pairs,
the CA generates a challenge message.29 To generate the challenge, the CA will perform the
following functions:

1. Generate a random number A;
2. Generate a witness, R, from the random number A using a one-way function (e.g., SHA-1);
3. Generate a symmetric key (e.g., a triple-DES key);
4. Construct the challenge Rand from the random number A and requester’s distinguished name

(the sender field) in the cr message and DER encode the SEQUENCE of these values;
5. Encrypt the sequence Rand under the symmetric key generated by the CA. (If necessary, pad

the input stream with random data to complete the last block);
6. Encrypt the symmetric key under the supplied RSA key;
7. Construct an encryptedValue structure containing the symmetric algorithm in the symmalg

field, the encrypted symmetric key in the encSymmKey field, and the encrypted value of the
sequence Rand in the encValue field;

8. Generate a POPODecKeyChallContent (proof of possession challenge) message to the
certificate holder. This message contains the OID for the SHA-1 hash function, the witness R,
and the encryptedValue structure.

9. Transmit the message to the requester.

The requester must send a response to the challenge to demonstrate possession of the
corresponding private key. The requester decrypts the challenge and returns A to the CA in a

29 If the CA can determine from the request that a certificate will not be issued, the CA does not generate a challenge
message. Instead, the CA returns a cp message with a reason code for the transaction failure.

Second CRADA Draft, Version 2

 3-66

signed message if the hash of the random number A recovered from the decrypted challenge
matches the witness value.

The requester performs the following steps:

1. Use their private key to decrypt the symmetric key from the encSymmKey field of the
encryptedValue structure;

2. Decrypt the sequence Rand the using the symmetric key and the symmetric algorithm
specified in the symmAlg field of the encryptedValue structure;

3. Generate a hash of the random number A and verifies that it matches the witness, R;
4. Verify that the sender field in Rand is the requester’s name;
5. Create a PKI POPODecKeyRespContent message containing the random number A; and
6. Sign the message with the private key corresponding to the entity’s unexpired, unrevoked

signature certificate; and
7. Transmit it to the CA.

The remainder of this section describes the contents of challenge-response messages for RSA key
transport keys in detail. It assumes SHA-1 as the hash function and the Triple Data Encryption
Algorithm in ecb mode with two keys for symmetric encryption.

Challenge (Proof-of-Possession)

The CA may, optionally, generate a challenge message to verify that the requester possesses the
decryption key corresponding to the encryption key. The challenge message is a PKIMessage
with PKIBody element popdecc.

The PKIHeader includes the following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the CA;
• recipient is the distinguished name of the certificate holder and the sender of the cr

message; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.
If a transactionID was supplied in the cr message, the header of the response will include the
same transactionID. If a senderNonce was supplied in the cr message, the header of the response
shall include it as recipNonce.

The PKIBody is the element popdecc and is of type POPODecKeyChallContent.
POPODecKeyChallContent shall be a SEQUENCE of exactly one Challenge, which shall include
the following information:

• owf will contain the algorithm identifier for a one-way hash function;
• witness will contain the result of applying the one-way function specified by owf to an

integer value A randomly generated for this transaction; and
• challenge, an OCTET STRING , shall contain the ASN.1 DER-encoded structure

encryptedValue and contain the following fields:

- the symmAlg shall contain the OID tDEA-ecb and the keyingOption shall be option-2

Second CRADA Draft, Version 2

 3-67

(indicating two independent keys, K1 and K2, with K3 = K1);
- encSymmKey shall contain the symmetric key generated by the CA, encrypted with

the public key in the certificate request;
· the symmetric key material (K1 and K2) shall be concatenated into TwoKeys as

described in (sec. 3.1.2.6)
· TwoKeys shall be encrypted using the RSA encryption algorithm according to

[PKCS#1], and
· the result shall be encoded as the value of the BIT STRING where the most

significant bit of the BIT STRING is the most significant bit of the encrypted data.
- the encValue field, which is a BIT STRING, shall contain the encrypted structure Rand,

encrypted with tDEA in the electronic code book mode using the symmetric key in
encSymmKey. The result shall be encoded as the value of the BIT STRING where the
most significant bit of the BIT STRING is the most significant bit of the encrypted data.

Rand shall be a sequence of the following fields:

• the integer value A in the field int; and
• the requester’s distinguished name in the field sender.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

Response to Challenge (Proof-of-Possession)

If the requester receives a challenge message from the CA, it is required to generate a response to
prove possession of the private key. The response message is a PKIMessage with PKIBody
element popdecr.

The PKIHeader includes the following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the entity requesting the key management certificate;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transactionID was supplied in the popdecc message, the header of the response will include
the same transactionID. If a senderNonce was supplied in the popdecc message, the header of the
response shall include it as recipNonce.

The PKIBody is the element popdecr and is of type POPODecKeyRespContent.
POPODecKeyRespContent shall be a sequence of exactly one INTEGER; the INTEGER’s value
shall be the retrieved random number.

The PKIProtection field contains a signature generated using the private key associated with the
current unexpired, unrevoked signature certificate and calculated upon the DER encoded
sequence of the header and body.

Second CRADA Draft, Version 2

 3-68

3.5.10 Request for Centrally-Generated Key Pair and Key Management Certificate
An entity that is a current signature certificate holder may request generation of an encryption
key pair and issuance of a corresponding certificate from the CA that issued the current signature
certificate. The requesting entity:

• generates a temporary key management key (e.g., RSA, Diffie-Hellman, or elliptic curve
Diffie-Hellman);

• creates a PKI cr (certificate request) message requesting a key transport or key agreement
certificate and includes the temporary key;

• signs the message with the private key corresponding to the entity’s unexpired, unrevoked
signature certificate; and

• transmits it to the CA.

If the CA’s Certificate Practice Statement supports central generation of encryption key pairs, the
CA performs the following functions:

• the CA generates the requested key pair and issues a key management certificate

• if the requester included a temporary Diffie-Hellman or ECDH key:

− the CA generates or identifies a corresponding key pair;
− performs key agreement with the requester’s temporary public key and derives a

symmetric key; and
− encrypts the private key under the derived symmetric key.

• if the requester included an RSA key:

− the CA generates a symmetric key;
− encrypts the private key under the new symmetric key; and
− encrypts the symmetric key under the supplied temporary RSA public key.

• generates and returns a cp (certificate response) message to the certificate holder. This
message will contain the certificate and the encrypted private key or a reason code for the
transaction failure. If the requester included a temporary DH or ECDH key, the CA’s
certificate with its public key will be included in the extraCerts field.

Centrally Generated Key Pair Request

The certificate holder creates a certificate request message: a PKIMessage with PKIBody element
cr. The PKIHeader includes the following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the certificate holder;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

Second CRADA Draft, Version 2

 3-69

The message body is CertReqMessages, which is a sequence of one or more CertReqMessage
fields. For this transaction, CertReqMessages is a sequence of one CertReqMessage. The
CertReqMessage will include the following information:

• certReq contains the information that the requester would like included in the certificate.

The certReq is a CertReqRequest, which is a sequence of a certReqID, a CertTemplate, and
controls. For this transaction:

• certReqID is any integer;
• certTemplate is a CertTemplate; and
• controls will contain the protocolEncrKey control. The value of the protocolEncrKey

registration control will be the temporary public key with its associated parameters (if
any) and the algorithm OID.

The CertTemplate will include the following information:

• version is v3 (2); and
• publicKey specifies the algorithm and optionally the parameters, for the requested key

pair.

The following information may be included in the CertTemplate:

• signingAlg specifies the preferred signature algorithm.

If signingAlg does not appear, the CA should sign with the algorithm specified in protectionAlg.

The request shall not include the following information:

• issuerUID; and
• subjectUID.

The PKIProtection field contains a signature generated using the private key associated with a
current unexpired, unrevoked certificate and calculated upon the DER encoded sequence of the
header and body.

Centrally Generated Key Pair Response

The CA will return a key update response (a PKIMessage with PKIBody element cp) message to
the certificate holder.

The PKIHeader includes the following information:

• pvno is one;
• messageTime is the current time with a granularity of seconds;
• sender is the distinguished name of the CA;
• recipient is the distinguished name of the certificate holder and the sender of the cr

message; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transactionID was supplied in cr message, the header of the response will include the same
transactionID. If a senderNonce was supplied in the cr message, the header of the response shall

Second CRADA Draft, Version 2

 3-70

include it as recipNonce.

The PKIBody is the element cp and is of type CertRepMessage. If the CA issued a certificate, the
body will contain the following information:

• status will be granted or grantedWithMods;
• certificate will contain the new X.509 version 3 certificate; and
• certifiedKeyPair will be present.

The certifiedKeyPair will include the certificate in the certOrEncCert field and the encrypted
private key in the privateKey field. Where the requester supplied a temporary Diffie-Hellman or
elliptic curve Diffie-Hellman public key, the privateKey field shall include symmAlg and
encValue:

- symmAlg shall contain the object identifier tDEA-ecb and the keyingOption (in
ECBParms) shall be option-2 (indicating two independent keys, K1 and K2, with K3 =
K1);

- encValue shall contain the encrypted private key, encrypted with tDEA in ecb mode
using the two key option. The encrypted data shall be encoded as the value of the BIT
STRING where the most significant bit of the BIT STRING is the most significant bit of
the encrypted data . The symmetric key used to perform the encryption shall be
derived from the key agreement algorithm.
· For Diffie-Hellman keys, the shared secret shall be generated using the dHStatic

mode. The tDEA key shall be derived from the shared secret using the “Key
Derivation Method Based on ASN.1” specified in [X9.42]. The key derivation
input AlgorithmID shall be the tDEA-ecb object identifier. The optional key
derivation inputs PartyUInfo, PartyVInfo, SuppPrivInfo, and SuppPubInfo shall
be omitted.

· For elliptic curve Diffie-Hellman, the shared secret shall be generated using the
“Static Unified Model Scheme”, as specified in [X9.63]. The tDEA key shall be
derived using the key derivation method specified in [X9.63] for the “Static
Unified Model Scheme”; the optional key derivation input SharedInfo shall be
omitted.

Where the requester supplied a temporary RSA public key, the privateKey field shall include
symmAlg, encSymmKey, and encValue:

• the symmAlg shall contain the OID tDEA-ecb and the keyingOption shall be option-2
(indicating two independent keys, K1 and K2, with K3 = K1);

• encSymmKey shall contain the symmetric key generated by the CA, encrypted with the
public key in the certificate request;
- the symmetric key material (K1 and K2) shall be concatenated into TwoKeys as

described in (sec. 3.1.3.5)
- TwoKeys shall be encrypted using the RSA encryption algorithm according to

[PKCS1], and
- the result shall be encoded in encSymmKey. The encrypted data shall be encoded as

the value of the BIT STRING where the most significant bit of the BIT STRING is the

Second CRADA Draft, Version 2

 3-71

most significant bit of the encrypted data
• encValue shall contain the encrypted private key generated by the CA, encrypted with

tDEA in the electronic code book mode using the symmetric key in encSymmKey. The
encrypted data shall be encoded as the value of the BIT STRING where the most
significant bit of the BIT STRING is the most significant bit of the encrypted data.

The certificate shall contain the following extensions:

• a subjectKeyIdentifier field;
• at least one certificate policy OID in the certificatePolicies field; and
• an authority key identifier including a KeyIdentifier field.

The CA shall use the 96-bit SHA-1 hash of the subject public key as the subjectKeyIdentifier.
The hash shall be calculated over the value (excluding tag and length) of the subject public key
field in the certificate.

If the cr message included extensions, the CA may modify or ignore the requested extensions.

The certificate shall include URLs in the issuerAltName extension and distributionPoint field of
the CRLDistributionPoints extension if the issuer’s certificates or CRLs are not available from a
well-known X.500 directory.

The failInfo field may not be present if status is granted or grantedWithMods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and
• failInfo will contain the appropriate failure codes:

− badAlg indicates that the CA cannot validate the signature because the algorithm
identifier is unrecognized or unsupported;

− badMessageCheck indicates that the signature in the PKIProtection field was checked
but did not match;

− badRequest indicates that the responder does not permit or support the transaction;
− badTime indicates that the messageTime field in the message header was not

sufficiently close to the responder’s system time; and
− badCertId indicates that no current valid, unrevoked signature certificate could be

identified for the requester.

The certificate field may not be present if status is rejected.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded sequence of
the header and body.

• Where the requester supplied a temporary Diffie-Hellman or ECDH public key, the
extraCerts field shall contain the CA’s certificate with the public key from the key pair
used to perform key agreement.

Confirmation Message

Upon receipt of the cp message, the certificate holder shall generate a PKIConfirm message.

Second CRADA Draft, Version 2

 3-72

PKIHeader data shall be identical to the certificate request from the RA to the CA, with the
exception of messageTime.

The PKIProtection field contains the certificate holder’s signature, calculated on the DER
encoded sequence of the header and body using the private key corresponding to the currently
valid signature certificate.

3.5.11 Combined Certificate Requests
Certificate requests for signature and key management keys may be combined into a single
transaction. Specifically, the RA-generated and self registration requests (secs. 3.5.1, 3.5.3, and
3.5.4) may be combined with the encryption certificate requests (secs. 3.5.7 and 3.5.10). In these
cases, CertReqMessages will be a SEQUENCE of length two. One of the CertReqMessage shall
be that described in RA-generated or self registration requests; the other shall conform to the
CertReqMessage described for the encryption certificate request. The messages shall be protected
as described in the signature certificate requests.

If the combined request was a self-registration request, the signature certificate request must be
approved or both certificate requests must be rejected. If additional messages are required for
proof of possession, the requester signs the challenge response message with the signature key in
the self registration request.

Proof of possession for the signature key will be implemented using the pop field as described in
(secs. 3.5.1, 3.5.3, and 3.5.4). If the end entity generated the key management key pair and proof
of possession is required for the private key, it shall be performed as described in 3.5.7. If a
centrally generated key pair was requested, it shall be encrypted as described in 3.5.10. The CA
generated responses shall be those described in the appropriate sections. These responses may be
combined into a single CertRepMessage, or be transmitted separately. The requester shall use the
CertReqID to differentiate the responses.

PKIFreeText may be used in the response to supply additional information.

Upon receipt of the cp message, the certificate holder shall generate a PKIConfirm message.
PKIHeader data shall be identical to the certificate request from the RA to the CA, with the
exception of messageTime.

If the signature certificate request was accepted, the PKIProtection field contains the certificate
holder’s signature, calculated on the DER encoded sequence of the header and body using the
private key corresponding to the new signature certificate. If the request was rejected, the
PKIProtection field contains the mac, calculated on the DER encoded sequence of the header and
body using the shared secret that authenticated the certificate request. (If the request was rejected
for badMessageCheck, the PKIConfirm message need not be generated.)

3.5.12 Request Certificate from a Repository
Entities may request certificates from a repository using LDAP V2 as defined in [RFC 2559].
When using LDAP, the entity may request certificates from a repository service using the LDAP
search request, as defined in [RFC 2559] or as specified in a given LDAP URL [RFC1959] (e.g.,
the authorityInformationAccess extension.)

Second CRADA Draft, Version 2

 3-73

3.5.13 Request CRL from a Repository
Entities may request CRLs from a repository using LDAP V2 as defined in [RFC 2559]. Entities
may request CRLs from a repository using LDAP [RFC 1777]. When using LDAP, the entity
may request CRLs from a repository service using the LDAP V2 search request, as defined in
[RFC 2559] and [RFC 1777] or as specified in a given LDAP URL [RFC1959] (e.g., the
distributionPoint field in the cRLDistributionPoints extension.)

Second CRADA Draft, Version 2

 4-1

4. References

[CONOPS] Public Key Infrastructure Technical Specification: Part C - Concept of

Operations, William E. Burr. Available from http://csrc.nist.gov/pki

[COR95] ISO/IEC JTC 1/SC 21, Technical Corrigendum 2 to ISO/IEC 9594-8 : 1990 &
1993 (1995:E). July 1995.

[DAM] ISO/IEC JTC 1/SC 21, Draft Amendments DAM 4 to ISO/IEC 9594-2, DAM 2 to
ISO/IEC 9594-6, DAM 1 to ISO/IEC 9594-7, and DAM 1 to ISO/IEC 9594-8 on
Certificate Extensions, June 30, 1996.

[FIPS113] FIPS PUB 113, Computer Data Authentication, NIST, May 1985.

[FIPS180] FIPS PUB 180-1, Secure Hash Standard, NIST, April 1995.

[FIPS186] FIPS PUB 186, Digital Signature Standard, NIST, May 1994.

[FIPS46] FIPS PUB 46-2, Data Encryption Standard, December 1993.

[ISO94-8] ISO/IEC 9594-8 (1994), Open Systems Interconnection - The Directory:
Authentication Framework. 1994. The 1994 edition of this document has been
amended by the Draft Amendments [DAM] and a Technical Corrigendum
[COR95].

[ISO25-1] ISO/IEC 8825-1 (1994), Information Technology - ASN.1 Encoding Rules -
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
and Distinguished Encoding Rules (DER). 1994.

[PKCS#1] PKCS #1: RSA Encryption Standard, Version 1.4, RSA Data Security, Inc., 3
June 1991. available at: http://www.rsa.com/pub/pkcs/

[PKCS#9] PKCS #9: Selected Attribute Types, Version 1.1, RSA Data Security, Inc., 1
November, 1993. available at: http://www.rsa.com/pub/pkcs/

[PKCS#10] PKCS #10: Certification Request Syntax Standard, Version 1.0, RSA Data
Security, Inc., 1 November, 1993. available at: http://www.rsa.com/pub/pkcs/

[RFC822] RFC 822, Standard for the Format of ARPA Internet Text Messages, David H.
Crocker, August 13, 1982.

[RFC1777] RFC 1777, Lightweight Directory Access Protocol, Ed Yeoung, Howes, and
Killie. March 1995.

[RFC1959] RFC 1959, An LDAP URL Format, T. Howes, and M. Smith. June 1996.

[RFC2459] RFC 2459, Internet X.509 Public Key Infrastructure Certificate and CRL Profile,
W. Ford, R. Housley, W. Polk and D. Solo, January 1999.

[RFC2510] RFC 2510, Internet X.509 Public Key Infrastructure Certificate Management
Protocols, C. Adams and S. Farrell, March 1999.

[RFC2511] RFC 2511, Internet X.509 Public Key Infrastructure Certificate Request Message
Format, M. Myers, C. Adams, D. Solo and D. Kemp, March 1999.

Second CRADA Draft, Version 2

 4-2

[RFC2559] RFC 2559, Internet X.509 Public Key Infrastructure Operational Protocols –
LDAP V2, S. Boeyen, T. Howes, P.Richard, April 1999.

[STAB95] OIW, Stable Implementation Agreements for Open Systems Interconnection
Protocols: Part 12 - OS Security. June 1995.

[X9.42] Working Draft American National Standard X9.42-1999, Public Key
Cryptography for The Financial Service Industry: Agreement of Symmetric Keys
Using Discrete Logarithm Cryptography, December, 1999.

[X9.52] Working Draft American National Standard X9.52-1998, Triple Data Encryption
Algorithm Modes Of Operation, July 27, 1998.

[X9.55] Draft American National Standard X9.55-1995, Public Key Cryptography for the
Financial Services Industry: Extensions to Public Key Certificates and Certificate
Revocation Lists, Nov. 11, 1995.

[X9.57] Working Draft American National Standard X9.57-199x, Public Key
Cryptography for the Financial Services Industry: Certificate Management, June
21, 1996.

[X9.62] X9.62-1998, Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm, January 7, 1999.

[X9.63] ANSI X9.63-199x, Public Key Cryptography for the Financial Services Industry:
Key Agreement and Key Transport Using Elliptic Curve Cryptography, April 20,
1999

Second CRADA Draft, Version 2

 A-1

Appendix A. X.509 v3 Certificate ASN.1

AuthenticationFramework {joint-iso-ccitt ds(5) modules(1) authenticationFramework(7) 2}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --
-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within the Directory Specifications, and for the use of other applications
-- which will use them to access Directory services. Other applications may use them for
 -- their own purposes, but this will not constrain extensions and modifications needed to
 -- maintain or improve the Directory service.

IMPORTS

id-at, informationFramework, upperBounds selectedAttributeTypes, basicAccessControl
FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(1) usefulDefinitions(0) 2}

Name, ATTRIBUTE
 FROM InformationFramework informationFramework
ub-user-password
 FROM UpperBounds upperBounds
AuthenticationLevel
 FROM BasicAccessControl basicAccessControl
UniqueIdentifier
 FROM SelectedAttributeTypes selectedAttributeTypes ;

-- types --

Certificate ::= SIGNED {SEQUENCE{

version [0] Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo}
issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,
 ---if present, version must be v1 or v2--
subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL,
 ---if present, version must be v1 or v2--
extensions [3] Extensions OPTIONAL
 --if present, version must be v3-- }

 Version ::= INTEGER {v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER
Algorithmidentifier ::= SEQUENCE{

algorithm ALGORITHM.&id({SupportedAlgorithms}),
parameters ALGORITHM.&Type ({SupportedAlgorithms}{ @algorithm}) OPTIONAL }

-- Definition of the following information object is deferred, perhaps to standardized
-- profiles of to protocol implementation conformance statements. This set is required to

Second CRADA Draft, Version 2

 A-2

-- specify a table constraint on the Parameters component of Algorithmidentifier.
-- SupportedAlgorithms ALGORITHM ::= { ...|... }

 Validity ::= SEQUENCE{

notBefore ChoiceOfTime,
notAfter ChoiceOfTime }

ChoiceOfTime ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

 SubjectPublicKeyInfo ::= SEQUENCE{

algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING}

Extensions ::= SEQUENCE OF Extension

Extension ::= SEQUENCE {

extnId EXTENSION.&id ({ExtensionSet}),
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING

 -- contains a DER encoding of a value of type &ExtnType for the
 -- extension object identified by extnId --

-- Definition of the following information object set is deferred, perhaps to
-- standardized profiles or to protocol implementation conformance statements.
-- The set is required to specify a table constraint on the critical component
-- of Extension.
-- ExtensionSet EXTENSION ::= { ... | ... }

EXTENSION ::= CLASS
{

&id OBJECT IDENTIFIER UNIQUE,
&ExtnType

}
WITH SYNTAX
{

SYNTAX &ExtnType
IDENTIFIED BY &id

}

Certificates ::= SEQUENCE {

certificate Certificate,
certificationPath ForwardCertificationPath OPTIONAL}

ForwardCertificationPath ::= SEQUENCE OF CrossCertificates

CertificationPath ::= SEQUENCE {

userCertificate Certificate,
theCACertificates SEQUENCE OF CertificatePair OPTIONAL}

CrossCertificates ::= SET OF Certificate

Second CRADA Draft, Version 2

 A-3

CertificateList ::= SIGNED { SEQUENCE {
 version Version OPTIONAL, -- if present, must be v2

signature AlgorithmIdentifier,
issuer Name,
thisUpdate ChoiceOfTime,
nextUpdate ChoiceOfTime OPTIONAL,
revokedCertificates SEQUENCE OF SEQUENCE {

userCertificate CertificateSerialNumber,
revocationDate ChoiceOfTime,
crlEntryExtensions Extensions OPTIONAL } OPTIONAL,

crlExtensions [0] Extensions OPTIONAL }}

CertificatePair ::= SEQUENCE {
forward [0] Certificate OPTIONAL,
reverse [1] Certificate OPTIONAL
 -- at least one of the pair shall be present -- }

-- attribute types--

userPassword ATTRIBUTE ::= {

WITH SYNTAX OCTET STRING (SIZE (0..ub-user-password))
EQUALITY MATCHING RULE octetStringMatch
ID id-at-userPassword }

userCertificate ATTRIBUTE ::= {

WITH SYNTAX Certificate
ID id-at-userCertificate }

cACertificate ATTRIBUTE ::= {

WITH SYNTAX Certificate
ID id-at-cACertificate }

authorityRevocationList ATTRIBUTE ::= {

WITH SYNTAX CertificateList
ID id-at-authorityRevocationList }

certificateRevocationList ATTRIBUTE ::= {

WITH SYNTAX CertificateList
ID id-at-certificateRevocationList }

crossCertificatePair ATTRIBUTE ::= {

WITH SYNTAX CertificatePair
ID id-at-crossCertificatePair }

-- information object classes --

ALGORITHM ::= TYPE-IDENTIFIER

-- Parameterized Types --
HASHED {ToBeHashed} ::= OCTET STRING (CONSTRAINED-BY {
 --must be the result of applying a hashing procedure to the --
 --DER-encoded octets of a value of -- ToBeHashed })

ENCRYPTED { To\BeEnciphered} := BIT STRING (CONSTRAINED BY {

Second CRADA Draft, Version 2

 A-4

 --must be the result of applying an encipherment procedure to the --
 --BER-encoded octets of a value of -- ToBeEnciphered })

SIGNED { ToBeSigned } ::= SEQUENCE{
 ToBeSigned,
 COMPONENTS OF SIGNATURE { ToBeSigned }),

SIGNATURE { OfSignature } ::= SEQUENCE {
 AlgorithmIdentifier,
 ENCRYPTED { HASHED { OfSignature }}}

-- object identifier assignments --

id-at-userPassword OBJECT IDENTIFIER ::= {id-at 35}
id-at-userCertificate OBJECT IDENTIFIER ::= {id-at 36}
id-at-cAcertificate OBJECT IDENTIFIER ::= {id-at 37}
id-at-authorityRevocationList OBJECT IDENTIFIER ::= {id-at 38}
id-at-certificateRevocationList OBJECT IDENTIFIER ::= {id-at 39}
id-at-crossCertificatePair OBJECT IDENTIFIER ::= {id-at 40}
id-at-supportedAlgorithms OBJECT IDENTIFIER ::= {id-at 52}
id-at-deltaRevocationList OBJECT IDENTIFIER ::= {id-at 53}

END

Second CRADA Draft, Version 2

 B-1

Appendix B. Certificate and CRL Extensions ASN.1

CertificateExtensions {joint-iso-ccitt ds(5) module(1) certificateExtensions(26) 0}
DEFINITIONS IMPLICIT TAGS ::=
BEGIN

-- EXPORTS ALL --

IMPORTS
 id-at, id-ce, id-mr, informationFramework, authenticationFramework,
 selectedAttributeTypes, upperBounds
 FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1)
 usefulDefinitions(0) 2}
 Name, RelativeDistinguishedName, ATTRIBUTE, Attribute,
 MATCHING-RULE FROM InformationFramework informationFramework
 CertificateSerialNumber, CertificateList, AlgorithmIdentifier,
 EXTENSION
 FROM AuthenticationFramework authenticationFramework
 DirectoryString
 FROM SelectedAttributeTypes selectedAttributeTypes
 ub-name
 FROM UpperBounds upperBounds
 ORAddress
 FROM MTSAbstractService {joint-iso-ccitt mhs(6) mts(3)
 modules(0) mts-abstract-service(1) version-1994 (0) } ;

-- Unless explicitly noted otherwise, there is no significance to the ordering
-- of components of a SEQUENCE OF construct in this specification.

-- Key and policy information extensions --

authorityKeyIdentifier EXTENSION ::= {
 SYNTAX AuthorityKeyIdentifier
 IDENTIFIED BY { id-ce 35 } }

AuthorityKeyIdentifier ::= SEQUENCE {
 keyIdentifier [0] KeyIdentifier OPTIONAL,
 authorityCertIssuer [1] GeneralNames OPTIONAL,
 authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }
 (WITH COMPONENTS {..., authorityCertIssuer PRESENT,
 authorityCertSerialNumber PRESENT} |
 WITH COMPONENTS {..., authorityCertIssuer ABSENT,
 authorityCertSerialNumber ABSENT})

KeyIdentifier ::= OCTET STRING

subjectKeyIdentifier EXTENSION ::= {
 SYNTAX SubjectKeyIdentifier
 IDENTIFIED BY { id-ce 14 } }

SubjectKeyIdentifier ::= KeyIdentifier

keyUsage EXTENSION ::= {

Second CRADA Draft, Version 2

 B-2

 SYNTAX KeyUsage
 IDENTIFIED BY { id-ce 15 } }

KeyUsage ::= BIT STRING {
 digitalSignature (0),
 nonRepudiation (1),
 keyEncipherment (2),
 dataEncipherment (3),
 keyAgreement (4),
 keyCertSign (5),
 cRLSign (6) }

privateKeyUsagePeriod EXTENSION ::= {
 SYNTAX PrivateKeyUsagePeriod
 IDENTIFIED BY { id-ce 16 } }

PrivateKeyUsagePeriod ::= SEQUENCE {
 notBefore [0] GeneralizedTime OPTIONAL,
 notAfter [1] GeneralizedTime OPTIONAL }
 (WITH COMPONENTS {..., notBefore PRESENT} |
 WITH COMPONENTS {..., notAfter PRESENT})

certificatePolicies EXTENSION ::= {
 SYNTAX CertificatePoliciesSyntax
 IDENTIFIED BY { id-ce 32 } }

CertificatePoliciesSyntax ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {
 policyIdentifier CertPolicyId,
 policyQualifiers SEQUENCE SIZE (1..MAX) OF
 PolicyQualifierInfo OPTIONAL }

CertPolicyId ::= OBJECT IDENTIFIER

PolicyQualifierInfo ::= SEQUENCE {
 policyQualifierId CERT-POLICY-QUALIFIER.&id
 ({SupportedPolicyQualifiers}),
 qualifier CERT-POLICY-QUALIFIER.&Qualifier
 ({SupportedPolicyQualifiers}{@policyQualifierId})
 OPTIONAL }

SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= { ... }

CERT-POLICY-QUALIFIER ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Qualifier OPTIONAL }
WITH SYNTAX {
 POLICY-QUALIFIER-ID &id
 [QUALIFIER-TYPE &Qualifier] }

policyMappings EXTENSION ::= {
 SYNTAX PolicyMappingsSyntax
 IDENTIFIED BY { id-ce 33 } }

Second CRADA Draft, Version 2

 B-3

PolicyMappingsSyntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 issuerDomainPolicy CertPolicyId,
 subjectDomainPolicy CertPolicyId }

supportedAlgorithms ATTRIBUTE ::= {
 WITH SYNTAX SupportedAlgorithm
 EQUALITY MATCHING RULE algorithmIdentifierMatch
 ID { id-at 52 } }

SupportedAlgorithm ::= SEQUENCE {
 algorithmIdentifier AlgorithmIdentifier,
 intendedUsage [0] KeyUsage OPTIONAL,
 intendedCertificatePolicies [1] CertificatePoliciesSyntax OPTIONAL }

-- Certificate subject and certificate issuer attributes extensions --

subjectAltName EXTENSION ::= {
 SYNTAX GeneralNames
 IDENTIFIED BY { id-ce 17 } }

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {
 otherName [0] INSTANCE OF OTHER-NAME,
 rfc822Name [1] IA5String,
 dNSName [2] IA5String,
 x400Address [3] ORAddress,
 directoryName [4] Name,
 ediPartyName [5] EDIPartyName,
 uniformResourceIdentifier [6] IA5String,
 iPAddress [7] OCTET STRING,
 registeredID [8] OBJECT IDENTIFIER }

OTHER-NAME ::= TYPE-IDENTIFIER

EDIPartyName ::= SEQUENCE {
 nameAssigner [0] DirectoryString {ub-name} OPTIONAL,
 partyName [1] DirectoryString {ub-name} }

issuerAltName EXTENSION ::= {
 SYNTAX GeneralNames
 IDENTIFIED BY { id-ce 18 } }

subjectDirectoryAttributes EXTENSION ::= {
 SYNTAX AttributesSyntax
 IDENTIFIED BY { id-ce 9 } }

AttributesSyntax ::= SEQUENCE SIZE (1..MAX) OF Attribute

-- Certification path constraints extensions --

basicConstraints EXTENSION ::= {

Second CRADA Draft, Version 2

 B-4

 SYNTAX BasicConstraintsSyntax
 IDENTIFIED BY { id-ce 19 } }

BasicConstraintsSyntax ::= SEQUENCE {
 cA BOOLEAN DEFAULT FALSE,
 pathLenConstraint INTEGER (0..MAX) OPTIONAL }

nameConstraints EXTENSION ::= {
 SYNTAX NameConstraintsSyntax
 IDENTIFIED BY { id-ce 30 } }

NameConstraintsSyntax ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

BaseDistance ::= INTEGER (0..MAX)

policyConstraints EXTENSION ::= {
 SYNTAX PolicyConstraintsSyntax
 IDENTIFIED BY { id-ce 36 } }

PolicyConstraints Syntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 requireExplicitPolicy [0] SkipCerts OPTIONAL,
 inhibitPolicyMapping [1] SkipCerts OPTIONAL }

SkipCerts ::= INTEGER (0..MAX)

-- Basic CRL extensions --

cRLNumber EXTENSION ::= {
 SYNTAX CRLNumber
 IDENTIFIED BY { id-ce 20 } }

CRLNumber ::= INTEGER (0..MAX)

reasonCode EXTENSION ::= {
 SYNTAX CRLReason
 IDENTIFIED BY { id-ce 21 } }

CRLReason ::= ENUMERATED {
 unspecified (0),
 keyCompromise (1),
 cACompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6),

Second CRADA Draft, Version 2

 B-5

 removeFromCRL (8) }

instructionCode EXTENSION ::= {
 SYNTAX HoldInstruction
 IDENTIFIED BY { id-ce 23 } }

HoldInstruction ::= OBJECT IDENTIFIER

invalidityDate EXTENSION ::= {
 SYNTAX GeneralizedTime
 IDENTIFIED BY { id-ce 24 } }

-- CRL distribution points and delta-CRL extensions --

cRLDistributionPoints EXTENSION ::= {
 SYNTAX CRLDistPointsSyntax
 IDENTIFIED BY { id-ce 31 } }

CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

DistributionPoint ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,
 reasons [1] ReasonFlags OPTIONAL,
 cRLIssuer [2] GeneralNames OPTIONAL }

DistributionPointName ::= CHOICE {
 fullName [0] GeneralNames,
 nameRelativeToCRLIssuer [1] RelativeDistinguishedName }

ReasonFlags ::= BIT STRING {
 unused (0),
 keyCompromise (1),
 caCompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6) }

issuingDistributionPoint EXTENSION ::= {
 SYNTAX IssuingDistPointSyntax
 IDENTIFIED BY { id-ce 28 } }

IssuingDistPointSyntax ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,
 onlyContainsUserCerts [1] BOOLEAN DEFAULT FALSE,
 onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE,
 onlySomeReasons [3] ReasonFlags OPTIONAL,
 indirectCRL [4] BOOLEAN DEFAULT FALSE }

certificateIssuer EXTENSION ::= {
 SYNTAX GeneralNames
 IDENTIFIED BY { id-ce 29 } }

Second CRADA Draft, Version 2

 B-6

deltaCRLIndicator EXTENSION ::= {
 SYNTAX BaseCRLNumber
 IDENTIFIED BY { id-ce 27 } }

BaseCRLNumber ::= CRLNumber

deltaRevocationList ATTRIBUTE ::= {
 WITH SYNTAX CertificateList
 EQUALITY MATCHING RULE certificateListExactMatch
 ID {id-at 53 } }

-- Matching rules --

certificateExactMatch MATCHING-RULE ::= {
 SYNTAX CertificateExactAssertion
 ID id-mr-certificateExactMatch }

CertificateExactAssertion ::= SEQUENCE {
 serialNumber CertificateSerialNumber,
 issuer Name }

certificateMatch MATCHING-RULE ::= {
 SYNTAX CertificateAssertion
 ID id-mr-certificateMatch }

CertificateAssertion ::= SEQUENCE {
 serialNumber [0] CertificateSerialNumber OPTIONAL,
 issuer [1] Name OPTIONAL,
 subjectKeyIdentifier [2] SubjectKeyIdentifier OPTIONAL,
 authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,
 certificateValid [4] UTCTime OPTIONAL,
 privateKeyValid [5] GeneralizedTime OPTIONAL,
 subjectPublicKeyAlgID [6] OBJECT IDENTIFIER OPTIONAL,
 keyUsage [7] KeyUsage OPTIONAL,
 subjectAltName [8] AltNameType OPTIONAL,
 policy [9] CertPolicySet OPTIONAL,
 pathToName [10] Name OPTIONAL }

AltNameType ::= CHOICE {
 builtinNameForm ENUMERATED {
 rfc822Name (1),
 dNSName (2),
 x400Address (3),
 directoryName (4),
 ediPartyName (5),
 uniformResourceIdentifier (6),
 iPAddress (7),
 registeredId (8) },
 otherNameForm OBJECT IDENTIFIER }

certificatePairExactMatch MATCHING-RULE ::= {
 SYNTAX CertificatePairExactAssertion

Second CRADA Draft, Version 2

 B-7

 ID id-mr-certificatePairExactMatch }

CertificatePairExactAssertion ::= SEQUENCE {
 forwardAssertion [0] CertificateExactAssertion OPTIONAL,
 reverseAssertion [1] CertificateExactAssertion OPTIONAL }
 (WITH COMPONENTS {..., forwardAssertion PRESENT} |
 WITH COMPONENTS {..., reverseAssertion PRESENT})

certificatePairMatch MATCHING-RULE ::= {
 SYNTAX CertificatePairAssertion
 ID id-mr-certificatePairMatch }

CertificatePairAssertion ::= SEQUENCE {
 forwardAssertion [0] CertificateAssertion OPTIONAL,
 reverseAssertion [1] CertificateAssertion OPTIONAL }
 (WITH COMPONENTS {..., forwardAssertion PRESENT} |
 WITH COMPONENTS {..., reverseAssertion PRESENT})

certificateListExactMatch MATCHING-RULE ::= {
 SYNTAX CertificateListExactAssertion
 ID id-mr-certificateListExactMatch }

CertificateListExactAssertion ::= SEQUENCE {
 issuer Name,
 thisUpdate UTCTime,
 distributionPoint DistributionPointName OPTIONAL }

certificateListMatch MATCHING-RULE ::= {
 SYNTAX CertificateListAssertion
 ID id-mr-certificateListMatch }

CertificateListAssertion ::= SEQUENCE {
 issuer Name OPTIONAL,
 minCRLNumber [0] CRLNumber OPTIONAL,
 maxCRLNumber [1] CRLNumber OPTIONAL,
 reasonFlags ReasonFlags OPTIONAL,
 dateAndTime UTCTime OPTIONAL,
 distributionPoint [2] DistributionPointName OPTIONAL }

algorithmIdentifierMatch MATCHING-RULE ::= {
 SYNTAX AlgorithmIdentifier
 ID id-mr-algorithmIdentifierMatch }

-- Object identifier assignments --

id-at-supportedAlgorithms OBJECT IDENTIFIER ::= {id-at 52}
id-at-deltaRevocationList OBJECT IDENTIFIER ::= {id-at 53}
id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= {id-ce 9}
id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 14}
id-ce-keyUsage OBJECT IDENTIFIER ::= {id-ce 15}
id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= {id-ce 16}
id-ce-subjectAltName OBJECT IDENTIFIER ::= {id-ce 17}
id-ce-issuerAltName OBJECT IDENTIFIER ::= {id-ce 18}

Second CRADA Draft, Version 2

 B-8

id-ce-basicConstraints OBJECT IDENTIFIER ::= {id-ce 19}
id-ce-cRLNumber OBJECT IDENTIFIER ::= {id-ce 20}
id-ce-reasonCode OBJECT IDENTIFIER ::= {id-ce 21}
id-ce-instructionCode OBJECT IDENTIFIER ::= {id-ce 23}
id-ce-invalidityDate OBJECT IDENTIFIER ::= {id-ce 24}
id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= {id-ce 27}
id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce 28}
id-ce-certificateIssuer OBJECT IDENTIFIER ::= {id-ce 29}
id-ce-nameConstraints OBJECT IDENTIFIER ::= {id-ce 30}
id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= {id-ce 31}
id-ce-certificatePolicies OBJECT IDENTIFIER ::= {id-ce 32}
id-ce-policyMappings OBJECT IDENTIFIER ::= {id-ce 33}
id-ce-policyConstraints OBJECT IDENTIFIER ::= {id-ce 34}
id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 35}
id-mr-certificateExactMatch OBJECT IDENTIFIER ::= {id-mr 34}
id-mr-certificateMatch OBJECT IDENTIFIER ::= {id-mr 35}
id-mr-certificatePairExactMatch OBJECT IDENTIFIER ::= {id-mr 36}
id-mr-certificatePairMatch OBJECT IDENTIFIER ::= {id-mr 37}
id-mr-certificateListExactMatch OBJECT IDENTIFIER ::= {id-mr 38}
id-mr-certificateListMatch OBJECT IDENTIFIER ::= {id-mr 39}
id-mr-algorithmIdentifierMatch OBJECT IDENTIFIER ::= {id-mr 40}

-- The following OBJECT IDENTIFIERS are not used by this specification:
-- {id-ce 2}, {id-ce 3}, {id-ce 4}, {id-ce 5}, {id-ce 6}, {id-ce 7},
-- {id-ce 8}, {id-ce 10}, {id-ce 11}, {id-ce 12}, {id-ce 13},
-- {id-ce 22}, {id-ce 25}, {id-ce 26}

END

 C-1

Appendix C. ASN.1 Module for transactions

The following section contains the complete ASN.1 module from RFC 2510, the Certificate
Management Protocol. Only a small subset of the messages defined in [RFC2510] are required
to implement this specification. The entire module is provided for completeness. Information
about messages defined by this ASN.1 module but not used in the MISPC may be found in
[RFC2510].

PKIX-CMP DEFINITIONS ::=
BEGIN -- EXPLICT TAGS

IMPORTS
 CertReqMessages, EncryptedValue, EncryptedKey
 FROM CMRF

 PKIMessage ::= SEQUENCE {
 Header PKIHeader,
 Body PKIBody,
 Protection [0] PKIProtection OPTIONAL,
 ExtraCerts [1] SEQUENCE SIZE (1..MAX) OF Certificate OPTIONAL
 }

 PKIHeader ::= SEQUENCE {
 pvno INTEGER { ietf-version2 (1) },
 sender GeneralName,
 -- identifies the sender
 recipient GeneralName,
 -- identifies the intended recipient
 messageTime [0] GeneralizedTime OPTIONAL,
 -- time of production of this message (used when sender
 -- believes that the transport will be "suitable"; i.e.,
 -- that the time will still be meaningful upon receipt)
 protectionAlg [1] AlgorithmIdentifier OPTIONAL,
 -- algorithm used for calculation of protection bits
 senderKID [2] KeyIdentifier OPTIONAL,
 recipKID [3] KeyIdentifier OPTIONAL,
 -- to identify specific keys used for protection
 transactionID [4] OCTET STRING OPTIONAL,
 -- identifies the transaction; i.e., this will be the same in
 -- corresponding request, response and confirmation messages
 senderNonce [5] OCTET STRING OPTIONAL,
 recipNonce [6] OCTET STRING OPTIONAL,
 -- nonces used to provide replay protection, senderNonce
 -- is inserted by the creator of this message; recipNonce
 -- is a nonce previously inserted in a related message by
 -- the intended recipient of this message
 freeText [7] PKIFreeText OPTIONAL,
 -- this may be used to indicate context-specific instructions
 -- (this field is intended for human consumption)
 generalInfo [8] SEQUENCE SIZE (1..MAX) OF
 InfoTypeAndValue OPTIONAL
 -- this may be used to convey context-specific information

 C-2

 -- (this field not primarily intended for human consumption)
 }

 PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String
 -- text encoded as UTF-8 String (note: each UTF8String SHOULD
 -- include an RFC 1766 language tag to indicate the language
 -- of the contained text)

PKIBody ::= CHOICE { -- message-specific body elements
 ir [0] CertReqMessages, --Initialization Request
 ip [1] CertRepMessage, --Initialization Response
 cr [2] CertReqMessages, --Certification Request
 cp [3] CertRepMessage, --Certification Response
 p10cr [4] CertificationRequest, --imported from [PKCS10]
 popdecc [5] POPODecKeyChallContent, --pop Challenge
 popdecr [6] POPODecKeyRespContent, --pop Response
 kur [7] CertReqMessages, --Key Update Request
 kup [8] CertRepMessage, --Key Update Response
 krr [9] CertReqMessages, --Key Recovery Request
 krp [10] KeyRecRepContent, --Key Recovery Response
 rr [11] RevReqContent, --Revocation Request
 rp [12] RevRepContent, --Revocation Response
 ccr [13] CertReqMessages, --Cross-Cert. Request
 ccp [14] CertRepMessage, --Cross-Cert. Response
 ckuann [15] CAKeyUpdAnnContent, --CA Key Update Ann.
 cann [16] CertAnnContent, --Certificate Ann.
 rann [17] RevAnnContent, --Revocation Ann.
 crlann [18] CRLAnnContent, --CRL Announcement
 conf [19] PKIConfirmContent, --Confirmation
 nested [20] NestedMessageContent, --Nested Message
 genm [21] GenMsgContent, --General Message
 genp [22] GenRepContent, --General Response
 error [23] ErrorMsgContent --Error Message
 }

 PKIProtection ::= BIT STRING

 ProtectedPart ::= SEQUENCE {
 header PKIHeader,
 body PKIBody
 }

 PasswordBasedMac ::= OBJECT IDENTIFIER --{1 2 840 113533 7 66 13}

 PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 iterationCount INTEGER,
 -- number of times the OWF is applied
 mac AlgorithmIdentifier
 -- the mac AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
 } -- or HMAC [RFC2104, RFC2202])

 C-3

 DHBasedMac ::= OBJECT IDENTIFIER --{1 2 840 113533 7 66 30}

 DHBMParameter ::= SEQUENCE {
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
 } -- or HMAC [RFC2104, RFC2202])

 NestedMessageContent ::= PKIMessage

 PKIStatus ::= INTEGER {
 granted (0),
 -- you got exactly what you asked for
 grantedWithMods (1),
 -- you got something like what you asked for; the
 -- requester is responsible for ascertaining the differences
 rejection (2),
 -- you don't get it, more information elsewhere in the message
 waiting (3),
 -- the request body part has not yet been processed,
 -- expect to hear more later
 revocationWarning (4),
 -- this message contains a warning that a revocation is
 -- imminent
 revocationNotification (5),
 -- notification that a revocation has occurred
 keyUpdateWarning (6)
 -- update already done for the oldCertId specified in
 -- CertReqMsg
 }

 PKIFailureInfo ::= BIT STRING {
 -- since we can fail in more than one way!
 -- More codes may be added in the future if/when required.
 badAlg (0),
 -- unrecognized or unsupported Algorithm Identifier
 badMessageCheck (1),
 -- integrity check failed (e.g., signature did not verify)
 badRequest (2),
 -- transaction not permitted or supported
 badTime (3),
 -- messageTime was not sufficiently close to the system time,
 -- as defined by local policy
 badCertId (4),
 -- no certificate could be found matching the provided criteria
 badDataFormat (5),
 -- the data submitted has the wrong format
 wrongAuthority (6),
 -- the authority indicated in the request is different from the
 -- one creating the response token
 incorrectData (7),
 -- the requester's data is incorrect (for notary services)

 C-4

 missingTimeStamp (8),
-- when the timestamp is missing but should be there (by policy)
badPoP (9)
-- when proof of possession does not verify

 }

 PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,
 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL
 }

 OOBCert ::= Certificate

 OOBCertHash ::= SEQUENCE {
 hashAlg [0] AlgorithmIdentifier OPTIONAL,
 certId [1] CertId OPTIONAL,
 hashVal BIT STRING
 -- hashVal is calculated over DER encoding of the
 -- subjectPublicKey field of the corresponding cert.
 }

 POPODecKeyChallContent ::= SEQUENCE OF Challenge
 -- One Challenge per encryption key certification request (in the
 -- same order as these requests appear in CertReqMessages).

 Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier OPTIONAL,
 -- MUST be present in the first Challenge; MAY be omitted in any
 -- subsequent Challenge in POPODecKeyChallContent (if omitted,
 -- then the owf used in the immediately preceding Challenge is
 -- to be used).
 witness OCTET STRING,
 -- the result of applying the one-way function (owf) to a
 -- randomly-generated INTEGER, A. [Note that a different
 -- INTEGER MUST be used for each Challenge.]
 challenge OCTET STRING
 -- the encryption (under the public key for which the cert.
 -- request is being made) of Rand, where Rand is specified as
 -- Rand ::= SEQUENCE {
 -- int INTEGER,
 -- - the randomly-generated INTEGER A (above)
 -- sender GeneralName
 -- - the sender's name (as included in PKIHeader)
 -- }
 }

 POPODecKeyRespContent ::= SEQUENCE OF INTEGER
 -- One INTEGER per encryption key certification request (in the
 -- same order as these requests appear in CertReqMessages). The
 -- retrieved INTEGER A (above) is returned to the sender of the
 -- corresponding Challenge.

CertRepMessage ::= SEQUENCE {

 C-5

 caPubs [1] SEQUENCE SIZE (1..MAX) OF Certificate OPTIONAL,
 response SEQUENCE OF CertResponse
 }

 CertResponse ::= SEQUENCE {
 certReqId INTEGER,
 -- to match this response with corresponding request (a value
 -- of -1 is to be used if certReqId is not specified in the
 -- corresponding request)
 status PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair OPTIONAL,
 rspInfo OCTET STRING OPTIONAL
 -- analogous to the id-regInfo-asciiPairs OCTET STRING defined
 -- for regInfo in CertReqMsg [CRMF]
 }

 CertifiedKeyPair ::= SEQUENCE {
 certOrEncCert CertOrEncCert,
 privateKey [0] EncryptedValue OPTIONAL,
 publicationInfo [1] PKIPublicationInfo OPTIONAL
 }

 CertOrEncCert ::= CHOICE {
 certificate [0] Certificate,
 encryptedCert [1] EncryptedValue
 }

 KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] Certificate OPTIONAL,
 caCerts [1] SEQUENCE SIZE (1..MAX) OF
 Certificate OPTIONAL,
 keyPairHist [2] SEQUENCE SIZE (1..MAX) OF
 CertifiedKeyPair OPTIONAL
 }

 RevReqContent ::= SEQUENCE OF RevDetails

 RevDetails ::= SEQUENCE {
 certDetails CertTemplate,
 -- allows requester to specify as much as they can about
 -- the cert. for which revocation is requested
 -- (e.g., for cases in which serialNumber is not available)
 revocationReason ReasonFlags OPTIONAL,
 -- the reason that revocation is requested
 badSinceDate GeneralizedTime OPTIONAL,
 -- indicates best knowledge of sender
 crlEntryDetails Extensions OPTIONAL
 -- requested crlEntryExtensions
 }

 RevRepContent ::= SEQUENCE {
 status SEQUENCE SIZE (1..MAX) OF PKIStatusInfo,
 -- in same order as was sent in RevReqContent

 C-6

 revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL,
 -- IDs for which revocation was requested (same order as status)
 crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList OPTIONAL
 -- the resulting CRLs (there may be more than one)
 }

 CAKeyUpdAnnContent ::= SEQUENCE {
 oldWithNew Certificate, -- old pub signed with new priv
 newWithOld Certificate, -- new pub signed with old priv
 newWithNew Certificate -- new pub signed with new priv
 }

 CertAnnContent ::= Certificate

 RevAnnContent ::= SEQUENCE {
 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions OPTIONAL
 -- extra CRL details(e.g., crl number, reason, location, etc.)
}

 CRLAnnContent ::= SEQUENCE OF CertificateList

 PKIConfirmContent ::= NULL

 InfoTypeAndValue ::= SEQUENCE {
 infoType OBJECT IDENTIFIER,
 infoValue ANY DEFINED BY infoType OPTIONAL
 }
 -- Example InfoTypeAndValue contents include, but are not limited to:
 -- { CAProtEncCert = {id-it 1}, Certificate }
 -- { SignKeyPairTypes = {id-it 2}, SEQUENCE OF AlgorithmIdentifier }
 -- { EncKeyPairTypes = {id-it 3}, SEQUENCE OF AlgorithmIdentifier }
 -- { PreferredSymmAlg = {id-it 4}, AlgorithmIdentifier }
 -- { CAKeyUpdateInfo = {id-it 5}, CAKeyUpdAnnContent }
 -- { CurrentCRL = {id-it 6}, CertificateList }
 -- where {id-it} = {id-pkix 4} = {1 3 6 1 5 5 7 4}
 -- This construct MAY also be used to define new PKIX Certificate
 -- Management Protocol request and response messages, or general-
 -- purpose (e.g., announcement) messages for future needs or for
 -- specific environments.

 GenMsgContent ::= SEQUENCE OF InfoTypeAndValue
 -- May be sent by EE, RA, or CA (depending on message content).
 -- The OPTIONAL infoValue parameter of InfoTypeAndValue will typically
 -- be omitted for some of the examples given above. The receiver is
 -- free to ignore any contained OBJ. IDs that it does not recognize.
 -- If sent from EE to CA, the empty set indicates that the CA may send
 -- any/all information that it wishes.

 GenRepContent ::= SEQUENCE OF InfoTypeAndValue

 C-7

 -- The receiver is free to ignore any contained OBJ. IDs that it does
 -- not recognize.

 ErrorMsgContent ::= SEQUENCE {
 pKIStatusInfo PKIStatusInfo,
 errorCode INTEGER OPTIONAL,
 -- implementation-specific error codes
 errorDetails PKIFreeText OPTIONAL
 -- implementation-specific error details
 }

 D-1

Appendix D. Certificate Request Message Format ASN.1 Module

The following section contains the complete ASN.1 module from RFC 2511, the Certificate
Request Message Format. Only a small subset of the structures defined in [RFC2511] are
required to implement this specification. The entire module is provided for completeness.
Information about structures defined by this ASN.1 module but not used in the MISPC may be
found in [RFC2511].

CRMF DEFINITIONS IMPLICIT TAGS ::=
BEGIN

IMPORTS
 -- Directory Authentication Framework (X.509)
 Version, AlgorithmIdentifier, Name, Time,
 SubjectPublicKeyInfo, Extensions, UniqueIdentifier
 FROM AuthenticationFramework { joint-iso-itu-t ds(5)
 module(1) authenticationFramework(7) 3 }

 -- Certificate Extensions (X.509)
 GeneralName
 FROM CertificateExtensions {joint-iso-ccitt ds(5)
 module(1) certificateExtensions(26) 0}

 -- Cryptographic Message Syntax
 EnvelopedData
 FROM CryptographicMessageSyntax { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
 modules(0) cms(1) };

CertReqMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqMsg

CertReqMsg ::= SEQUENCE {
 CertReq CertRequest,
 Pop ProofOfPossession OPTIONAL,
 -- content depends upon key type
 regInfo SEQUENCE SIZE(1..MAX) OF AttributeTypeAndValue OPTIONAL }

CertRequest ::= SEQUENCE {
 CertReqId INTEGER, -- ID for matching request and reply
 CertTemplate CertTemplate, -- Selected fields of cert to be issued
 Controls Controls OPTIONAL } -- Attributes affecting issuance

CertTemplate ::= SEQUENCE {
 Version [0] Version OPTIONAL,
 serialNumber [1] INTEGER OPTIONAL,
 signingAlg [2] AlgorithmIdentifier OPTIONAL,
 issuer [3] Name OPTIONAL,
 validity [4] OptionalValidity OPTIONAL,
 subject [5] Name OPTIONAL,
 publicKey [6] SubjectPublicKeyInfo OPTIONAL,
 issuerUID [7] UniqueIdentifier OPTIONAL,

 D-2

 subjectUID [8] UniqueIdentifier OPTIONAL,
 extensions [9] Extensions OPTIONAL }

OptionalValidity ::= SEQUENCE {
 notBefore [0] Time OPTIONAL,
 notAfter [1] Time OPTIONAL } --at least one MUST be present

Controls ::= SEQUENCE SIZE(1..MAX) OF AttributeTypeAndValue

AttributeTypeAndValue ::= SEQUENCE {
 type OBJECT IDENTIFIER,
 value ANY DEFINED BY type }

ProofOfPossession ::= CHOICE {
 raVerified [0] NULL,
 -- used if the RA has already verified that the requester is in
 -- possession of the private key
 signature [1] POPOSigningKey,
 keyEncipherment [2] POPOPrivKey,
 keyAgreement [3] POPOPrivKey }

POPOSigningKey ::= SEQUENCE {
 poposkInput [0] POPOSKInput OPTIONAL,
 algorithmIdentifier AlgorithmIdentifier,
 signature BIT STRING }

 -- The signature (using "algorithmIdentifier") is on the
 -- DER-encoded value of popInput. NOTE: If poposkInput is present
-- in the pop field, popInput is constructed
-- with otherinput. If poposkInput is not present, subject is the name
-- from CertTemplate. Note that the encoding of PopInput is
 intentionally ambiguous.

PoposkInput ::= CHOICE {
 Subject name,
 Sender [0] generalName,
 publicKeyMAC [1] PKMACValue
 }

-- The pop is calculated upon the structure popInput, which is defined
-- as follows:

 PopInput ::= SEQUENCE {
 CHOICE {
 otherinput popskInput,
 subject name },
 publicKey subjectpublicKey
 }

-- If poposkInput is present
-- in the pop field, popInput is constructed
-- with otherinput. If poposkInput is not present, subject is the name
-- from CertTemplate. Note that the encoding of PopInput is
-- intentionally ambiguous.

 D-3

PKMACValue ::= SEQUENCE {
 algId AlgorithmIdentifier,
 -- algorithm value shall be PasswordBasedMac {1 2 840 113533 7 66 13}
 -- parameter value is PBMParameter
 value BIT STRING }

PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 iterationCount INTEGER,
 -- number of times the OWF is applied
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
} -- or HMAC [RFC2104, RFC2202])

POPOPrivKey ::= CHOICE {
 thisMessage [0] BIT STRING,
 -- posession is proven in this message (which contains the private
 -- key itself (encrypted for the CA))
 subsequentMessage [1] SubsequentMessage,
 -- possession will be proven in a subsequent message
 dhMAC [2] BIT STRING }
 -- for keyAgreement (only), possession is proven in this message
 -- (which contains a MAC (over the DER-encoded value of the
 -- certReq parameter in CertReqMsg, which MUST include both subject
 -- and publicKey) based on a key derived from the end entity's
 -- private DH key and the CA's public DH key);
 -- the dhMAC value MUST be calculated as per the directions given
 -- in Appendix A.

SubsequentMessage ::= INTEGER {
 encrCert (0),
 -- requests that resulting certificate be encrypted for the
 -- end entity (following which, POP will be proven in a
 -- confirmation message)
 challengeResp (1) }
 -- requests that CA engage in challenge-response exchange with
 -- end entity in order to prove private key possession

-- Object identifier assignments --

id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
dod(6) internet(1) security(5) mechanisms(5) 7 }

-- arc for Internet X.509 PKI protocols and their components
id-pkip OBJECT IDENTIFIER ::= { id-pkix 5 }

-- Registration Controls in CRMF
id-regCtrl OBJECT IDENTIFIER ::= { id-pkip 1 }

-- The following definition may be uncommented for use with
-- ASN.1 compilers which do not understand UTF8String.

 D-4

-- UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING

id-regCtrl-regToken OBJECT IDENTIFIER ::= { id-regCtrl 1 }
--with syntax:
RegToken ::= UTF8String

id-regCtrl-authenticator OBJECT IDENTIFIER ::= { id-regCtrl 2 }
--with syntax:
Authenticator ::= UTF8String

id-regCtrl-pkiPublicationInfo OBJECT IDENTIFIER ::= { id-regCtrl 3 }
--with syntax:

PKIPublicationInfo ::= SEQUENCE {
 action INTEGER {
 dontPublish (0),
 pleasePublish (1) },
 pubInfos SEQUENCE SIZE (1..MAX) OF SinglePubInfo OPTIONAL }
 -- pubInfos MUST NOT be present if action is "dontPublish"
 -- (if action is "pleasePublish" and pubInfos is omitted,
 -- "dontCare" is assumed)

SinglePubInfo ::= SEQUENCE {
 pubMethod INTEGER {
 dontCare (0),
 x500 (1),
 web (2),
 ldap (3) },
 pubLocation GeneralName OPTIONAL }

id-regCtrl-pkiArchiveOptions OBJECT IDENTIFIER ::= { id-regCtrl 4 }
--with syntax:
PKIArchiveOptions ::= CHOICE {
 encryptedPrivKey [0] EncryptedKey,
 -- the actual value of the private key
 keyGenParameters [1] KeyGenParameters,
 -- parameters which allow the private key to be re-generated
 archiveRemGenPrivKey [2] BOOLEAN }
 -- set to TRUE if sender wishes receiver to archive the private
 -- key of a key pair which the receiver generates in response to
 -- this request; set to FALSE if no archival is desired.

EncryptedKey ::= CHOICE {
 encryptedValue EncryptedValue,
 envelopedData [0] EnvelopedData }
 -- The encrypted private key MUST be placed in the envelopedData
 -- encryptedContentInfo encryptedContent OCTET STRING.

EncryptedValue ::= SEQUENCE {
 intendedAlg [0] AlgorithmIdentifier OPTIONAL,
 -- the intended algorithm for which the value will be used
 symmAlg [1] AlgorithmIdentifier OPTIONAL,
 -- the symmetric algorithm used to encrypt the value

 D-5

 encSymmKey [2] BIT STRING OPTIONAL,
 -- the (encrypted) symmetric key used to encrypt the value
 keyAlg [3] AlgorithmIdentifier OPTIONAL,
 -- algorithm used to encrypt the symmetric key
 valueHint [4] OCTET STRING OPTIONAL,
 -- a brief description or identifier of the encValue content
 -- (may be meaningful only to the sending entity, and used only
 -- if EncryptedValue might be re-examined by the sending entity
 -- in the future)
 encValue BIT STRING }
 -- the encrypted value itself

KeyGenParameters ::= OCTET STRING

id-regCtrl-oldCertId OBJECT IDENTIFIER ::= { id-regCtrl 5 }
--with syntax:
OldCertId ::= CertId

CertId ::= SEQUENCE {
 issuer GeneralName,
 serialNumber INTEGER }

id-regCtrl-protocolEncrKey OBJECT IDENTIFIER ::= { id-regCtrl 6 }
--with syntax:
ProtocolEncrKey ::= SubjectPublicKeyInfo

-- Registration Info in CRMF
id-regInfo OBJECT IDENTIFIER ::= { id-pkip 2 }

id-regInfo-utf8Pairs OBJECT IDENTIFIER ::= { id-regInfo 1 }
--with syntax
UTF8Pairs ::= UTF8String

id-regInfo-certReq OBJECT IDENTIFIER ::= { id-regInfo 2 }
--with syntax
CertReq ::= CertRequest

END

 E-1

	Introduction
	Purpose
	Scope
	Approach
	Assumptions
	Definitions, Terms, and Acronyms

	Infrastructure Component Specifications
	Certification Authority (CA)
	Interoperability-Relevant CA Functional Specifications
	Electronic Transaction Set.

	Registration Authority (RA)
	Interoperability-Relevant RA Functional Specifications
	Transaction Set

	Certificate Holder Specifications
	Interoperability-Relevant PKI Certificate Holders Functional Specifications
	Certificate Holders Transaction Set

	Client Specifications
	Interoperability-Relevant PKI Client Functional Specifications
	PKI Client Transaction Set

	Data Formats
	Certificate Format
	Certificate Fields
	Cryptographic Algorithms
	Secure Hash Algorithms
	Digital Signature Algorithms
	Key Agreement Algorithms
	Key Transport Algorithms
	Message Authentication Algorithms
	Symmetric Encryption Algorithms

	Certificate Extensions
	Key and Policy Information
	This noncritical extension is used in CA certificates. It lists pairs of object identifiers; each pair includes an issuerDomainPolicy and a subjectDomainPolicy. The pairing indicates that the issuing CA considers its issuerDomainPolicy equivalent to th
	Certification Path Constraints
	CRL Identification Extensions
	Summary of Certificate Extension Use

	Certificate Revocation List (CRL)
	CRL Fields
	CRL Extensions
	CRL Entry Extensions

	Certification Path Validation
	Transaction Message Formats
	Overall PKI Message Components
	Common Data Structures
	Operation-Specific Data Structures

	PKI Transactions
	RA-Generated Registration Requests
	Certificate Renewal Request
	Self-Registration Request (New Subject)
	Self-Registration Request (Known Subject)
	PKCS #10 Self-Registration Request
	Revocation Request
	Encryption Certificate Request for End-Entity Generated Key Pairs
	Proof of Possession for Diffie-Hellman and Elliptic Curve Key Agreement Keys
	Proof of Possession for RSA Key Transport keys
	Request for Centrally-Generated Key Pair and Key Management Certificate
	Combined Certificate Requests
	Request Certificate from a Repository
	Request CRL from a Repository

	References

